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ABSTRACT 

Spatial correlation has shown to be present in highway safety data, yet the distance at which sites 
should be considered correlated is largely unknown. The purpose of this research is to explore 
the effect of direct spatial correlation structures on crash frequency models at the road segment 
level and compare them to spatial conditional models. By using direct spatial correlation 
structures the “effective range” (i.e. the distance at which there is no lingering spatial correlation) 
is estimated.   

A Full Bayes hierarchical approach is used with direct spatial correlation effects for the spatial 
correlation terms as well as conditional autoregressive (CAR) spatial effects. The model of crash, 
traffic and roadway inventory data from Pennsylvania shows an average effective range of 
around 168 m (0.1 mi) which confirmed previous findings from conditional models that 
suggested that spatial correlation is presented in segments less than a mile apart.   

The direct spatial correlation model has a better goodness-of-fit than the random effects and the 
CAR model. In terms of posterior deviance the direct spatial correlation model performed similar 
to the other two models but in terms of the penalized goodness-of-fit measure Deviance 
Information Criteria it performed significantly better (4203, 4181, and 4109 respectively). 
Furthermore, the proportion of variation in the data explained by the spatial correlation term is 
almost the same for both spatial models (0.59 for the CAR model and 0.60 for the direct spatial 
correlation model). The standard deviations in coefficient estimates are slightly lower for the 
direct spatial correlation model compared to the random effects model but significantly lower 
than the CAR model.  



 

 2

INTRODUCTION 

Spatial correlation has shown to be present in highway safety data (Miaou, Song, and Mallick, 
2003; MacNab, 2004; Aguero-Valverde and Jovanis, 2006, 2010;  Huang, Darwiche, and Abdel-
Aty, 2010), yet the distance at which sites should be considered correlated is largely unknown. 
Models of spatial correlation can be divided in two main groups: direct spatial correlation and 
conditional models. In the former, the spatial correlation between two observations is a function 
of the distance between them, commonly defined though the covariance function and its 
correlation matrix. Conditional spatial correlation models, on the other hand, rely on the 
adjacency matrix that is arbitrarily defined by the modeler.  By using direct spatial correlation 
structures the “effective range” (i.e. the distance at which there is no lingering spatial correlation) 
can be estimated.   

Most spatial correlation models applied to highway safety used a conditional specification for the 
spatial effects (Miaou, Song, and Mallick, 2003; MacNab, 2004; Aguero-Valverde and Jovanis, 
2006, 2009 and 2010;  Huang, Darwiche, and Abdel-Aty, 2010). Conditional spatial correlation 
models are well suited to analyze crash frequency at segment or intersection level since a road 
network can be easily modeled as a lattice made off segments (edges) and intersections (nodes), 
forming a directed graph. Furthermore, for a road network, there is a discrete set of sites where 
crashes can occur, i.e. within a segment or intersection, but, by definition, never outside the road 
network.  Apart from this theoretical advantage, conditional models have practical advantages 
over direct spatial correlation models. The most important of those advantages is that the 
expectation of a site is only conditionally dependent on its neighbors, that are defined a priori by 
the modeler; hence, model estimation is relatively straightforward within a fully Bayesian 
approach.  

Direct spatial correlation models such as those used in geostatistics, are mostly used to model 
processes that occur in locations from a spatial continuum (Cressie, 1993). Direct spatial 
correlation models asses the spatial correlation as a function of the distance between sites 
through the covariance function; hence, the strength of the spatial correlation is derived directly 
from the data.  One of the disadvantages of direct spatial correlation models is that any site can 
be spatially correlated to all the other sites; therefore, a correlation matrix of n x n, where n is the 
number of sites, need to be estimated and inversed. The number of calculations needed to inverse 
a matrix increases exponentially with the matrix size, which implies that with current 
computational power, direct spatial correlation models can be applied to datasets with only a few 
hundred observations at best.  Furthermore, no closed form exists for Poisson models with 
exponential random effects; therefore, maximum likelihood estimation is not feasible and more 
flexible but computationally demanding approaches such as Full Bayes are needed.  

In summary, conditional spatial models present theoretical and practical advantages, but due to 
their conditional nature cannot be used to estimate the strength of the spatial correlation and the 
distance at which two sites should be considered correlated; therefore, direct spatial correlation 
models where the covariance function is estimated are proposed here. The purpose of this 
research is to explore the effect of direct spatial correlation structures on crash frequency models 
at the road segment level and compare them to spatial conditional models. By using direct spatial 
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correlation structures the “effective range” of the spatial correlation is estimated. This paper is 
organized as follows: a literature review is presented and the methodology is shown; then the 
dataset is described, followed by the discussion of results, conclusions and recommendations for 
future research. 

Literature Review 

Most of the earliest studies of spatial models in highway safety were descriptive in nature. The 
aim was to find spatial association between observations thought descriptive statistics and 
hypothesis testing.  For others the objective was to account for the spatial correlation presented 
in the crash data by imposing a spatial model to the observations or their residuals (i.e. errors). 
Most recent studies generally belong to this group. 

Within the spatial descriptive statistics group, one of the first studies was published by Levine, 
Kim, and Nitz (1995a). Crashes were geo-coded to the nearest intersection or ramp,  then 
different spatial statistics were calculated including mean center, standard distance deviation 
based on “great circle” distance, the standard deviational ellipse (1st and 2nd principal 
component), and the nearest neighbor index( based on the x and y coordinate of the accidents).  

Jones, Langford, and Bentham (1996) conduct a classical K-function analysis on the residuals of 
a logit model where the log-odds were fatalities compared to seriously injured.  The variables of 
the model were: age, type of user (pedestrian, bicyclist, motor vehicle driver) and number of 
casualties. The authors found that, once the trend was removed from the data, the residuals 
presented spatial clustering.  

Another spatial descriptive statistics study was developed by Black and Thomas (1998) who 
explored spatial dependency at the road segment level by using the Moran’s Index (a standard 
statistic used to measure the strength of spatial association among area units; it is analogous to 
the lagged autocorrelation coefficient in time series). The study concluded that there was a 
significant level of positive spatial correlation in the data. 

Nicholson (1999) conducted a study to identify the presence of non-random distributions of 
crashes by comparing actual spatial patterns to the complete spatial randomness (CSR) case. 
Comparisons included: stationary and isotropic (accidents not clustered but arranged regularly), 
non-stationary and isotropic (accidents clustered at randomly distributed points), and non-
stationary and anisotropic (accident clustered along lines). Different statistical tests for spatial 
randomness such as quadrant methods, nearest neighbor methods, and K-function were analyzed. 
The author concluded that nearest neighbor methods appear more powerful and robust for 
detecting the kind of accident patterns that can be observed in practice and that the K-function 
method enabled patterns at different spatial scales to be detected.  

Levine, Kim, and Nitz (1995b) also developed the first reported spatial correlation model in road 
crash analysis. They modeled spatial correlation at census block level, which was equivalent to a 
time series autoregressive lag-1 model (AR-1). The previous time was replaced by the weighted 
average of the neighbors. The explanatory variables included in the model were: freeway 
crossing the block (dummy), miles of arterials or highways, miles of minor roads, miles of 
freeways, population, and employment. While the model takes into account the spatial 
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correlation of the data, its weakness is the reliance on an assumed normal distribution for crashes 
rather than a discrete count probability distribution such as Poisson or negative binomial. 

A pioneer work in terms of spatial modeling of traffic crashes was developed by Miaou, Song, 
and Mallick (2003).  The authors estimated a series of crash frequency models aggregated at the 
county level for the state of Texas. Poisson-based Bayes models of Fatal (K), incapacitating (A), 
and non-incapacitating (B) injuries were estimated. Conditional Auto-Regressive model (CAR) 
was used to model spatial correlation and Markov Chain Monte Carlo (MCMC) was used to 
sample the posterior probability distribution.  

MacNab (2004) also performed an analysis of crashes using spatial Bayesian models. Covariates 
were examined using hospitalization data for 83 local health areas in British Columbia (BC), 
Canada, between 1990 and 1999. Socioeconomic variables like marriage and immigration were 
used along with medical variables like life expectancy, health care providers, and hospital beds. 
In addition, the age effects were modeled using a spline regression. Other variables such as miles 
of roads and seatbelt violations were also used for the model. Random spatial effects were 
included in the model and assumed to have a CAR distribution. Considerable spatial correlation 
was found in the data. 

Aguero-Valverde and Jovanis (2006) estimated Full Bayes Hierarchical models with spatial and 
temporal effects and space-time interactions, using injury and fatality data for Pennsylvania at 
county level. Independent variables include socio-demographics, weather conditions, 
transportation infrastructure and amount of travel. A CAR model was used for modeling spatial 
correlation and a time trend coefficient was included to model temporal effects. Significant 
spatial correlation was found in the data.  Huang, Darwiche, and Abdel-Aty (2010) also analyzed 
crash frequencies at county level for the state of Florida using a Full Bayes spatial CAR model. 

Another temporal and spatial analysis of crashes was performed by Wang and Abdel-Aty (2006). 
They analyzed rear-end crashes at signalized intersections using the generalized estimating 
equations (GEE) approach. In the study, intersections were group on clusters based on their 
spatial location, distances, and corridor location. Intersections within a cluster were considered 
correlated while intersections from different clusters were considered independent. For the 
spatial models, the authors explored three different correlation structures: independent 
correlation, exchangeable correlation (constant correlations between any two intersections within 
a cluster), and autoregressive (AR-1) correlation; where the correlation decreases as the gap 
between intersections increase. The models showed high spatial correlations between 
intersections for rear-end crashes.   

Full Bayes Hierarchical models of spatial correlation were proposed by Aguero-Valverde and 
Jovanis (2008) for crash frequency at segment level. Different conditional correlation structures 
were proposed by the authors through the weights in the neighboring structure of the CAR 
model.  They proposed the use of the inverse of the order (as defined by proximity) as weight in 
the CAR model. The simplest neighboring structure was the best in terms of the goodness-of-fit 
measures. 

Mitra (2009) investigated the intersection-level factors that influence the concentration of fatal 
and injury crashes by developing Full Bayes Hierarchical models with spatial correlation. Using 
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injury and property damage only (PDO) crash data from Tucson, Arizona, the author showed that 
spatial dependence plays a strong role during the analyses of road-traffic crashes.  The model 
included both spatially structured and unstructured random effects. In the study it is suggested 
the use of a join spatial exponential prior for the spatial random effects, rather than use a 
conditional model. However, this work failed to show key posterior statistics of the spatial 
dependency structure of the model; hence, it is difficult to interpret the results.  Guoa, Wang and 
Abdel-Aty (2010) also developed spatial models for intersections but with CAR priors using the 
inverse of the distance as the weights for the spatial correlation term.  

Aguero-Valverde and Jovanis (2010) studied different neighboring structures for CAR models of 
crash frequency. The distance at which segments are considered correlated was studied indirectly 
by comparison of several conditional models group in four categories: adjacency-based models, 
distance-order models, distance-exponential decay models and adjacency-route information 
models. Pure distance-based neighboring models (i.e. exponential decay) for the weights 
performed poorly in comparison to adjacency-based or distance-order models. The results also 
suggested that spatial correlation is more important in distances of one mile or less. 

METHODOLOGY 

Spatial crash frequency models are implemented using a Full Bayes Hierarchical approach. At 
the first level of the hierarchy, the units of analysis are the road segments. The crash counts are 
assumed Poisson distributed:  

where yit is the observed number of crashes in segment i at time t (in years) and θilt  is the 
expected Poisson rate for segment i of the road type l at time t.  The Poisson rate is modeled as a 
function of the covariates following a log-normal distribution as shown in Equation 2: 

where β0 is the intercept, βk is the coefficient for the kth covariate, xitk is the value of the kth 
covariate for segment i at time t, vi captures the heterogeneity among segments, and ui is a 
spatially correlated random effect for segment i. 

Now, one can assume that the heterogeneity random effects follow a Normal distribution: 

where vτ  is the precision (inverse of the variance) and it controls the Poisson extra-variation due 

to heterogeneity.  

 itit θy Poisson~  (1)

  ii
k

itkk0it u+v+xβ+β=θ log  
(2)

 ~ N 0, i vv   (3)
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The spatially correlated effect is modeled using a Gaussian Conditional Autoregressive (CAR) 
prior (4): 

 

 

 

 

where u-i means all the neighbors of i, uτ  controls the Poisson extra-variation due to clustering or 

spatial correlation, j~i denotes that segment j is a neighbor of segment i, wij is the weight of the 
jth neighbor of the ith  segment, and wi+ is the sum of the weights of the neighbors of segment i. 
Random effects are pooled over time to improve model estimation. The assumption of constant 
random effects over time is not restrictive, provided that the covariates explain most of this 
variation over time. 

At the third stage, hyperpriors are given for vτ  and uτ . For both precision parameters an 

hyperprior gamma(0.1, 0.1) was selected.. The posterior proportion of variation explained by the 
spatial correlation term (η) is also of interest and is defined in Equation 5: 

where sd(·) is the standard deviation. 

For the direct spatial correlation model, a joint instead of a CAR prior is used. The prior of the 
geostatistical model is multivariate normal as shown: 

   0,Nu,,u,u,uP n ~...321  (6)

The covariance matrix Σ is defined by an exponential covariogram as follows: 

Rσu
2  (7)

And the adjacency matrix R is defined as:  

ijd

ij e=][r=R


 (8)

where   is the decay parameter and dij is the distance between the centroids of segments i and j.  
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It is important to introduce here the notion of effective range t0, i.e. the distance at which there is 
no lingering spatial correlation (Banerjee, Carlin and Gelfand, 2004). For the exponential 
covariogram, the effective range is commonly defined as the distance at which this correlation 
has dropped to only 0.05; hence, /30 t  since log(0.05) ≈ -3. An hyperprior 

uniform(0.0001875,0.1) was selected for the decay parameter  , which is equivalent to a 
uniform(30, 16000) prior (in meters) for the effective range t0.  The limits of the uniform 
distribution were selected from 10 feet (30m) to 10 mile (16000m) approximately. 

Model Comparison 

Two different goodness-of-fit measures are used for model comparison and selection: posterior 
mean deviance and Deviance Information Criterion (DIC).  The posterior mean deviance ( D ) 
can be taken as a Bayesian measure of fit or ‘adequacy’. To account for model complexity the 
Deviance Information Criterion was proposed (Spiegelhalter et al., 2002). The DIC is considered 
the Bayesian equivalent of the Akaike Information Criterion (AIC).  DIC is defined as an 
estimate of fit plus twice the effective number of parameters as in Equation 9: 

where  θD  is the deviance evaluated at θ , the posterior means of the parameters of interest, pD 

is the effective number of parameters in the model, and D  is the posterior mean of the deviance 
statistic D(θ). As with AIC, models with lower DIC values are preferred. For more details on the 
goodness of fit measures refer to Carlin and Louis (2000), Congdon (2001, 2003) Gelman et al 
(2003). 

DATA DESCRIPTION 

This dataset was introduced previously (Aguero-Valverde and Jovanis, 2008). The data for the 
models correspond to the state-maintained rural two-lane network of Centre County, located in 
Central Pennsylvania and part of the District 2-0 of the Pennsylvania Department of 
Transportation. The dataset is defined by segment and year, from 2003 to 2006. A total of 865 
rural two-lane segments were included in the analysis. A relational database was assembled with 
information from the crash databases and road inventory.  

Crash Data 

Crash data were obtained from the PennDOT Crash Reporting System. The data includes 
reportable crashes for road segment locations only (i.e. those that do not occur at an intersection 
or ramp junction).  

Road Inventory 

Road data were obtained from the Pennsylvania Road Management System (RMS) for the study 
period. RMS includes data for each road segment such as County Number, State Route Number, 

  DD p+D=p+θD=DIC 2  (9) 
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Segment Number, Segment Length, Average Daily Traffic, Lane Width, Travel Lane Count, 
Posted Speed Limit, Divisor Type, Functional Class, and Urban/Rural Code. These data were 
complemented with the State Roads Digital Map from Pennsylvania Spatial Data Access 
(Pennsylvania State University, 2007) to be able to “map” crash locations. Summary statistics of 
the inventory data for the area of study are shown in Table 1. 

RESULTS 

Models were estimated using the open source software OpenBUGS (Thomas et al, 2006).  For 
the models, 1000 iterations were discarded as burn-in. The following 10000 iterations were used 
to obtain summary statistics of the posterior distribution of parameters. Convergence was 
assessed by visual inspection of the Markov chains for the parameters. Furthermore, the number 
of iterations was selected such that the Monte Carlo error for each parameter in the model would 
be less than 10% of the value of the standard deviation of that parameter.  

Table 2 presents the estimates for the Poisson random effects, CAR and direct spatial correlation 
models. Both spatial models performed better than the non-spatially correlated random effects 
model in terms of DIC. The uncorrelated random effects model presented a DIC of 4203 while 
the CAR model has a DIC of 4181 and the direct spatial correlation model showed a DIC of 
4109, significantly lower than the other two models. Interestingly, the CAR model outperformed 
the other two models in terms of the Posterior Deviance. 

Table 1:  Summary Statistics of the Data by Segment and Year 

Variable Mean 
Std. 
Dev. Min. Max. 

Crashes 0.310 0.691 0 7 
Volume (AADT) 2636.4 3197.7 45 18749 
Length (miles) 0.464 0.107 0.039 0.751 
Indicators     
Functional Class Expressway and Arterial 0.295 0.456     
Functional Class Collector and Local 0.705 0.456     
Speed Limit <= 35 MPH 0.331 0.471 20 55 
Speed Limit > 35 MPH 0.669 0.471     
Lane width < 10' 0.616 0.486 6 23.5 
Lane width > 10'  and < 12' 0.098 0.298   
Lane width 12' 0.017 0.128   
Lane width > 12' and <14' 0.011 0.106   
Lane width >= 14' 0.095 0.294     
Shoulder width < 4' 0.608 0.488 0 14 
Shoulder width > 4' and < 6' 0.161 0.367   
Shoulder width 6' 0.096 0.295   
Shoulder width > 6' and <10' 0.099 0.299   
Shoulder width >= 10' 0.036 0.187    
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Table 2  Models for Rural Two-Lane Centre County Roads 

Uncorrelalted Random effects model CAR model Direct Spatial Correlation model 

Confidence 
Interval 

Confidence 
Interval 

Confidence 
Interval 

Variable 
mean sd 

MC 
error 

2.5 97.5 

mean sd 
MC 

error 
2.5 97.5 

mean sd 
MC 

error 
2.5 97.5 

Intercept -6.007 0.508 0.012 -6.981 -5.028 -6.122 0.746 0.036 -7.603 -4.642 -6.029 0.498 0.047 -7.017 -4.911 

Volume (AADT) 0.715 0.062 0.002 0.593 0.834 0.659 0.092 0.005 0.479 0.838 0.718 0.060 0.006 0.591 0.836 

Functional Class Expressway 
and Arterial -0.035 0.144 0.006 -0.317 0.247 0.244 0.253 0.016 -0.241 0.750 -0.041 0.142 0.009 -0.309 0.238 

Speed Limit > 35 MPH -0.226 0.093 0.001 -0.408 -0.046 -0.302 0.117 0.004 -0.529 -0.069 -0.225 0.091 0.003 -0.401 -0.045 

Lane width < 10' -0.517 0.191 0.004 -0.891 -0.143 -0.374 0.265 0.013 -0.900 0.154 -0.511 0.186 0.008 -0.881 -0.150 

Lane width > 10'  and < 12' -0.041 0.114 0.003 -0.261 0.186 0.114 0.192 0.011 -0.274 0.492 -0.036 0.110 0.005 -0.252 0.182 

Lane width > 12' and <14' -0.156 0.267 0.006 -0.690 0.358 -0.073 0.369 0.015 -0.814 0.637 -0.154 0.264 0.007 -0.679 0.361 

Lane width >= 14' 0.421 0.272 0.004 -0.113 0.955 0.593 0.313 0.010 -0.033 1.204 0.422 0.271 0.006 -0.119 0.936 

Shoulder width < 4' 0.239 0.146 0.004 -0.049 0.522 0.554 0.215 0.010 0.132 0.980 0.245 0.141 0.007 -0.027 0.517 

Shoulder width > 4' and < 6' 0.110 0.144 0.003 -0.173 0.390 0.309 0.207 0.009 -0.097 0.710 0.112 0.142 0.006 -0.159 0.392 

Shoulder width > 6' and <10' 0.083 0.142 0.003 -0.195 0.365 0.410 0.206 0.009 0.010 0.815 0.090 0.139 0.005 -0.184 0.361 

Shoulder width >= 10' 0.087 0.203 0.004 -0.313 0.479 0.268 0.273 0.011 -0.264 0.797 0.091 0.195 0.006 -0.294 0.464 

sd(u)           0.617 0.058 0.003 0.519 0.749 0.430 0.103 0.009 0.215 0.601 

sd(v) 0.563 0.048 0.002 0.472 0.660 0.422 0.049 0.002 0.330 0.519 0.293 0.127 0.012 0.080 0.532 

sigma2.u           0.077 0.017 0.001 0.050 0.116 0.196 0.086 0.008 0.046 0.364 

sigma2.v 0.322 0.056 0.002 0.222 0.444 0.183 0.043 0.002 0.110 0.275 0.102 0.079 0.007 0.007 0.284 

eta           0.594 0.035 0.002 0.528 0.665 0.601 0.157 0.015 0.303 0.870 

t0                     168.7 370.6 30.5 30.7 1300.0 

phi                     0.050 0.029 0.001 0.002 0.098 

deviance 4003 33.42 0.83 3938 4069 3975 29.62 0.83 3916 4032 4013 34.77 1.57 3944 4081 

DIC 4203         4181         4109         
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As expected, the variance and standard deviation of the uncorrelated random effects were 
significantly reduced when the spatial effects were introduced, since the spatial effects could 
explain some of the extra-variation in the data previously explained by the uncorrelated random 
effects. The variance dropped from 0.322 to 0.183 and 0.102 for the CAR and the direct spatial 
correlation models respectively. The standard deviation presented important reductions as well, 
going from 0.563 to 0.422 for the CAR model and 0.293 for the direct spatial correlation model. 
For both variables the reduction is more prominent for the direct spatial model. 

The spatially correlated random effects present significant differences between the spatial 
models as well. While the expectation of the variance increased from 0.077 to 0.196 the 
expectation of the standard deviation decreased from 0.617 to 0.430 for the CAR and direct 
spatial correlation models respectively. This is somewhat unexpected since the standard 
deviation is the square root of the variance but it can be possible due to the skewness of the 
distributions and the fact than the mean is not a good indicator of central tendency for skewed 
distributions. 

As measured by the standard deviation, the marginal variation in the data explained by the 
random effects is lower in the direct spatial correlation model in comparison with the CAR 
model. The sum of standard deviations for the CAR model is around 1.04 while for the direct 
spatial correlation model is 0.723; nevertheless, both are higher than the 0.563 of the standard 
deviation for the uncorrelated random effects model. 

The proportion of the variation explained by the spatial correlation term η is almost the same for 

the CAR (0.594) and the direct spatial correlation (0.601) models. This happens even though the 
standard deviations in the CAR model are higher than those of the direct spatial correlation 
model; however, both change at a similar rate which resulted in a very similar η for both models. 

The expected values of the coefficients for the covariates are similar for the three models; 
however, the estimates for the direct spatial correlation model are much closer to the 
uncorrelated estimates than those of the CAR model. While the coefficients for the Intercept, 

AADT and Speed limit > 35MPH are -6.007, 0.715 and -0.226 for the uncorrelated model, the 

same coefficients for the CAR  and direct spatial correlation models are -6.122, 0.659, -0.302 
and -6.029, 0.718, -0.225 respectively. The standard deviations of the coefficients present a 
similar picture between models with the uncorrelated and direct spatial correlation models, i.e.  
very close estimates, and higher values of variation for the CAR model.  

The effective range t0 was found to be relatively small for the data analyzed, i.e. only 168.7 
meters; however, this value is in line with previous findings (Aguero-Valverde and Jovanis, 2008 
and 2010) that suggested that spatial correlation was important between segments less than 1.6 
km (approximately 1 mile) apart. From the practical applications point-of-view, this result 
suggests that, for crash frequency models at road segment level, controlling for spatial 
correlation between direct neighbors is sufficient.  
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CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

The direct spatial correlation model presents better goodness-of-fit than the random effects and 
the CAR model. In terms of posterior deviance the direct spatial correlation model performed 
similar to the other two models (4003, 4009, and 4013 for the random effects, the CAR and the 
direct spatial correlation model respectively) but in terms of the penalized goodness-of-fit 
measure DIC it performed significantly better (4203, 4181, and 4109 respectively). Furthermore, 
while the DIC of the CAR model was only around 20 points lower than the uncorrelated model, 
the DIC of the direct spatial correlation model was almost 100 points lower. This finding is also 
in line with previous works that found spatial correlation to be significant in highway safety 
models. 

The proportion of variation in the data explained by the spatial correlation term is almost the 
same for both spatial models (0.59 for the CAR model and 0.60 for the direct spatial correlation 
model), even though the standard deviations in the CAR model are higher than those of the direct 
spatial correlation model; however, both changed at a similar rate which resulted in a very 
similar η for both models. Clearly, most of the variation in the data explained by the random 
effects is spatial in nature.  

The standard deviations in coefficient estimates are slightly lower for the direct spatial 
correlation model compared to the random effects model but significantly lower than the CAR 
model. This finding suggests that by controlling for spatial correlation throughout a direct spatial 
correlation model the precision of coefficient estimates is also improved.  

The effective range t0 was found to be relatively small (168m) but consistent with previous 
findings that suggested that spatial correlation was important between segments less than 1.6 km 
apart. From the practical applications point-of-view, this result suggests that, for crash frequency 
models at road segment level, controlling for spatial correlation between direct neighbors is 
sufficient. More datasets should be tested to corroborate these preliminary findings.  

An exponential covariagram function was implemented in this work for its simplicity but many 
other covariagrams exist and can be tested. In particular, spherical, power, Guassian, and Matérn 
covarigrams can be used to model spatial correlation in highway safety data. 

The way the distance between segments is measured has potential for future research as well. 
Here, it was proposed to use the “aerial” distance (i.e. as the bird flies) between segment 
centroids but the network distance (i.e. as the car travels) between segment centroids can be used 
as well. Another option is to use the shortest network distance, between segment extremes   
rather than segment centroids.  
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