Do U.S. Households Favor High Fuel Economy Vehicles When Gasoline Prices I ncrease?
 A Discrete Choice Analysis

Valerie J. Karplus

MIT J oint Program on the Science and Policy of Global Change

Using National Household Travel Survey Data for
Transportation Decision Making: A Workshop Washington, D.C.
7. June 2011

MIT ESD
Massachusetts Institute of Technology Engineering Systems Division

Overview

A simple question :
Do U.S. households favor high fuel economy vehicles when gasoline prices increase?

- Do households reduce fuel use proportionally more than vehicle travel in response to a fuel price increase?
- Do two-vehicle households use their higher fuel economy vehicle more when fuel prices increase?
- On a total travel basis?
- On a per-trip basis?

Setup - Empirical strategy

\square A natural experiment - gasoline price fluctuations 2008-2009
\square Focus on short-run response - observe monthly cross-sections
\square Focus on price-per-mile savings from switching - depends on gasoline price and fuel economy of vehicles owned
\square Estimation strategy (3 parts):

- 1) Elasticities of fuel use and vehicle-miles traveled (VMT) with respect to fuel price
(log-log robust ordinary least squares)
- 2) Switching overall - Effect of price-per-mile savings on fraction of miles driven in more efficient vehicle (generalized linear model with logit link)
- 3) Switching by trip - Effect of price-per-mile savings on probability of choosing the more efficient vehicle by trip (conditional logit model)
$\square \quad$ Alternative model specifications - include or condition on household, vehicle, or trip characteristics

Setup - Data Set

2009 U.S. National Household Transportation Survey :

- Monthly repeated crosssections of U.S. households
- Household characteristics
- Vehicle ownership and vehicle attributes
■ Travel in each vehicle on "travel day"
Supplemented with :
- City and highway fuel economy (Ward's vehicle attribute data, 2008)
- Fuel price data (by U.S. state including taxes - NHTSA and EIA)
U.S. average gasoline price over survey period

ppmile $_{\mathrm{Vi}, \mathrm{HH}}=(\$ / \mathrm{gal}) /(\mathrm{mi} /$ gal $)$
ppmile $_{\text {savings }, ~}^{\mathrm{HH}}{ }=$ ppmile $_{\mathrm{V} 1}-$ ppmile $_{\mathrm{V} 2}$

Result \#1: Elasticities - Households reduce fuel use

 more than VMT in response to gasoline price increasesTable 2 Aggregate gasoline price elasticity of demand for VMT and gasoline. Log indicates natural log. (* p<0.05 ** p<0.01 *** $\mathrm{p}<0.001$)

> Estimated elasticities increase (in magnitude) with income, decrease with degree of urbanization, and increase with the number of vehicles owned.

	Log VMT	Log Gasoline Use
Log gasoline price	$-0.112^{* * *}$	$-0.144^{* * *}$
	(-3.74)	(-4.88)

Elasticities with respect to fuel price:	
Vehicle-miles	-0.112
Gasoline use	-0.144
$\begin{aligned} & 0.0999^{2} 9 \\ & 0.29 \end{aligned}$	

Household size	$0.251 * * *$	$0.259 * * *$
	(63.87)	(67.05)
Weekday	$-0.0942^{* * *}$	$-0.0895^{* * *}$
	(-9.73)	(-9.41)

Constant
0.107
$-2.645^{* * *}$
5
(1.22)
(-30.56)

Result \#2: Switching by total distance - Households (modestly) increase use of high efficiency vehicles

savings	Marginal effect (milfraclsavings)	
(cents per mile)	Estimate	S.E.
$\mathbf{0}$	0.013734	0.001262
$\mathbf{2 . 5}$	0.013764	0.001278
$\mathbf{5}$	0.013665	0.001259
$\mathbf{7}$	0.01344	0.001205
$\mathbf{1 0}$	0.013099	0.00112
$\mathbf{1 5}$	0.012117	0.00088
$\mathbf{2 0}$	0.010843	0.000589

Table 6 (b) Effect of per mile cost savings on switching behavior in aggregate sample with predictive margins and marginal effects for the GLM model. (abridged) S.E. - standard errors

Every one-cent increase in price-per-mile savings leads to an increase in the fraction of miles traveled in the more efficient vehicle of $\mathbf{0 . 0 1 4}$.

Switching varies strongly by income level

Table 7 Predictive margins and marginal effects of per mile savings on fraction of miles traveled in the higher efficiency vehicle, by income category. (evaluated at 5 cents per mile, abridged)

Income category	Marginal effect	
	(milfrac\|savings)	S.E.
	0.0236	0.0047
U US \$25,000	0.0216	0.0022
US \$25,000 - \$60,000	0.0101	0.0023
US \$60,000 - \$100,000	0.0062	\downarrow
US \$100,000		

The effect of price-per-mile savings on switching decreases as income increases.

Result \#3: Switching by trip - the probability of high efficiency vehicle use increases with price per mile

Table 9 Effect of price per mile savings on the choice of a high efficiency vehicle by trip for the aggregate sample.

Household size	$-0.0769^{* * *}$	$-0.0711^{* * *}$	$-0.0703^{* * *}$
(-11.24)	(-10.10)	(-9.97)	

Table 10 Routine daily trips showed highest probability of switching, while effect for vacation trips and work not significant.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	$\begin{gathered} \text { To / } \\ \text { From } \\ \text { Work } \end{gathered}$	Workrelated business	Shopping	Other family / personal business	School/ church	$\begin{gathered} \text { Medical / } \\ \text { dental } \end{gathered}$	Vacation	Visit friends / relatives	Other social / recreation
Per mile savings	$0.0330 * *$	0.0220	$0.0366^{* *}$	$0.0306 * *$	$0.0332 * *$	$0.0471^{* *}$	-0.0206	$0.0424^{* *}$	$0.0344 * * *$
	(6.21)	(1.73)	(8.50)	(6.46)	(4.29)	(4.59)	(-1.07)	(4.98)	(7.50)

Conclusions

Elasticities (1)

\square In the short run households reduce fuel use more than they reduce VMT - elasticities vary with income, urbanization, vehicle ownership
Vehicle switching ($2 \& 3$)
\square Switching occurs on both total distance and per trip basis - but modest! (On average households realize only 5\% of available savings, and switching nationwide corresponds to a less than 1\% reduction in gasoline use in response to $\$ 2 /$ gal gasoline price increase.)
\square Reduced switching at higher income levels \rightarrow consistent with share of fuel cost in total household expenditures declining with income

Implications and future work

\square Implications

■ Energy / GHG policy impact - need to consider vehicle usage as well as vehicle purchase response and how it will differ across households

- Role of income - as incomes rise, importance of switching response may diminish
- Impact of switching is small - but could still affect results if omitted from highly aggregated energy-economic models used in policy analysis
\square Future work
■ Non-linear switching behavior (e.g. price thresholds - \$4/gal?)
- Alternative fuel vehicles as part of household fleets

Thank you!

MIT Joint Program on the Science and Policy of Global Change

 MIT Sloan Automotive Laboratory
EPA STAR Graduate Fellowship
 Martin Fellowship
 Advanced Conversion Research Program

Committee Members
Prof. John Heywood
Prof. Jake Jacoby
Prof. Kenneth Oye Prof. John Reilly
Prof. Mort Webster (chair)

Dr. Mustafa Babiker (Saudi Aramco)
Prof. Dick Eckaus
Prof. Jerry Hausman
Prof. Kenneth Train (Berkeley)
Rosie Albinson (BP)
Dr. Sebastian Rausch
Dr. Niven Winchester
Jennifer Morris
Awesome JP \& SAL students

E-mail: vkarplus@mit.edu

Backup Slides

Valerie J. Karplus

MIT ESD

Massachusetts Institute of Technology Engineering Systems Division

Elasticities conditional on income

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	< \$25,000/yr		\$25,000-\$60,000/yr		\$60,000-\$100,000/yr		>\$100,000/yr	
	VMT	Gasoline	VMT	Gasoline	VMT	Gasoline	VMT	Gasoline
Log gasoline price	0.00436	-0.0354	-0.141**	-0.170***	-0.0993	-0.119*	-0.133*	-0.178**
	(0.05)	(-0.38)	(-2.76)	(-3.38)	(-1.76)	(-2.15)	(-2.33)	(-3.18)
Spring	0.108	0.131	0.0912*	0.126**	0.109*	0.133**	0.139**	0.172***
	(1.33)	(1.63)	(2.05)	(2.86)	(2.22)	(2.75)	(2.86)	(3.62)
Summer	0.0000312	0.0300	$0.140^{* *}$	0.159***	0.157**	0.173***	0.156**	0.185***
	(0.00)	(0.37)	(3.14)	(3.62)	(3.24)	(3.62)	(3.19)	(3.84)
Fall	-0.0340	-0.00789	0.0559	0.0733*	0.0358	0.0533	0.0895**	0.109***
	(-0.63)	(-0.15)	(1.91)	(2.54)	(1.13)	(1.73)	(2.79)	(3.47)
Household size	$0.271^{* * *}$	0.276***	0.271***	0.279***	0.243***	0.252***	0.222***	0.234***
	(21.58)	(22.15)	(37.37)	(39.17)	(34.76)	(36.32)	(32.54)	(35.22)
Weekday	-0.0726*	-0.0682*	-0.0738***	-0.0686***	-0.0720***	-0.0682***	-0.150***	-0.145***
	(-2.47)	(-2.34)	(-4.45)	(-4.20)	(-3.91)	(-3.76)	(-8.15)	(-8.05)
Constant	3.044***	0.157*	3.447***	0.534***	3.654***	0.722***	3.892***	0.966***
	(45.41)	(2.38)	(91.49)	(14.37)	(87.27)	(17.47)	(92.51)	(23.47)
N	11709	11709	26697	26697	18395	18395	16520	16520

Elasticities conditional on urbanization

	(1)	(2)	(3)	(4)	(5)	(6)
	Urban		Semi-urban		Rural	
	VMT	Gasoline	VMT	Gasoline	VMT	Gasoline
$\underset{\underset{y}{\text { gasoline }}}{\text { price }}$	-0.0916**	-0.130***	-0.0931	-0.106	-0.0642	-0.0781
	(-2.70)	(-3.89)	(-0.71)	(-0.83)	(-0.97)	(-1.21)
\qquad	0.357***	0.344***	0.337***	0.322***	0.259***	0.235***
	(38.00)	(37.05)	(10.12)	(9.91)	(15.47)	(14.18)
Spring	0.0775**	0.110***	0.0641	0.0676	0.0922	0.116*
	(2.63)	(3.81)	(0.57)	(0.62)	(1.65)	(2.13)
Summer	0.110***	0.136***	0.101	0.105	0.0880	0.0986
	(3.75)	(4.71)	(0.89)	(0.95)	(1.55)	(1.77)
Fall	0.0423*	0.0650***	0.0543	0.0601	0.0259	0.0351
	(2.22)	(3.47)	(0.71)	(0.80)	(0.68)	(0.93)
Household size	0.252***	0.263***	0.256***	0.253***	0.243***	0.245***
	(56.69)	(60.04)	(14.58)	(14.73)	(28.87)	(29.31)
Weekday	$0.0952^{* * *}$	$\stackrel{-}{0.0879 * * *}$	-0.105*	-0.107**	-0.0825***	-0.0860***
	(-8.66)	(-8.12)	(-2.52)	(-2.64)	(-3.88)	(-4.14)
Constant	-0.451***	-3.230***	-0.110	-2.831***	1.088***	-1.562***
	(-4.44)	(-32.16)	(-0.30)	(-7.88)	(5.97)	(-8.66)
N	53628	53628	4833	4833	14859	14859

Elasticities conditional on household vehicle ownership

	(1)	(2)	(3)	(4)	(5)	(6)
	One-vehicle households	Two-vehicle households	Three-vehicle households			
	VMT	Gasoline	VMT	Gasoline	VMT	Gasoline
Log gasoline price	-0.154^{*}	$-0.181^{* *}$	-0.0865^{*}	$-0.115^{* *}$	$-0.192^{* *}$	$-0.230^{* * *}$
	(-2.35)	(-2.77)	(-2.05)	(-2.75)	(-2.89)	(-3.56)

Switching, by trip purpose

Elasticities depend on household characteristics

Income	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	< \$25,000/yr		\$25,000-\$60,000/yr		\$60,000-\$100,000/yr		>\$100,000/yr	
	VMT	Gasoline	VMT	Gasoline	VMT	Gasoline	VMT	Gasoline
Log gasoline price	0.00436	-0.0354	-0.141**	-0.170***	-0.0993	-0.119*	-0.133*	-0.178**
	(0.05)	(-0.38)	(-2.76)	(-3.38)	(-1.76)	(-2.15)	(-2.33)	(-3.18)
Urbanization	Table 4	(1)	(2)	(3)			(5)	(6)
		Urban		Semi-urban			Rural	
		VMT	Gasoline	VMT	G	line	VMT	Gasoline
	Log gasoline price	-0.0916**	-0.130***	* -0.0931			-0.0642	-0.0781
		(-2.70)	(-3.89)	(-0.71)			(-0.97)	(-1.21)

Number of
vehicles
owned

Table 5	(1)	(2)	(3)	(4)	(5)	(6)			
	One-vehicle households	Two-vehicle households		Three-vehicle households					
	VMT	Gasoline	VMT	Gasoline	VMT	Gasoline			
Log gasoline price	-0.154^{*}	$-0.181^{* *}$	-0.0865^{*}	$-0.115^{* *}$	$-0.192^{* *}$	$-0.230^{* * *}$			
	(-2.35)	(-2.77)	(-2.05)	(-2.75)	(-2.89)	(-3.56)			
		17				$\\|\\|\\|$			

Massachusetts Institute of Technology
Engineering Systems Division

Result \#2: Households (modestly) increase use of high efficiency vehicles when per-mile savings increase

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Per mile savings	0.0540***	0.0517***	0.0541***	0.0562***	0.0556***	0.0556***	0.0136***
	(11.68)	(10.83)	(10.52)	(10.94)	(10.77)	(10.78)	(11.00)
Log of household income		-0.176***	-0.177***	-0.142***	-0.151***	-0.151***	-0.0371***
		(-6.57)	(-6.58)	(-5.20)	(-5.53)	(-5.53)	(-5.58)
Seasonal dummies omitted due to space							
Household size				-0.104***	-0.0488***	-0.0482***	-0.0119***
				(-8.84)	(-3.69)	(-3.64)	(-3.66)
Average passengers per vehicle					-0.140***	-0.141***	$-0.0347 * * *$
					(-7.00)	(-7.06)	(-7.17)
Weekday						-0.0251	-0.00611
						(-0.84)	(-0.83)
Constant	-0.0954***	1.857***	1.870***	1.784***	1.992***	2.012***	0.994***
	(-4.69)	(6.22)	(6.24)	(5.95)	(6.60)	(6.66)	(13.55)
N	17965	16766	16766	16766	16766	16766	16766
							17\|

Predicted milfrac and marginal effects

savings	Predicted milfrac		Marginal effect (milfrac\|savings)	
(cents per mile)	Estimate	S.E.	Estimate	S.E.
$\mathbf{0}$	0.474555	0.005482	0.013734	0.001262
$\mathbf{2 . 5}$	0.508954	0.003452	0.013764	0.001278
$\mathbf{5}$	0.543266	0.003718	0.013665	0.001259
$\mathbf{7}$	0.577173	0.0059	0.01344	0.001205
$\mathbf{1 0}$	0.61037	0.008479	0.013099	0.00112
$\mathbf{1 5}$	0.673561	0.013241	0.012117	0.00088
$\mathbf{2 0}$	0.731053	0.016796	0.010843	0.000589

Switching varies strongly by income level

	Marginal effect	
Income <\$25,000		
Per mile savings (cents)	(milfrac\|savings)	S.E.
$\mathbf{0}$		
$\mathbf{2 . 5}$	0.0245	0.0049
$\mathbf{5}$	0.0244	0.0050
$\mathbf{7}$	0.0236	0.0047
$\mathbf{1 0}$	0.0222	0.0040
$\mathbf{1 5}$	0.0203	0.0031
$\mathbf{2 0}$	0.0158	0.0012
$\mathbf{I n c o m e}$ \$25,000 -	0.0114	0.0006
$\mathbf{\$ 6 0 , 0 0 0}$		
$\mathbf{P e r}$ mile savings	(milfrac\|savings)	S.E.
$\mathbf{(c e n t s) ~}$	0.0221	0.0023
$\mathbf{0}$	0.0221	0.0023
$\mathbf{2 . 5}$	0.0216	0.0022
$\mathbf{5}$	0.0206	0.0020
$\mathbf{7}$	0.0192	0.0016
$\mathbf{1 0}$	0.0157	0.0008
$\mathbf{1 5}$	0.0120	0.0002
$\mathbf{2 0}$		

	Marginal effect	
Income \$60,000 - \$100,000		
Per mile savings (cents)	(milfrac\|savings)	
$\mathbf{0}$		
S.E.		
$\mathbf{2 . 5}$	0.0102	
$\mathbf{5}$	0.0102	
$\mathbf{7}$	0.0101	
$\mathbf{1 0}$	0.0101	
$\mathbf{1 5}$	0.0099	
$\mathbf{2 0}$	0.0095	
Income >\$100,000	0.0089	
Per mile savings	(milfrac\|savings)	
(cents)	0.0063	
$\mathbf{0}$	0.0023	
$\mathbf{2 . 5}$	0.0023	
$\mathbf{5}$	0.0062	
$\mathbf{7}$	0.0062	
$\mathbf{1 0}$	0.0062	
$\mathbf{1 5}$	0.0061	
$\mathbf{2 0}$	0.0060	

Structural equations

\square Elasticities (1)

Gasoline use
$\ln G_{i}=\beta_{0}+\beta_{1} \ln P_{i}+\beta_{2} \ln Y_{i}+\gamma\left(Z_{i}\right)+\mathrm{s}_{\mathrm{i}}+\varepsilon_{\mathrm{i}}$
Vehicle-miles traveled
$\ln V M T_{i}=\beta_{0}+\beta_{1} \ln P_{i}+\beta_{2} \ln Y_{i}+\gamma\left(Z_{i}\right)+s_{i}+\varepsilon_{i}$
\square Effect of price per mile savings on switching (2)
$E\left(y_{i} \mid x_{i}\right)=G\left(X_{i} \beta\right), 0 \leq G(z) \leq 1 \forall z \in R$
milfrac $_{i}(0<y<1)=G\left(\beta_{0}+\beta_{1}\left(\right.\right.$ savings $\left.\left._{i}\right)+\beta X_{i}+\epsilon_{i}\right)$
$G(u)=\ln \left(\frac{u}{1-u}\right)$

