NHTS Workshop, Washington, DC, June 6~7, 2011

Developing Vehicle Ownership and Use Models from the 2001 and 2009 NHTS Data for Environmental Policy Analysis

Lei Zhang (Assistant Professor, 301-405-2881, lei@umd.edu),
Yijing Lu, Xiang He, Jasmy Methipara, Xiaojie Cong, Nick
Ferrari, and Cory Krause (Graduate Research Assistants)

Transportation Systems Research Lab Department of Civil and Environmental Engineering University of Maryland – College Park

Background

Travel Survey

Primary data source in the U.S. for travel behavior analysis and travel demand modeling at all levels

National Household Travel Survey

- Socio-economic, demographic, location, vehicle ownership, and travel information at the household level
- The most comprehensive dataset for travel analysis and monitoring at the national level in the U.S.

Travel Survey Trend

- \measuredangle Cross-sectional \rightarrow (Rotating) Panel
- \swarrow Mail/Telephone-based methods \rightarrow GPS-based methods
- \measuredangle Decisions \rightarrow Decision-making processes

NHTS Data Processing and Integration

Integration with EPA Nonattainment Data

Identifying whether or nor an NHTS household resides in a nonattainment area for each criteria pollutant over time.

Integration with Energy/Environmental Data

- **Fuel price at the state and county levels**;
- Vehicle characteristics such as price, fuel type, pollution emission rates, etc..

Integration with Land Use Data

Merging NHTS household travel behavior information with trip origin, trip destination, and metropolitan land use characteristics information.

Research Questions

Develop statistical models based on the NHTS data to answer the following environmental and energy policy questions:

- What is the impact of air quality control and EPA nonattainment designation on travel behavior and VMT?
- What is the impact of green transportation financing policies (e.g. green VMT fees, marginal-cost pricing) on Vehicle ownership, VMT, revenue, and equity?
- What is the impact of land use policies (e.g. high density, mixed development, neighborhood design) on travel behavior and VMT?
- Mow do high gas prices influence travel behavior, and subsequently soak time distributions?

Environmental and Energy Policy Analysis #1

What is the impact of air quality control and EPA nonattainment designation on travel behavior and VMT?

Household-Level Model Results

Dependent Var.: In (VMT)	Model 1	Model 2		
Nonattainment Status:	-0.0165*	-0.0465**		
Own County	(0.060)	(0.012)		
Nonattainment Status:		0.0349*		
Adjacent County		(0.066)		
	0.0206*	0.0199*		
Large urban area	(0.079)	(0.089)		
Small urban area	-0.0313**	-0.0296**		
	(0.004)	(0.007)		
	-0.0002**	-0.0002**		
Distance to Urban Center	(0.048)	(0.043)		
In(Population density)	-0.0612**	-0.0613**		
	(0.000)	(0.000)		
	-0.1620**	-0.1635**		
Number of transit trips taken	(0.000)	(0.000)		
Adjusted R-Square	0.7113	0.7116		
Household socio-economic and demographic variables not shown.				

Impact of Air Quality Control on VMT

Findings from Household-Level Analysis

Average Impact of Nonattainment Designation

1.64% reduction in vehicle miles traveled
1.76% reduction in VMT based on HPMS 1968~2008

Spatial Variation of the Impact

- 1.15% VMT reduction in counties that only have nonattainment surrounding counties

Environmental and Energy Policy Analysis #2

What is the impact of green transportation financing policies (e.g. green VMT fees, congestion pricing, emission taxes) on vehicle ownership, VMT, revenue, and equity at the national and state levels?

Discrete-Continuous Mixed Logit Model

Vehicle Number Choice

	One Vehicle	Two Vehicle	Three Vehicle	Four Vehicle
Variable	Coefficient	Coefficient	Coefficient	Coefficient
Constant	-3.040**	-8.990**	-14.300**	-18.800**
Driver Count	2.860**	5.560**	7.300**	8.240**
Resp_Age16~34	-0.215**	0.488**	0.717**	1.110**
Resp_Age35~64	0.021	0.627**	1.140**	1.570**
Children Count/Household Size	0.052	0.504**	-0.137	-0.944**
Driving Cost/Mile	0.260*	0.048	-0.307	-0.545*
Income (100,000\$)	2.120**	3.740**	4.360**	4.680**
MSA>1 million with Rail	0.063	-0.155	-0.434**	-0.670**
MSA>1 million without Rail	0.321**	0.169**	-0.194**	-0.522**
MSA<1 million	0.206**	0.089	-0.213**	-0.576**
Resp_American of Afrian	-0.971**	-1.300**	-1.160**	-1.450**
Resp_Asian	0.017	-0.210	-0.168	-1.000**
Resp_Other Race	-0.526**	-0.603**	-0.508**	-0.541**
Male Respondent	-0.287**	0.155**	0.184**	0.320**
Own House	1.260**	2.430**	2.990**	3.580**
Residential Density	-0.104**	-0.193**	-0.257**	-0.329**

Vehicle Type Choice

	Small Car	Large Car	Small SUV	Large SUV	Small Truck	Large Truck	Minivan
Variables	Coefficient						
Driving Cost/Mile		-0.46100**					
Vehicle Price	-0.00015**						
Price*Income	0.00032**						
Interior Room	0.00991**						
Horse Power		0.00952**					
-Towing	0.000	0.000	0.00011	0.00071**	0.0001	0.00014**	0.00038
Income (100,000\$)	0.259*	-1.730**	0.908**	-2.420**	0.347	-2.110**	0.0000
Household Size	-0.948**	-0.559**	-0.655**	0.151**	-0.697**	0.022	0.0000
MSA>1 million with Rail	2.270**	0.176	1.030**	-1.550**	-0.701**	-3.080**	0.0000
MSA>1 million without Rail	0.947**	0.124	0.310**	-0.672**	-0.699**	-1.290**	0.0000
MSA<1 million	0.577**	0.105	0.191	-0.627**	-0.520**	-1.220**	0.0000
Constant	1.060	1.770	0.416	4.490*	1.240	1.440	0.0000

Vehicle Miles Traveled

Dependent Var.: In (VMT)	Coefficients	P-Value		
In(driving cost/mile)	-2.6628	0.000		
In(income)	-0.1526	0.042		
In(driving cost/mile)* In(income)	0.1777	0.000		
In(driving cost/mile)* (vehicle substitute)	0.0102	0.002		
Ln(vehicle count)	0.8089	0.000		
Vehicle Substitute	-0.0307	0.000		
Household socio-demographic variables not shown.				

Effectiveness for Revenue Generation

Gas Tax

Increase federal tax by 10 cents/gallon to 28.4 cents/gallon

Vehicle Miles Traveled Tax (VMT)

To achieve the same level of revenue increase, the fixed VMT charge needs to be 1.5 cents/mile

Green VMT

Charge vehicles with > 20 mpg fuel efficiency 1 cent/mile Charge vehicle with < 20 mpg fuel efficiency 2.1 cents/mile

Congestion Pricing

Charge road users a per-mile fee that ranges from 1 to 3.4 cents/mile based on level of MSA congestion

Emission Tax

Charge road users a per-mile fee that ranges from 1 to 2.3 cents/mile based on their EPA vehicle emission

VMT Reduction by Household Income

Changes in Consumer Surplus: By Income Group

Percentage Change in State Revenue Green VMT Fee

17

Percentage Change in State Revenue: Emission Tax

Percentage Change in State Revenue: Congestion Pricing

Percentage Change in VMT by State: Congestion Pricing

Changes in Consumer Surplus: By Level of Urbanization

Environmental and Energy Policy Analysis #3

What is the impact of land use policies (e.g. high density, mixed development, neighborhood design) on travel behavior and VMT?

Defining Land Use Policy Variables Density

- Residential density (building sqft/area)
- Commercial density (building sqft/area)
- Industrial density (building sqft/area)
- Solution States Active Acti
- Mixed Use

$$Entropy = -\sum_{j} \frac{P_{j} * \ln{(P_{j})}}{\ln{(J)}}$$

Six (J=6) land use types are considered: residential, commercial, industrial, office, government and others.

Average Block Size Distance to CBD Etc.

Methodological Issues and Research Design

Methodological Issues

- Causality (self-selection)
- Spatial auto-correlation
- Inter-trip dependency (tour)
- Seographic scale

Research Design

- Address these issues with careful control for travel attitude in modeling, and multilevel/structural equation modeling methods.
- Compare metropolitan areas that have different land use characteristics and policies, using the same analytical approach

Impact of Land Use on per-capita VMT

Land Use Variables	Seattle	Baltimore	DC	Virginia
Residential density	-0.308	-0.344	-0.444	-0.262
Employment density	-0.071	-0.085	-0.010	0.034
Mixed Development	-0.149	-0.074	-0.195	-0.003
Average block size	0.153	0.089	0.021	0.220
Distance from CBD	0.331	0.264	0.456	-0.043
Distance to bus stop	0.036			
	_			_

Household socio-demographic variables not shown.

c. Compact Development: Distance to CBD (mile)

d. Neighborhood Design: Block Size (mile)

Conclusions

- Air quality control and EPA's nonattainment designation have a statistically significant negative correlation with vehicle miles traveled.
- Green transportation financing policies will result in significant reduction in VMT, fuel consumption, and pollution/GHG emissions. While the lowest-income (< \$25K/year) households are hurt the most, the regressivity of green transportation financing policies is similar to that of policies increasing fuel taxes.
- Land use policies can effectively influence travel behavior and VMT, but the actual impact depend on existing local and metropolitan land use characteristics.
- MHTS provides important and often necessary information for critical environmental and energy policy analysis; and its value is even higher in add-on states.

Thank you!

Additional Questions and Comments

Lei Zhang Assistant Professor Department of Civil & Environmental Engineering University of Maryland – College Park Iei@umd.edu, 301-405-2881

Acknowledgement

Funding support from:

Federal Highway Administration (FHWA) Maryland State Highway Administration (MSHA) USDOT UTC Program: CITSM at UMD Views herein do not necessarily represent FHWA or MSHA views. The authors are responsible for all statements.