Incorporating NHTS Data into the Urban Mobility Report

June 2011

David Schrank
Texas Transportation Institute
University Transportation Center for Mobility http://mobility:tamu.edu

Overview

- History of the UMR

Concepts and measures
Elements and calculations
Modal assumptions
Results

Background

History of the UMR

- Over 20 years

Primarily roadway delay

- Passenger car and truck

Public Transportation

- Added several years ago

Congestion is Getting Worse in Cities of All Sizes -
But the Recession Has Caused a "Reset"
Delay per Traveler 60
50
40
30
20
10
0
Small
Medium
Large
Very Large

Expanding Travel Delay \& Shrinking Free-Flow Hours

1982

Total Delay = 1.0 Billion Hours

Extreme
Severe 5\%

2009
Total Delay = 4.8 Billion Hours

Most Congested Areas with Greatest "Tax"

Average peak period commuter

- Chicago
- Washington DC
- Los Angeles

Houston

- Baltimore

70 hours \$1,738
70 hours \$1,555
63 hours \$1,464
58 hours \$1,322
50 hours \$1,218
\checkmark The nation:
-4.8 billion hours

- 3.9 billion gallons
- \$115 billion cost

Concept

Travel Time Index

- Have shown benefits from transit

Delay per Peak Period Traveler

- Has included everyone moving in peak period
- Extend these measures focusing on sustainability
- Add more modes

Key Elements

"Uncongested condition"

- Speeds below those in low volume conditions
Delay can occur with all modes
- Difference between uncongested and actual
o Includes auto, transit, walk, bike, work at home
- person-miles, person-hours, avg occupancy
- Could include carpooling and flextime Continue to use performance measures based on time

Key Calculation Elements

Freeflow travel speed

- Overnight speed on roadways
- Scheduled speed on transit

Weight by person-miles of travel
\checkmark Travel time related measures

- All users place a value on travel time
- Can weight by volume to get summations

Average and Reliability Measures

- Annual average congestion measures
- Reliability takes more detailed data to show day-to-day variations in travel time

Travel Mode Data

NHTS has percentage of trips by mode

- Basis for bike and walk percentages
- Unfortunately not conducted in every region so used to get population size averages
NTD provides public transportation data
- Each mode has different alternative trip assumptions (e.g., commuter rail assumed to come from freeways due to longer trips) Journey to Work Census data provides info on work-at-home

Incorporating Other Modes

Use same basic methods that have been used to include public transportation

- Walk - 1 mile trip
- Bike - 5 mile trip
- Work at home - 9 mile trip
- All of these trips are "congestion free" trips until better monitoring allows for direct measurement

Speeds Used for Travel Modes

Mode
Freeflow Speed
overnight
Truck/Car
Congested Speed peak period

Transit
Bus
Urban Rail
Comm. Rail

Bike
Walk
Work at home
assume 95\% of
arterial travel is uncong.
arterial
freeway
5% of travel is mod.
cong. = about 10\% time penalty

15 mph
4 mph
average of freeway and arterials

Travel Time Index

Delay Time + Free-flow Travel Time

Travel Time Index =

Free-flow Travel Time

Weight the modes together by person-miles of travel

Results

Popn Group	UMR TTI	Sustainable TTI	Transit	Walk	Bike	Work @ Home
Very Large	1.371	1.321	1.338	1.369	1.369	1.352
Large	1.233	1.217	1.229	1.232	1.233	1.222
Medium	1.140	1.131	1.138	1.139	1.140	1.133
Small	1.099	1.093	1.098	1.099	1.099	1.094

-Transit travel has big effects in Very Large cities -Work at home is largest contributor in other three population groups
-Most of the TTI value changes in Small/Medium areas will be in range of 1 or 2 point values

Conclusions

Relatively simple procedure for incorporating travel by modes not typically in the UMR
Uses NHTS to identify percentage of peak trips made by modes other than car and truck

- These changes allow the UMR to begin discussions about congestion effects of non-motorized travel, transit, and working from home

For More Information

Please visit http://mobility.tamu.edu

