# Parental Attitudes Towards Children Walking and Biking



# Why is this Issue Important?

- Increase in childhood obesity rates in the US.
  - Between 1976 to 2008, obesity increased from 6.5% to 19.6%, among children aged 6-11.
  - In the same time period, obesity increased from 5.0% to 18.1%, among adolescents aged 12-19.
- Obesity can lead to major health issues such as diabetes, cholesterol, cardiovascular diseases.



# Why is this Issue Important?

- Physical Activity can help to combat obesity
  - Only 18% of grade 9-12 students in 2007 met the recommended level of exercise.
- Daily walking or biking to school can be a good source for increasing physical activity.
- It can also help to develop a child's autonomy, and introduce them to more sustainable ways of travelling.



#### Outline

- Motivation for Research
- Data Description
- Modeling Technique
- Results
- Policy Implications
- Future Work

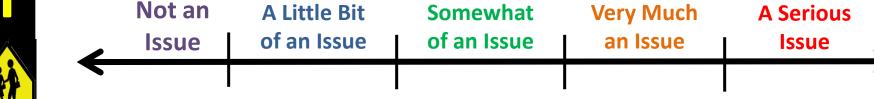




#### Motivation for Research

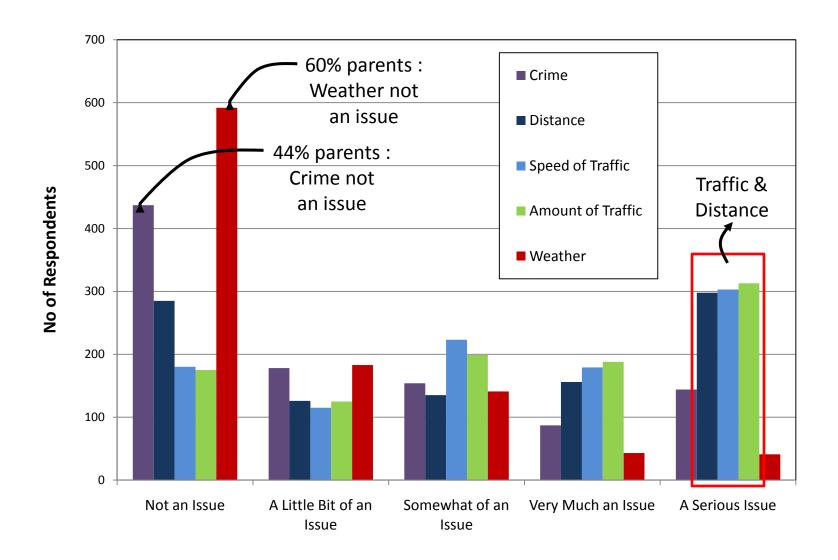
- Previous studies look at demographic and household characteristics, built environmental factors and social contexts.
- More recently, there have been studies that look at attitudes to explain mode choice.
- However, there has hardly been any research on the factors that affect the attitude itself.
- This is crucial in determining policies that can shift attitudes towards non-motorized modes




# Data – Why use NHTS?

- The 2009 National Household Travel Survey (NHTS) Dataset is used.
- For the California add on section, this dataset provides unique data on:
  - Adult Attitudes towards walking and biking
  - Parental Attitudes towards children walking or biking to school.
- Only the Los Angeles, Riverside and Orange County CMSA region has been used.




## Dependent Variables

- Respondents with school going children were asked how much of an issue the following topics were to them:
  - The Distance between home and school
  - Violence or Crime along the route
  - The Speed of Traffic along the route
  - The Amount of Traffic along the route
  - Poor Weather or Climate in the area.





## Dependent Variables





# **Modeling Techniques**

- Multivariate Ordered Response Modeling used
  - We assume there is a set of multivariate continuous latent variables.
  - A covariance matrix is estimated which shows the correlation between the latent variables.
  - A composite marginal likelihood (CML) method is used, instead of maximum simulated likelihood or Bayesian
     Markov Chain Monte Carlo Methods.



# **Explanatory Variables**

- School Characteristics
  - Distance, Type
- Child Characteristics
  - Age, Sex, Activity Level
- Parents Characteristics
  - Education, Work Info, Modes Used, Activity Level, Attitudes towards their own physical activity
- Household Characteristics
  - Vehicle Count, Income, Race, Presence of Other Children, Housing Type, Number of Adults
- Built Environment Characteristics (Accessibility Measures)



- Effect of School Characteristics on Attitudes
  - As distance to school increased, parents were more likely to be concerned about traffic and weather.
  - Parents of children who went to private schools were more worried about crime and traffic. However they were less worried about weather.





- Effect of Child Characteristics on Attitudes
  - Parents of more physically active children were less likely to be concerned about crime and distance.
  - Parents of children who are male were less likely to be concerned about crime and distance to school.
  - Parents of older children were less likely to be concerned about the speed of traffic or distance to school.







- Effect of Parent Characteristics on Attitude
  - Other than one model, parents work patterns did not have an effect on attitude.
  - Mother and Father's perception of their environment and their reactions are very different.
  - Usually, if a father uses public transit, or feels that there
    is adequate walk and bike facilities around, he is less
    likely to worry about crime and traffic.
  - However, a mother who rides public transit, is more likely to be concerned about these issues. This suggests an inherent bias in mothers to worry about children, regardless of circumstance.



- Effect of Household Characteristics on Attitudes
  - Parents from High Income Household is less likely to be worried about crime and weather.
  - Parents from Hispanic and Asian Households tend to be more worried about Crime and Weather.
  - Parents from Caucasian Households are more worried about volume of traffic.
  - Speed of Traffic is the only model that was not affected by Income or Race. This suggests that this issue can be a general concern of most parents.



- Effect of Built Environment on Attitudes
  - Built Environment is described using Accessibility
    Measures, which shows for example the length of
    freeways or no. of shops that can be accessed within
    a certain time buffer.
  - If a household is in an urban area (as defined by the length of arterials one can access within 10 minutes) parents are likely to be more worried about crime.
  - If a household is near an area with more schools and education establishments, parents are less likely to worry about traffic.



- Correlation between the dependent variables
  - Parental concerns about Traffic Speed and Traffic Volume were the most strongly correlated.
  - Traffic Volume and Speed was also strongly correlated with parental concerns about the distance to school.
  - By modeling jointly, we get to capture these correlation effects in the model estimates, which give a better representation than if the dependent variables were modeled separately.



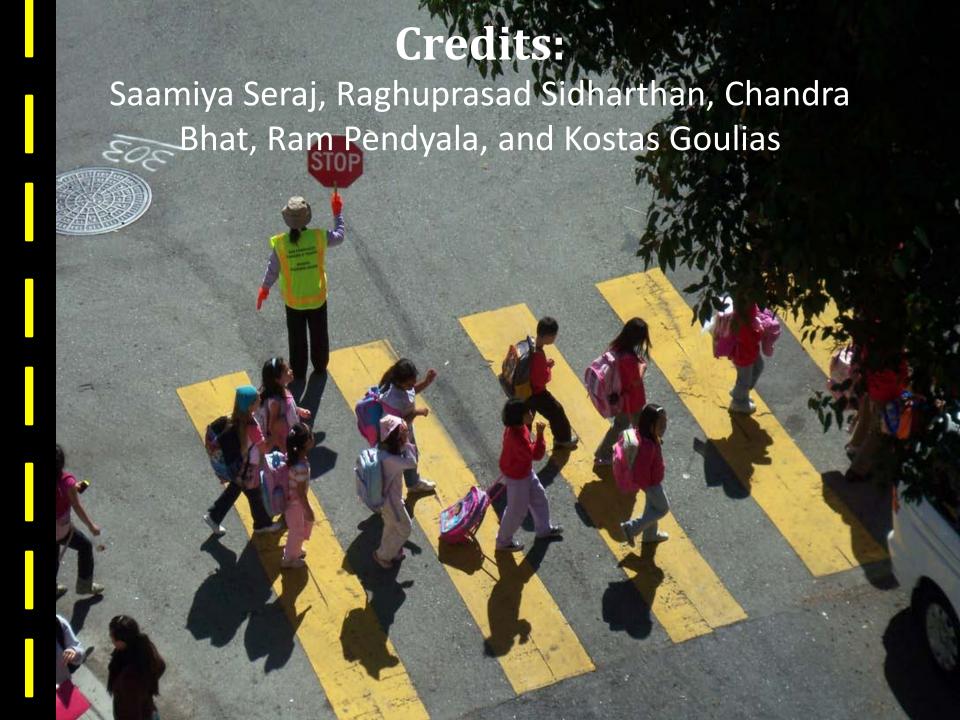
• Correlation Table is shown below:

| Variable Name   | Crime | Dist. to S. | T. Speed | T. Vol. | Weather |
|-----------------|-------|-------------|----------|---------|---------|
| Crime           | 1     | -           | -        | -       | -       |
| Dist. to School | 0.294 | 1           | -        | -       | -       |
| Traffic Speed   | 0.369 | 0.444       | 1        | -       | -       |
| Traffic Volume  | 0.343 | 0.541       | 0.833    | 1       | -       |
| Weather         | 0.364 | 0.261       | 0.218    | 0.220   | 1       |



# **Policy Implications**

- Minimum Acreage Requirement for Schools
  - Redevelop neighborhood schools
- Make Walking and Biking a Habit for Children
  - Have Mandatory Walk to School Days with Parents
  - Have safety walk and bike demonstrations at school
  - Provide incentive for children
- Alleviate Parental Concerns
  - Initiate Walking Bus Programs
  - Educate them about benefits






#### **Future Work**

- Using Built Environmental Measures for connectedness of sidewalks and bicycle lanes
- Taking Children's own attitudes into account
- Building a psychological framework that creates a hierarchy of variables that effect attitude.





# Dependent Variables

- Initially 1166 parents from the LA region had responded to all the five attitude questions.
- However, due to missing data for other factors, only 1000 observations were used.
- The amount of traffic was cited by most parents to be a serious issue



#### Characteristics of Data Set

- Parents and Household Statistics
  - 87% of fathers and 59% of mothers are workers.
  - Around 70% have an associate's degree or above.
  - 48% of households have an income of above \$80,000.
  - 60% of households are Caucasian, 20% are Hispanic.
- Children's Statistics
  - 27% walk or bike to school, 70% use personal vehicles.
  - 38% live over 2 miles away from school.
  - 15% go to private schools.



#### Mathematical Formulation

The latent propensity for each category of response is written as:

$$y_{qi}^* = \beta_i x_{qi} + \varepsilon_{qi}, y_{qi} = k \text{ if } \theta_i^k < y_{qi}^* < \theta_i^{k+1}$$

The error is multivariate normal distributed with a mean vector of zeros and a correlation matrix as follows:

$$\varepsilon_{q} \sim N \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & \rho_{12} & \rho_{13} & \cdots & \rho_{1I} \\ \rho_{21} & 1 & \rho_{23} & \cdots & \rho_{2I} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \rho_{I1} & \rho_{I2} & \rho_{I3} & \cdots & 1 \end{bmatrix},$$



## Summary of Model Results

Issues: Distance to School, Crime, Traffic

| Not an | A Little Bit | Somewhat    | <b>Very Much</b> | <b>A Serious</b> |
|--------|--------------|-------------|------------------|------------------|
| Issue  | of an Issue  | of an Issue | an Issue         | Issue            |
|        |              |             |                  |                  |

School is closer

Walks or Bikes to School

Physically active children

Children in public school

Father Uses Public Transit

High Income

Non-Urban Area

School is far away

Goes to School in Car

Not Physically Active

Children in private school

Mother Uses Public Transit

Low-Medium Income

Urban Area

