VMT, Gasoline Price, and Fuel Efficiency

Cynthia Chen, Ph.D. University of Washington

Motivation

- Greenhouse gas emissions
- Gasoline price
- Electric cars
- Rebound effect
- Congestion

Changes in VMT

Increase in gasoline price

Questions

- Do people respond to an increase in gasoline price in the same way as they do to an increase in fuel efficiency?
- Will the price effect be offset by the rebound effect? How does the answer differ by households of different income levels?

The conceptual framework

Specification of VMT and MPG as functions of socio-demographics

	Household size	No of workers	Average vehicle age	Retired households	Owning a hybrid
VMT per vehicle	+	+	-	-	
MPG			-	+	

Specification of VMT and MPG as functions of built environment characteristics

	Population density	Employment density
VMT per vehicle	-	-
MPG	+	+

VMT, MPG and gasoline price

	VMT per vehicle	MPG	Gasoline price
VMT per vehicle		+	-
MPG	+		-

Empirical dataset

- 2009 National Household Travel Survey (survey conducted bet. March 2008 and May 2009)
- 150,147 households in the original dataset
- Our sample of 105,372 households representing 70\% of the entire sample
- Sample selection criteria:
- Those with commercial vehicles,
- Those with household income missing
- Those lacking vehicle age information
- Those lacking estimates on VMT or MPG
- Those with extreme values on MPG or no. of vehicles

Variable explanations

- VMT (annualized)
- Fuel efficiency (MPG): derived by EIA
- Fuel cost (\$/gasoline gallon): derived by EIA

Sample statistics

		Mean		
Income level		$<\$ 10 \mathrm{k}$	$\$ 10 \mathrm{k}-\$ 100 \mathrm{k}$	$\geq \$ 100 \mathrm{k}$
Sample size		3,557	81,898	19,917
VMT	miles	7,919	9,905	11,650
MPG	miles/gallon	20.47	20.87	21.25
Gasoline cost	dollars/gallon	3.05	3.06	3.09
Population density	person/square mile	2,885	2884	3371
Employment density	person/square mile	910.2	918.7	1,038
Vehicle age	years	12.31	8.66	6.81
Household size	person	1.86	2.36	2.81
Commute time	minute	20.7	22.38	26.15
Commute distance	mile	11.11	12.9	15.43
No. of workers	person	0.36	0.97	1.43
\% owing hybrid	$\%$	0.02	0.04	0.08

VMT and MPG as functions of socio-demographics (direct effect)

	Household size	No of workers	Average vehicle age	Retired households	Owning a hybrid
Low income					
VMT/veh	0.16	0.101	-0.088	-0.08	
MPG			-0.082		-
Middle income					
VMT/veh	0.123	0.071	-0.14	-0.118	
MPG			-0.066		0.137
High income					
VMT/veh	0.1	0.06	-0.141	-0.152	-
MPG			-0.035		0.24

VMT and MPG as functions of built

 environment characteristics (direct effect)| | Population density | |
| :--- | :--- | :--- |
| | - | Employment density |
| VMT per vehicle | - | - |
| MPG | Middle income | |
| | -0.008 | - |
| VMT per vehicle | 0.006 | -0.017 |
| MPG | High income | |
| | -0.021 | 0.006 |
| VMT per vehicle | 0.009 | -0.027 |
| MPG | | 0.004 |

VMT, MPG and gasoline price (direct effect)

	MPG				
	Low income				
VMT per vehicle	0.467	Middle income			
VMT per vehicle	0.127	High income			
					-0.273
VMT per vehicle					

Direct, indirect, and total effects for low-income households

	number owning a of hybrid workers vehicle	retired hhlds	hhld size	average vehicle age	Emp. density	Pop. density	Gas price	MPG VMT
MPG direct	-			-0.082	-	-	0.406	-
indirect	-	-	-	-	-		-	0.020 .00
total	- -	-	-	-0.088	-	-	0.427	0.02
VMT direct	0.101	-0.08	0.16	-0.088	-	-	-	0.46
indirect	0.002	-0.002	0.004	-0.041	-	-	-	0.010 .02
total	0.103	-0.082	0.163	-0.129	-	-	-	0.470 .02

Direct, indirect, and total effects for middle-income households

	number of workers	owning a hybrid vehicle	retired hhlds	hhld size	average vehicle age	Emp. density	Pop. density	Gas price	MPG VMT
MPG direct		-			-0.066	0.006	0.006	0.48	0.07
indirect	0.005	0.001	-0.009	0.009	-0.011	-0.001	-0.001	-0.01	0.010 .00
total	0.005	0.139	-0.009	0.009	-0.078	0.005	0.005	0.47	0.010 .07
$\underline{\text { VMT direct }}$	0.071		-	0.123	-0.14	-0.017	-0.008	-0.27	0.12
indirect	0.001	0.018	-0.001	0.001	-0.01	0.001	0.001	0.06	0.000 .01
total	0.071	0.018	-0.119	0.124	-0.15	-0.016	-0.008	-0.21	0.120 .01

Direct, indirect, and total effects for high-income households

indirect
total

Total effects of gasoline price and MPG on VMT

	Gasoline price	MPG (rebound)	
VMT	-	0.47	Low income
	-0.21	0.12	Middle income
	-0.3	-	High income

Total effects of gasoline price and VMT on MPG

	Gasoline price	VMT	
MPG	0.41	-	Low income
	0.47	0.07	Middle income
	0.42	0.1	High income

Policy implications

- From the VMT perspective, promoting fuel efficiency will not result in a large rebound effect
- Increasing gasoline price mostly decreases VMT and promotes fuel efficiency
- Increasing gasoline price may affect the low-income people more due to that they may be already traveling at a minimum

Unfinished work

- Separating work and non-work VMT to verify and understand the insignificant price effect and large rebound effect associated with low-income households and the reverse trend with the higherincome groups

