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ABSTRACT

Factor complexity is regarded as a typical charetie of traffic accidents. This paper proposes
a novel method, named boosted regression trees YBmvhich is particularly appropriate for
investigating complicated and nonlinear relatiopshn high-variance traffic accident data. The
Taiwan 2004-2005 single-motorcycle accident da¢aadopted to demonstrate the usefulness of
BRTs. Traditional logistic regression and classifion and regression tree (CART) models are
also developed to compare their estimation resant$ predictive performance. Both the in-
sample cross-validation and out-of-sample validatiesults show that the increase of tree
complexity provides better but declining improvernen the predictive performance, indicating
a limited factor complexity of single-motorcyclecatents. While a certain portion of fatal
accidents can be explained by the main effectsuafial variables including geographical, time,
and socio-demographic factors, the relatively ueifptal accidents are better approximated by
interactive terms, especially the combinationsetidvioral factors. The BRTs models generally
provide better transferability than logistic and R models. The implications of analysis
results for devising safety policies are also el

Keywords: boosted regression trees, crash prediction, roptta accidents, machine learning.

INTRODUCTION

Complexity is regarded as a typical feature indbeurrence of traffic accidents. Many studies
have addressed the importance of controlling cordmg factors when modeling traffic
accidents, especially in cross-sectional studiesrevbauses are not known a priori (Hauer 2006).
The relationship between the response variable taadpredictors may be nonlinear, which
further increases complexity. For example, thati@hship between accident severity and the
driver's age is nonlinear. Young and old drivers anore likely to be involved in a fatal
accident than middle-aged drivers, typically beeaysung drivers tend to drive fast and old
drivers have relatively fragile bodies (Rutter &@dine 1996, Linet al. 2003a, Chang and Yeh
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2007). Another example is the relationship betwaardent occurrence and traffic flow, which
is regarded as a concave curve, since a relatsraBll number of accidents can be observed
when traffic flow is extremely low (too few exposs) or high (too congested), and more
accidents can be observed for traffic flow volunmebetween the two extremes (Qhal.2004).
The interactions between explanatory variablesccaldo be complicated. This effect can be
seen from the recent applications of support vetiachine (SVM) methods which model factor
interactions in a high-order factor space €Lal.2008b).

Data mining methods are a typical choice to ingasé the aforementioned factor complexities.
In a series of studies, Wong and Chung (2007, 20@3bused rough sets to explore the
circumstances that distinguish accident severifjhey used 25 variables, including driver
characteristics, trip characteristics, behaviomahditions, and road environment, to describe
typical circumstances. Their studies indicated thane circumstances, i.e., combinations of
factors, are frequently repeated while some cir¢cantes are sparse and unique. In other words,
factor complexity did exist for part of the obsatvaccidents; these accidents did not occur
merely due to randomness. Chang and Wang (20C8hierd the injury severity of traffic
accidents in Taiwan using classification and regogs tree (CART) models. Their results
demonstrated how CART models can provide a sat@facgredictive performance when
numerous predictors with multicollinearity concears considered. lgt al (2008b) developed
SVM models for accident frequencies on rural frgetaoads in Texas. Their results suggested
that the SVM models have a better predictive paréorce than the negative binomial models. A
nonlinear relationship between average daily wafADT) and crash frequencies was found
using sensitivity analysis. To analyze the infligfactors on pre-crash maneuvers, Hetrlal
(2009) combined the techniques of classificatieedrand random forests; the tree technique was
applied to explore the relationship between acdidericomes and selected factors, while the
forest technique was adopted to rank the importafidee selected variables. Abdel-Aty and
Haleem (2011) analyzed the occurrence of anglehesmast unsignalized intersections using
multivariate adaptive regression splines (MARSmethod that can include a great number of
variables, nonlinearity, multicollinearity, and &ih degree of interaction among predictors.
Their results exhibited a nonlinear relationshipAeen annual average daily traffic (AADT) and
angle crash frequency.

These studies clearly indicate the complexity atda effects for traffic accidents; the affecting
factors are numerous, possibly related nonlinedolythe response variable, and may be
multicollinear with each other. Such features hkeekto the attempts of using non-parametric
modeling techniques, such as rough sets, CART SMid, which allow no pre-specification of
function form. However, some difficulties remaimhich factors should be incorporated in the
model, how complicated of the interactions are, laow the results could be interpreted are still
a challengé

To shed light on the factor complexity of accidenturrence, this study adopts a novel method,
named boosted regression trees (BRTs). The BRTisoahés a tree-based data mining method,
and thus has advantages such as no need to pigspuection forms, and the ability to

consider numerous predictors and their possibléimear relationship with the response variable.

! For example, a huge decision tree could be oliafreeloose pruning strategy is applied. Or, iedel-training
process is a black-box, and little information aninterpreted for accident causality.
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Meanwhile, by incorporating statistical techniqsesh as bagging, boosting, and shrinkage, the
BRTs method can simultaneously reduce the variandebias of prediction errors and gradually
focus on the difficult cases (i.e., relatively wmq traffic accidents). This advantage is
particularly crucial to accident modeling becauséit accidents are typically unique and highly
imbalanced (e.g., fatal accidents only accountaf@mall portion of the total). Due to these
statistical techniques, the BRTs method also pewvidterpretable results. Details of the BRTs
models will be introduced in the following section.

To demonstrate the usefulness of BRTs, an empidatdset of single-motorcycle accidents is
adopted and accident severity (fatal vs. non-fagaBnalyzed. As vehicles, motorcycles offer
consumers the advantages of low initial cost aodséme models, good fuel efficiency. High
fuel prices in recent years have led to an incngaaumber of registered motorcycles in some
countries. In the United States, there are maze 2 million registered motorcycles. More
than five thousand motorcyclists were killed in 20@ccounting for 12 percent of all highway
fatalities (NHTSA 2009). The situation is even s®in developing countries, where powered
two-wheelers are a primary mode of transportatiomrban areas. For example, motorcycles
account for two-thirds of all registered vehiclesTiaiwan, and 45 percent of traffic accidents
involve motorcyclists (MTC 2007). Single-motorog@ccidents are those that involve only one
vehicle (motorcycle). Although single-motorcyclecalents account for a relatively small
portion of accidents, they are usually serious. adidition, the occurrence of single-vehicle
accidents is expected to be simpler to study thet ©f multi-vehicle accidents, which is
appropriate for this preliminary study to investeéactor complexity of accident occurrence.

Theoretically, the BRTs models can provide sattsigcperformance. Yet, to demonstrate the
transferability of BRT models with empirical dakagistic regression and CART models are also
developed and compared. These two basic modelshasen instead of advanced econometric
models (e.g. ordered probit/logit or mixed logitaets (Kockelman and Kweon 2002, Milt@h

al. 2008)) or other data mining and soft computing et®de.g. rough sets, SVM, random forests,
or MAR) based on two rationales. First, the effentess of these two models has been
demonstrated in past studies, especially the logisgjression models (Al-Ghamdi 2002, Bedard
et al. 2002, Valentet al. 2002). Second, using advanced econometric maodelsres delicate
model specification and, sometimes, more assungtionfunction forms and parameters. The
aforementioned complexity of accident occurrencgepachallenges of using such models. On
the other hand, logistic and CART models providgoad start to compare with the BRTs
models.

The remaining parts of this paper are organizeolasvs. The following section introduces the
methodology including a brief introduction of bosstregression tree models, the data and
variables, and the analysis procedure. This ptyger presents the analysis results, followed by
discussions. The concluding remarks are presentibe final section.



METHODOLOGY
Boosted Regression Trees

Boosted regression trees can be characterized dyemns: regression trees and boosting. A
BRTs model grows a number of trees by bootstrapgsiedgraining data, i.e., randomly selecting
a certain proportion of observations from the tregrdata with replacement. Each tree grows as
developing a CART, a form of binary recursive ganting. The term “binary” implies that
each group of traffic accidents, represented byaé” in a decision tree, can only be split into
two groups (i.e., a parent node can only have tla modes). The term “recursive” refers to
the fact that the binary partitioning process carapplied over and over again. Lastly, the term
“partitioning” refers to the fact that the datasetsplit into sections or partitioned. Splitting
functions, which measure the purity (or impurityf) @ tree, are applied to determine which
variable should be included to split the tree; cannfunctions include Gini, Twoing, and
Entropy. To prevent overfitting data, trees apgdslly pruned to cut off the nodes (or branches)
resulting in high classification costs (Chang andrngy 2006). A complexity parameter, usually
defined as a cost function of misclassificatiordafa, is used to determine which node to prune.
Finally, the best tree can be selected using crakdation or out-of-sample validation.

Despite the advantages of CART models, a singieisrsometimes a weak classifier, especially
for high-variance data such as the data for traf@icidents. To deal with this issue, the BRTs
model introduces a technique termed as baggingcontrol the effects of confounding factors,
numerous predictors are usually included in modetilassification and regression trees, which
typically results in a model with high variance dad bias. Bagging is a technique for reducing
the high variance and involves the following stepstake a bootstrap sample from the training
dataset; 2) fit the tree to this bootstrapped @dte®) repeat the previous two steps a certain
number of times (typically 50—-1000); and 4) makedgetions for new data using each of the
fitted models and average the predictions. Thecpie behind the bagging technique is used in
the random forests method. Random forests dewezop tree by taking a bootstrap sample and
selecting a random subset of predictors (Heirkal. 2009). The randomly selected predictors
reduce the correlations between predictors andrddisce the variance component of prediction
error.

In addition to bagging, the BRTs model applies acggd mechanism to bootstrap samples,
named boosting. Boosting uses the same principtagging that a given weak algorithm is
repeatedly run, and the computed classifiers amnebgwed in the final estimation or prediction.
In other words, boosting, like bagging, can effesdy reduce the variance. Yet, while
conventional bagging focuses on randomly seleabibgervations from the original data with
replacement, boosting further considers the hasdmésthe training cases; when repeatedly
selecting sub-datasets, boosting tends to gendrstigbutions that concentrate on the harder
training cases (Freund and Schapire 1996). Tlagife is crucial in accident studies because
fatal accidents typically account for only a snuadftion of all accidents.

The algorithm for developing BRTs models is asdwl. Suppose we want to build a function
f(z) to approximate a respongavherex is a vector of predictors. To estimate the florctia
loss function is typically specified; for examplea squared-error loss function,



L(y, f(z)) = (y — f(x))?, is mainly used to estimate a linear regressioth itinction form
f(z) = x5 wheref is a matrix of parameters. For CART models, adelimodels (Hastiet al.
2009) expresf(z) as a sum of basis functit(z;~,,) as follows:

f(z) = an, fm(z) = Zm, Binb (5 Yim)-
For boosted trees, the functib(x;~,,) represents individual trees, wi;, defining the split
variables, their values at each node, and the ggestliivalues. Thj,, values represent weights
given to the nodes of each tree in the collectiod determine how predictions from the
individual trees are combined (De'ath 2007).

To estimate parameters, the gradient boosting tgeénis applied (Friedman 2001). Its
procedure can be summarized as follows (De'ath)2007
1) Initialize fo(x) = 0.
2) Form = 1ton:
a. Calculate the residualr = —([0L(y, f(x))]/[0f ()]) f(x)=fom_1(2)-
b. Fit a least-squares regression trem to get the estimate &}, of 5b(x; 7).
c. Get the estimatf,, by minimizingL(y, f..—1(z) + Bb(x; vm))-
d. Updatef,,(z) = fo—1(z) + Bunb(x;vm)-
3) Calculatef(z) =3, fu(z).
Step 2a calculates the residuals as the negativiheofiirst derivative of the loss function
evaluated for the current value f(z). Step 2b uses a least-squares regression testitoate
Tm. Least-squares trees are used irrespective ahibgen loss function and are computationally
very efficient (De'ath 2007). Step 2c then estemdhe valueg,, assigned to the nodes of the
tree to minimize the overall loss.

To reduce the effect of overfitting, the boostedression tree further applies a shrinkage
strategy. A learning rate, is introduced at step 2d when the algorithm upglsihe estimated
function:

(@) = fr1(x) + €8mb(x;vm) where0 < € < 1.
A smaller learning rate requires more iterations. (itrees) in the boosting sequence. Studies
indicated that a 10-fold reduction in learning regquires an approximately 10-fold increase in
iterations (De'ath 2007), and at least 1,000 taeesecommended (Eligt al.2008).

Subjects and Data

The subjects used to demonstrate the factor contyplase single-motorcycle accidents. Single-
motorcycle accidents are those in which only alsimgotorcycle is involved. The data include
two years (2004—-2005) of single-motorcycle accigeptovided by the National Police Agency
of Taiwan. The total number of single-motorcycteidents was 7,634 in 2004 and 9,869 in
2005, with fatal accident rates of 3.52%, and 3.988spectively. The extremely low fatal

accident rates indicate the adopted dataset isyhigibalanced.

Variables

The dataset contains 29 variables as summarizéichlhe 1. The dependent variable is the
severity of the accidents, coded as a binary viriafth value 1 if fatal and O otherwise. The
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remaining 28 variables include driver charactearsstitrip characteristics, driving behavior,
weather conditions, and road environment. All #agiables are categorical variables except
driver’'s age, speed limit, and hour.

Table 1 Variables to develop single-motorcycledeat models

Category Variable Definition Type

Dependent  Severity Fatal, Injury only Binary

variable

Driver Age Continuous

characteristicsGender Male, Female (2 types) Categorical
License type Trucks, Buses, Automobiles, Motoregcktc. (16 types) Categorical
Occupation Students, Administration, EducatiorgiBeering, etc. (21 Categorical

categories)
License condition With proper license, Drive witehse, Revoked license, eteategorical
(7 conditions)

Trip Trip purpose School, Work, Business, Social agtjhopping, etc. (9 Categorical
characteristics categories)
Month January, February, ..., December (12 months) tedomical
Day of Week Monday, Tuesday, ..., Sunday (7 days) te@aical
Hour 0-23 Continuous
County Taipei city, Taipei county, etc. (25 coes)i Categorical
Driving Protection equipment Wear (helmet), Not wear, Gtl{@rcategories) Categorical
behavior
Cellphone use No use, Handheld, Earphone, Hands@thers (4 types)  Categorical
Movement prior Going straight, Left turn, Right turn, etc. (14 &g) Categorical
to accident
Drinking condition ~ No drinking, BAC < 0.05%, ef@ categories) Categorical
Weather Climate Sun, Cloud, Rain, Fog, etc. (7 conditions) Categorical
condition
Road lllumination Day light, Night with illumination, et (4 types) Categorical
environment  pqad level Highway, Arterial roads, Streets, etdefels) Categorical
Road type 3-way junctions, straight road, etc.types) Categorical
Road location Within intersections, Fast lane, &dixane, etc. (21 types) Categorical
Pavement type Asphalt, Cement, Rubble, OtherseNbrypes) Categorical
Surface condition Dry, Wet, Muddy, Slippery, Snfconditions) Categorical
Surface deficiency  None, Holes, Bumping, Softyf#es) Categorical
Obstacles None, Work zone, Fixed objects, Othetgpes) Categorical
Sight distance Good, Curve road, Others, ety@<) Categorical
Signal type Regular traffic light, Flash, etctypes) Categorical
Median type Median, Markers, Marking, etc. (10esp Categorical
Roadside With marking, Without marking (2 types) até&gjorical
Speed limit Kilometers per hour Continuous




Analysis Procedure

Based on the 2004 single-motorcycle accident dhis,study develops three types of models:
the BRTs models, the logistic regression modelsl @ classification and regression tree
(CART) models. This study develops the BRTs maqdeaiginly following the suggestions by
Elith et al (2008). The BRTs models are built using thevgafeR (R Development Core Team
2009) with the packaggbm

Three parameters are jointly considered to optintiee BRTs models, the number of trees,
learning rate, and tree complexity. This studysdoet particularly control the number of trees
as long as it stays at a reasonable size, 1,0009¢f0, On the other hand, this study tests the
combinations of varying values of learning rate9%80.0001) and tree complexity levels (1-18)
to develop the best BRTs model. Meanwhile, to cedaverfitting and improve accuracy, trees
are boosted based on random draws from the futlimgadataset. In this study, 50% of the data
are drawn at random without replacement at eacétios.

A model with zero training error is overfit to theining data and will typically generalize
poorly. To prevent this problem and determinelibst setting of the BRT model for the 2004
single-motorcycle accidents, the cross-validati@V) technique is applied when the various
combinations of learning rates and tree complebetels are examined. In particular, 10-fold
CV is chosen, and predictive deviance is appliechéasure the success of the models. Because
the dependent variable is binary, the BRTs mod@sagorm of logistic regression that models
the probability that a fatal traffic accident ocguy = 1, with explanatory variable X,
P(y =1|X) = f(X). The Bernoulli loss functidhis chosen as the deviance for the binary
response variable. All 28 explanatory variablegetl in Table 1 are used to develop the BRT
models. Variables are implicitly selected by doweighting variable contributions at each
iteration (Elithet al.2008), known as a shrinkage method in data mining.

The numerous explanatory variables and categonafenige the model specification of logistic

regression models. To comprehensively accounttter factor effects, this study applies a
general-to-specific approach to develop the logisggression models; all the explanatory
variables are considered in the initial model, &@mein non-significant variables are dropped
based on test statistics including deviance, théd\Mtatistic, Hosmer-Lemeshow tests, and the
Akaike Information Criterion (AIC) measure. Fort@gorical variables, the non-significant

categories are collapsed considering their pradienition.

The CART models are developed using the cost-coatplpruning strategy, meaning that the
tree growing process is stopped only when some sizgeis reached that minimizes the cross-
validated errors (Hastiet al.2009). The Gini function is chosen as the splitfiunction.

2 The rule of thumb suggested by Elith et al. (2068ixting models with at least 1,000 trees. Hnalysis results,
as presented at the following sections, show that@dels converge within 10,000 trees.

% The Bernoulli deviance-2ﬁ S wily; f(x:) — log(1 + exp(f(xi)))), wherey; is the reponsex; is the vector

of explanatory variables, and; are the observation weights (Ridgeway, G., 20@hegalized boosted models: A
guide to the gbm package.) Equal weights are us#us study.
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The 2005 single-motorcycle accident data are usedxamine the out-of-sample predictive
performance for the developed BRT, logistic, andRTAnodels using the 2004 data.

ESTIMATION RESULTSOF BOOSTED REGRESSION TREE MODELS
Optimal Setting

A learning rate of 0.01 is too fast for most BRTsdals for which the fitting process stops at a
tree size smaller than 1000. The only exceptidghesmodel with tree complexity of 1; as shown
in the top left panel of Figure 1, the model stgoswing trees (i.e., the predictive deviance
becomes flat) at a tree size just over 1000 (théced gray dotted line). In other words, to
obtain robust learning results, the learning ratetfie 2004 single-motorcycle accidents should
be set to at least 0.005. On the other hand,raitearate of 0.0005 is only too slow for some
low-tree complexity models such as a tree complerit 1, but appropriate for most tree
complexities. Models with a learning rate of 0.0@G0e unreported because this extremely slow
learning rate makes the growth of most trees upstole before the tree size reaches 10,000.
Moreover, reducing learning rates does not decréasepredictive deviance when the tree
complexity exceeds a certain level. Figure 1 shtve$ models with a learning rate of 0.001
(green line) generally exhibit lower predictive @ace than those with a learning rate of 0.0005
(blue line), and also lower than those with a leagmate of 0.005 when tree complexity exceeds
a certain level, for example 10.

Increasing tree complexity consistently improve® tpredictive deviance; however, the

improvement decreases as the tree complexity isesea The bottom right panel of Figure 1

shows that when the learning rate is fixed at O.@®d predictive deviance continuously reduces
when the tree complexity grows. Yet the predictileviance lines fitted by the models with a

tree complexity of 17 (pink line) and of 18 (yellduwe) almost overlap, indicating their close

predictive performance. To sum up, the model witkarning rate of 0.001 and tree complexity
approximately 18 is the best 2004 single-motorcydeident BRTs model based on the cross-
validation results.
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Figure 1 Predictive deviance against number @fstfer models fitted with various tree
complexities and learning rates

Relative Contributions of Explanatory Variables

With the learning rate fixed at 0.001, the relato@ntributions of explanatory variables for
boosted regression tree models with various tregpbtexity levels (tc = 3, 8, 11, 17, and 18) are
summarized in Table 2. The relative contributi@re measured as the number of times a
variable is selected for splitting, weighted by sloggiared improvement to the model as a result of
each split, and averaged over all trees (Eithl. 2008).

While the predictive deviance is incrementally reelll with the increase of tree complexity, the
relative contributions of explanatory variables aoenparatively stable. As shown in Table 2,
regardless of tree complexity, the county variableecognized as the most influential variable,
implying that factors that are geographically hegeneous such as local driving culture, the
relatively long distance from hospitals in ruraé@as, or road design elements (Eiksund 2009) are
crucial to distinguish the severity of single-matgoie accidents. The occupation and month
variables are in the second- and third-most infliaérvariables; the occupation variable may
suggest the different lifestyles and motorcycleges@.in et al.2003b, Binaet al. 2006), and the
month variable indicates that factors associateth vdeasonal variation are critical to
differentiate the severity of single-motorcycle ideats.

The following two factors, drinking conditions anzkllphone use, have been intensively
discussed in past studies; driving under the imideeof alcohol and using a cellphone while
driving are more likely to increase the possibilifytraffic accidents and their severity. Road
location is recognized in the sixth place of infitial variables. Wong and Chung (2007, 2008b)
showed that some road locations such as intersscivbere relatively more fixed objects are set
raise the possibility of bump-into-fixed-object ffra accidents and their severity. Usage of
protective equipment, i.e., wearing a helmet, aag of the week are the next two influential
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variables. Helmet wearing has shown a signifiedfeict on reducing the severity of motorcycle
accidents by protecting the brain in both longihadiiand cross-sectional studies (e.g. Haital.
2002, Hundleyet al. 2004). The median-type variable, accounting foo 3 percent of relative
contributions, is ranked ninth. While road levaftect the selection and construction of median
types, a wide median island creates fixed objectsthee road and therefore increases the
possibility of traffic accidents and their severifyong and Chung 2007, 2008b). The age
variable is the only continuous variable in the 1@pmost influential variables, and suggests the

influence of various physical conditions of motaritst age groups on the fatality of traffic
accidents.

As shown in Table 2, most of the top 10 most inilied variables are variables related to driver
characteristics, trip characteristics, and driviredpaviors. The only weather-condition variable

and most road environment variables contribute @ngmall portion to the fatality of single-
motorcycle accidents.
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1 Table 2 Relative contributions (%) of explanateayiables for boosted regression tree models vatious tree complexity levels*

tc=3 tc=8 tc=11 tc=17 tc=18
Variable Relative Variable Relative Variable Relative Variable Relative Variable Relative
contribution: contribution: contribution: contribution: contributiors
County 26.712¢ County 22.805: County 22.600¢ County 22.120( County 21.745;
Drinking conditior 15.444( Occupatiol 13.823¢ Occupatiol 13.913¢ Month 13.953¢ Month 14.111¢
Occupatiol 13.553: Month 11.864: Month 12.781: Occupatiol 13.741¢ Occupatiol 13.749
Cellphone ise 13.534- Drinking conditior 10.432° Drinking conditior 9.618¢ Drinking conditior 8.543( Drinking conditior 8.541(
Road ocatior 6.323¢ Cellphone 1se 9.046" Cellphone 1se 8.454: Cellphone 1se 8.136: Cellphone 1s¢e 8.093¢
Protectiol 5.695¢ Road ocatior 6.636¢ Road ocatior 6.708¢ Road ocatior 6.873: Road ocatior 6.866"
equipmet
Mqontph 5.293: Protectiol 4.108¢ Day of weel 4.181¢ Day of weel 4,492 Day of weel 4.593:
equipmer
Day of weel 1.869" D%y %f weel 3.904¢ Protectiol 3.925C Protectiol 3.652¢ Protectiol 3.686¢
equipmer equipmer equipmer
Age 1.405: Mediar type 2.297¢ Mediar type 2.722¢ Mediar type 3.067¢ Mediar type 3.099(
License ype 1.299¢ Age 2.187¢ Age 2.291: Age 2.275( Age 2.418¢
Roac type 1.280: Roac level 2.019¢ Roac level 2.038( Roac level 2.245¢ Roac level 2.340°
License conditior 1.225¢ Roac type 1.895¢ Roac type 1.983: Roac type 2.151: Roac type 2.034¢
MO\_/gmen prior to 1.180¢ Hour 1.664( Hour 1.725¢ Hour 1.815¢ Hour 1.820¢
acciden
Hour 1.019¢ Trip purpost 1.486¢ Trip purpost 1.493¢ Trip purpost 1.549¢ Trip purpost 1.581¢
Trip purpost 0.970" License conditior  1.330¢ License conditior 1.448: License conditior 1.401¢ License conditior 1.370¢
lllumination 0.818¢ License ype 1.238¢ License ype 1.123¢ License ype 1.096¢ License ype 1.038(
Sightdistanci 0.614: lllumination 0.954¢ lllumination 0.874¢ lllumination 0.892: lllumination 0.917¢
Mediar type 0.612¢ Movemen prior to 0.774: Movemen prior to 0.637: Movemen prior to 0.506¢ Sight distanc: 0.518(
acciden acciden acciden
Roac level 0.578¢ Sight distanc: 0.631¢ Sight distanc: 0.569¢ Sight distanc: 0.473¢ Moygmen prior to 0.483¢
acciden
Speelimit 0.411: Spee! limit 0.503: Spee! limit 0.472: Spee! limit 0.435( Spee! limit 0.399¢
Climate 0.132: Climate 0.222} Climate 0.254¢ Climate 0.302: Climate 0.307:
Gende 0.012° Roadsid: 0.087: Roadsid 0.120¢ Roadsid 0.159¢ Roadsid 0.184«
Roadsde 0.006¢ Gende 0.046: Gende 0.026! Gende 0.049¢ Gende 0.045(
Signa type 0.003: Surface onditior 0.019: Surfaceconditior 0.018¢ Surface onditior 0.029: Surface onditior 0.024(
Surface onditior 0.002: Signa type 0.008( Obstacle 0.009° Obstacle 0.020¢ Obstacle 0.020:
Pavemer 0.000( Obstacle 0.007¢ Signa type 0.005¢ Signa type 0.015° Signa type 0.012¢
Surface eficiency 0.000( Surface eficiency 0.000¢ Pavemer type 0.000( Pavemer type 0.000( Surface eficiency 0.000¢
Obstacle 0.000( Pavemer type 0.000( Surface eficiency 0.000( Surface eficiency 0.000( Pavemer type 0.000(

2  *Learning rates fixed at 0.001
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Marginal Effects of Explanatory Variables

To further investigate the effect of the most iefitial variables, the partial-dependence plots
that show the effect of a variable on the fatatifysingle-motorcycle accidents after controlling

for the average effects of all other variablestia model, are illustrated in Figure 2. These
results are from the BRT with a learning rate ®0Q. and tree complexity of 17.

Figure 2(a) shows the various effects provided bgggaphical factors in Taiwan. The most
influential regions are those located in the midaflevestern Taiwan, including HsinChu County,
Changhua County, and Chiayi City and County, arel esstern region, Hualien County. These
regions are mostly classified in the third levetsadministrative bureaucracy in Taiwan, and
typically have a tighter budget in public constrotincluding road infrastructure. The poorer
road quality implies less protection for motorcgtdi when an accident occurs, and thus leads to
a higher fatality rate. HsinChu County, Changhuwau@@y, and Chiayi City have a population
density as high as the counties in the first-ledinistrative bureaucracy. These regions are
expected to have many economic activities and theate a lot of trips. The many trips in a
poorer-quality road network may be a reason forhilgl fatality rates. The primary industry in
Chiayi and Hulien Counties is tourism, and a carfartion of tourists drive motorcycles to visit
these regions. The unfamiliar road environmernbtoist motorcyclists increases the possibility
of traffic accidents and severity. The eastermtpuHualien, has the largest area and the lowest
motorcycle density (per kilometer square), whichynmaply a higher driving speed on average.
Finally, the police-to-population ratio of Hualienone of the lowest in Taiwan, which suggests
a lower level of police enforcement and a highessgality of violations such as speeding.

Figures 2(b) and 2(g) demonstrate the various &sfleicseasonal factors. Figure 2(b) shows that
months January, March, July, and November are mgedcwith higher fatality rates. January,
March, and July are the months for lunar New Yearjng vacation, and summer vacation,
respectively. Figure 2(g) exhibits a higher fayaliate on typical working days, Tuesday,
Wednesday, and Thursday, as well as Sunday.

Figure 2(c) and 2(j) describes two driver charasties, occupation and age, related to fatality
rates. Motorcyclists who are high school studdmts, or railroad occupational drivers, or police
officers are associated with higher fatality ratessingle-motorcycle accidents. High school
students who are mostly under age 18 may not kedédlte a motorcycle; moreover, the lifestyle

of students is typically different from others asienilar age, which might also lead to a higher
possibility of accidents and fatality rates (lehal. 2003a). A certain portion of police officers

and occupational drivers require shift work in Tany such workers are more likely to have
sleep problems and a higher level of pressure fn@mk, which consequently result in a higher
possibility of traffic accidents and severer injleyels.

The age variable demonstrates a nonlinear margifi@tt on the probability of fatal single-
motorcycle accidents as illustrated in Figure 2@ expected, the older motorcyclists are more
likely to be involved in a fatal accident than atlage groups, especially when the motorcyclists
are older than 60. The motorcyclists who are yeunigan 20 also demonstrate a certain level of
marginal effect on the probability of being invalven a fatal single-motorcycle accident. The
motorcyclists at an age around 40 show the lowesgimal effect on the probability of being
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involved in a fatal single-motorcycle accident. elthotorcyclists at this age are expected to have
accumulated a certain level of driving experiertbey also have relatively mature physical and
psychological conditions (compared to young driyevgh a well-functioning body (compared
to older drivers) (Yagil 1998). Consequently, thge group is associated with a lower fatality
rate.

Figures 2(d), (e), and (h) illustrate the margieffect of three driving behavioral variables,
drinking condition, cellphone use, and protecti@uipment use, on the probability of fatal
single-motorcycle accidents. Figure 2(d) showd thiaile sober motorcyclists are associated
with the lowest level of marginal effects on theafiy rate, a nonlinear relationship is found for
those driving under the influence of alcohol. Thmtorcyclists who are heavily drunk
demonstrate the largest effect on the fatality, fatkowed by slightly drunk motorcyclists. The
motorcyclists with blood alcohol content in the e range, i.e., between 0.26-0.55
micrograms per liter, have a relatively lower magjieffect. Motorcyclists who are heavily
drunk cannot maneuver the motorcycle well, neittaer they protect themselves if an accident
occurs, and consequently are associated with a faighty rate. On the other hand, slightly
drunk motorcyclists may easily ignore their deteaimg physical conditions, thus leading to a
higher fatality rate. Figure 2(e) shows the maaiffect of cellphone use on the fatality rate,
and the unknown category exhibits the highest matgeffect. This result indicates the
difficulty of reporting cellphone use for trafficceidents. Finally, Figure 2(h) shows that not
wearing helmets is connected to an extremely highgmal effect on the fatality rate of single-
motorcycle accidents, consistent with past studiest al.2008a).

Figures 2(f), (i), (k), and (I) illustrate the margl effects provided by the four road-
environmental variables. Figure 2(f) indicates rib@d locations connected to a relatively higher
fatality rate of single-motorcycle accidents indhgl exclusive bus lanes, nearby ramps, and
motorcycle waiting zones. Exclusive bus lanes tgpcally designed for areas with a high
population density as well as high public transpiioh demand. A road segment equipped with
exclusive bus lanes is typically wider and hasghéi speed limit. Its road geometric design is
also more complicated than other roads. In othedsy the road environment encourages a high
driving speed, and requires the motorcyclists ty p#tention to the complicated design,
consequently leading some motorcyclists into fatalidents. Similar reasoning can be applied
to explain the significant effect of the vicinitf camps and motorcycle waiting zones. The
roads approaching highway ramps are typically veidd have a high speed limit for vehicles to
enter highways The motorcycle waiting zones are designed fotonegclists to turn left at a
wide intersection (i.e., two or more lanes in oireation). Its speed limit is usually high and has
a relatively complicated geometry, compared toowaiintersections.

The median types associated with high fatalitysatesingle-motorcycle accidents are narrow
median islands (shorter than 50 centimeter) ankinmgs that prohibit overtaking. While the
installation of median islands can prevent cordlisetween vehicles from opposite directions, it
also creates fixed objects on the road and ralseprobability of accidents and severity. The
markings that prohibit overtaking are typically wra on the road segments approaching
intersections or without sufficient sight distancé&atal single-motorcycle accidents at these
locations may suggest high speed, which is inapatepfor these locations.

* In Taiwan, no motorcycles are allowed to drivenational highways.
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Figure 2(k) demonstrates a nonlinear relationsk@twben the road levels and their marginal
effect on the fatality rate of single-motorcyclecigents. Significant marginal effects are

observed on the high- and low-level roads, whil@alsmarginal effects are seen on the middle-
level roads. High-level roads such as national @mogincial highways have a high speed limit,
and the accidents are expected to be severer dine tdriving speed. On the other hand, the
low-level roads cannot provide sufficient protentior motorcyclists if an accident occurs, and
therefore, relatively more fatal accidents are ol on them. Finally, Figure 2(l) shows that a
higher fatality rate is associated with road typeguiring more sophisticated driving skills

including roundabouts, culverts, elevated roadd,graded roads.
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Figure 2 Partial-dependence plots for the 12 nmdlstential variables in the model for fatal
single-motorcycle accidents

Important | nteractions

The pairwise interactions with effect size gredtan 10 for models with various tree complexity
levels are illustrated in Figure 3. While the 2&lanatory variables considered can generate
378 combinations of variable pairs, only a few loérh play a crucial role in explaining the
variance of the fatality for single-motorcycle atmmnts. No matter what the tree complexity is,
the analysis shows that up to seven variable mairdribute an effect size greater than 10.
Moreover, those same variable pairs play the mastal roles across all the BRT models.
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Among the seven variable pairs, the two pairs ¢tbatbine two behavioral variables demonstrate
an explicitly upward trend when the tree complexityreases. The first pair is the combination
of cellphone use and protection equipment use.sh@vn in Figure 3, the effect size of the

cellphone-protection pair (black line) becomes exiely prominent when tree complexity

increases. The other pair is the combination iwikdrg condition and protection equipment use.
Its effect (green line) stably increases as treaptexity rises. The combination of occupation

and drinking condition is the last variable paiattishows an upward trend (pink line) although
its increase is relatively small. These resulidicdate that when the occurrence of single-
motorcycle accidents is modeled with more compdidahteractions (i.e., a higher level of tree
complexity), the interaction between behavioralialgles plays a more important role. On the
other hand, the three interactions that involvedienty variable exhibit a bumpy but relatively

flat trend, including protection-county (red lineginking-county (blue line), and cellphone-

county (light blue line). These results suggest tho matter how comprehensively the traffic
accidents are modeled, the interaction between Vigelah variables and geographically

heterogeneous factors (represented by the coungbig) has a relatively stable effect.
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Figure 3 Top seven interaction effects for booségntession tree models with various tree
complexity levels
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Out-of-Sample Prediction Using 2005 Data

While the cross-validation results suggest thatBRI model with tree complexity around 18
and learning rate 0.001 has the lowest predictexgathce, the 2005 single-motorcycle accidents
are adopted to investigate the out-of-sample ptiediperformance. A logistic regression and a
CART model that were developed using the 2004 singbtorcycle accident data are also tested
for their out-of-sample predictive performance wiitle 2005 data. The best logistic regression
model developed with the 2004 data contains 12albes where variables are selected and
categories are merged using deviance and Waldtz tékhe Hosmer-Le Cessie omnibus test
fails to find evidence of a lack of fit.

The estimation results of logistic models are sunwed in Table 3. One driver characteristic,
gender, is included in the logistic model, indingtthat the odds of female motorcyclists being
involved in a fatal single-motorcycle accident @ré6 times those of male motorcyclists.

The next four variables are trip characteristic3he trip-purpose variable suggests that
sightseeing trips have 4.03 times the risk of bémglved in a fatal single-motorcycle accident
compared to trips with work, school, or businessppses. The month variable indicates a
seasonal effect that November is associated wdlgraficantly positive effect on the fatality of
single-motorcycle accidents. The county variabimificantly contributes to explaining the
response variable where almost all the 24 courfpee county is chosen as the reference
category) demonstrate a significant effect.

Three behavioral variables are included in the rhodghe results in Table 3 indicate that
motorcyclists wearing helmets have about one-qu#reerisk of being involved in a fatal single-
motorcycle accident compared to those who do nair\Wwelmets. While motorcyclists who use
handheld and hand-free cellphones are insignifigadifferent from those who do not use
cellphones, motorcyclists who have an unknown bellye use have 6.35 times the risk of being
involved in a fatal single-motorcycle accident cargnl to those who do not use a cellphone. As
for the drinking condition, motorcyclists who aréghktly drunk or heavily drunk have a
significantly high odds of being involved in a flasingle-motorcycle accident; in particular, the
slightly drunk motorcyclists have 5.71 times and fieavily drunk motorcyclists have 4.93 times
the risk of being involved in a fatal accident cargd to those who do not drink. The result
reveals a “U’-shaped relationship between alcobasamption level and accident severity. The
relationship may result from two possibilities: klxss driving is more often on intoxicated
drivers compared to sober ones, and the adversggbhyical effects of alcohol on the body
(Bedardet al.2002).

Four road environment variables show significarfea$ in the logistic model. Some road
locations have a significant connection with faatidents. A single-motorcycle accident that
occurs at the roadside has 3.33 times the riskeofgba fatal accident compared to one that
occurs within an intersection. A road segment witkdian markings or without medians is less
likely to have a fatal single-motorcycle accideoinpared to a road segment with median islands
or markers; the odds are about 0.78. Roadsidellandnation have non-significant estimation
results but are selected due to their improvemerthe Akaike’s Information Criterion.
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185 Table 3 Estimation results of the logistic modgihg 2004 data

Variable CategoryEstimate  Odds ratip  Variable Category Estimati Odds rati
Gender Female -0.415% 0.66Q Protectiol Yes —1.35¢** 0.258
Trip purposeSightseeing 1.394* 4.031 equipmer Other —1.74%** 0.175
Others 0.457 1.58Q0 Cellphont Handheld —-15.44( 0.000
Month November 0.424 1.528 use Handfree —1.30( 0.273
Hour -0.023 0.977 Other  1.84¢** 6.353
County County 2 -0.961 0.382  Drinking No alcohol response 0.597* 1.808
County3 0.071 1.074 conditior BAC<0.25mg/lL 174%+* 5714
County 4 -2.160** 0.115 0.26 <BAC <0.55mg/L  0.79¢ 2.220
County5 0.883 2.417 >0.55mg/L  1.59&** 4.928
County 6 —-0.085 0.919 Cannot detect 3.13(+** 22.874
County 7 -1.679* 0.187 Other  2.112%** 8.281
County 8 -1.779* 0.169 Illlumination Nighttime with illumination -0.22¢ 0.799
County 9-15.610 0.00( Roac Near intersection, median island, 0.50% 1.656
County 10 -0.162 0.85 locatior fast, slow and mixed lanes

County 11 -1.717** 0.18( Roadside 1.202** 3.333
County 12-16.560 0.00 Other  1.04¢* 2.846
County 13 -1.265 0.282 Median typs Markings or none -0.24¢. 0.780
County 14 -0.758 0.46 Roadsid With marking —0.15¢ 0.853
County 15 -0.802 0.44 Intercep -3.087** 0.046

County 16 -1.010* 0.36

County 17 -1.13% 0.32

County 18 -2.021** 0.13

County 19 -2.105** 0.12

County 20 -0.882* 0.41

County 21 -1.081*** 0.33

County 22 -0.786 0.45

County 23 -0.583 0.55

County 24 -1.997** 0.13

County 25 -1.675** 0.18

186
187
188
189
190
191
192
193

**<0.001, **<0.01, *<0.05, .<0.10

The 2004 CART model is developed using the Ginittegg function as illustrated in Figure 4.
The model contains the following variables: cellpbouse, county, drinking condition, sight
distance, road location, month, occupation, and type. The result shows that most of the
variables selected for the CART model are alsoirffiaential or significant variables for the
BRT and logistics models.
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Figure 4 Classification tree and regression tredehusing 2004 data

Based on 1,000 simulations where each simulatiodamly draws 1,000 samples from the 2005
dataset with a fixed percentage of fatal accid&ntSigure 5 compares the out-of-sample
performance rankings (1 the best, 20 the worstiéah the logistic regression model, CART
model, and BRT models with various tree complegiti@he performance is measured with the
indicator of area under the receiver operating attaristic (ROC) curve (AUC). The result
clearly indicates that the CART model is the wonsidel and has the worst performance most of
the time. This result is no surprise because aaiweal CART models tend to focus on the
major category when dealing with imbalance datagéteang and Wang 2006); ignoring the
minor category produces lower AUC values becaugbetxtremely low true-positive rate and
high false-negative rate. The BRT model with toeenplexity of one is similar to a logistic
regression; therefore, their performances are amil

Figure 5 shows that the out-of-sample predictivégomance deteriorates when tree complexity
increases. This result is different from the imp&e validation results that the predictive
performance improves with a declining trend whee tcomplexity increases. The variance of
predictive performance is large when tree compyeistiow and high, but is small when tree
complexity is around 7 to 11, as can be seen fioenetxpansion and shrinkage of the boxes.
This result may suggest that models with tree cewripyl below 7 underestimate the complexity
of traffic accidents while those with tree comptgxabove 11 overestimate the complexity of
traffic accidents. Generally, the BRT model witbet complexity of eight is preferred because it

> The percentage is at a fixed level of 3.98%, #meentage of fatal accidents for the whole 2005
data.
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has satisfactory (small bias) and efficient (smatiance) predictive performance. In other
words, models with eighth-order interactions previde best transferability.

Sample size = 1000, Simulations = 1000
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Figure 5 Out-of-sample performance rankings ug@pb data
DISCUSSIONS

This paper investigates the complexity of traffixidents with a novel method, the boosted
regression trees. An empirical dataset, 2004-Z0&%van single-motorcycle accidents, is
adopted to demonstrate the method’s usefulness.amalysis shows the ability of BRTs models
to consider a great number of predictors, explbeertonlinear relationship between predictors
and the response variable, and have satisfactangt ibetter, predictive performance compared
to logistic regression and classification and regi@n tree models.

The BRTs modeling results show that the modelsidenag higher-order interactions exhibit
better in-sample and out-of-sample predictive pernce than the first-order models (i.e., the
traditional logistic regression including only maeffects, and the BRTs model with tree
complexity of one). This result may suggest thestence of complicated accidents that are
difficult to be approximated by models containingrely first- or low-order factors. For these
accidents, the effect provided by some factorsorsditioned on many other factors. In other
words, the factor effects for complicated accidemeshighly heterogeneous. On the other hand,
accidents that are better approximated by highrofdetor interactions account for only a
relatively small portion of the total, as can beerseéby the cross-validation result that the
improvement of predictive performance decreasethadree complexity increases. In other
words, how factors affect the severity of most kngotorcycle accidents is not affected by
(conditioned on) other factors. However, for a Bnp@rtion that accident occurrence is
complicated, the factor effects could change dremally if the driving conditions alter. This
result partially explains why good road safety deumeasures are effective to reduce most
target accidents, but not all.
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Despite the great ability to consider a large nunadbg@redictors, the empirical results show that
the relative contributions concentrate on a fewdjgters. In our empirical demonstration,
merely three predictors explain approximately haflfthe variation, indicating that a few
predictors can determine the fatality of single-onoycle accidents. Although the number of
influential variables is small, the three mostuefhtial predictors, including county, occupation,
and month, cannot provide straightforward explameti The county, occupation, and month
predictors respectively represent the geographjailsonal, and seasonal factors that might
affect the severity of single-motorcycle accidenkfowever, the exact nature of those factors is
unknown. For example, geographical factors caateefo local driving culture or local road
quality; both have been regarded as crucial fadimrsxplain traffic accidents (Eiksund 2009,
Rakauska®t al. 2009). Therefore, more studies are requiredudysthe exact effects of such
complex factors. One limitation of the relativentdbution measure is the lack of confidence
bounds; consequently, it would be difficult to téfle significance of relative contribution
differences.

It should be noted that a highly-branching predidte. one that can be split into distinct classes
does not necessarily have a higher value of reatontribution because the BRTs models use
the cross-validation technique to reduce overfittinFor example, as shown in Table 2, the
variable cellphone use has only four categoriesisinanked at the top-five influential variables;
on the other hand, the variable movement priordcident has 14 categories and is ranked
among the least influential variables.

While the logistic regression, CART, and BRTs mad#kcern similar influential (or significant)
variables, how those variables are associated agthdent severity is recognized differently.
The CART model may be the most limited among theselels, since only the importance
ranking can be determined by observing the entramber of the variables. Although tree-based
models, including CART models, can fit nonlinedat@®nships, the conventional CART models
do not provide quantified results, and thus itiffalblt to interpret the relationship between the
included predictors and the response variable.th@rother hand, the logistic regression model
provides the significance of the predictors, busitifficult to specify the interaction terms in
advance. It is recognized that econometric modwttyding logistic models, are not designed to
explore a complicated structure; instead, they khdte developed based on economic (or
behavioral) theories. A parsimony logistic modebwd be valued more than a complicated
logistic model if both models can capture crucittér effects. However, modeling traffic
accidents usually faces the challenges of numecon$ounding factors (and categories) and
nonlinear relationships. In particular, if variablsuch as age or drinking condition, which
exhibit a nonlinear relationship with accident s@gyeas shown in the empirical study, are not
specified properly, the estimation results of ltigimmodels may be erroneous. One possible way
to resolve this problem is to combine the BRTs nhaael logistic regression model; i.e., using
BRTs models to explore the relationship betweencthesidered explanatory variables and the
response variable, then transforming the variakfesgcessary, to develop a representative
model.

Among the predictors considered, the behavioraldipters including drinking condition,
cellphone use, and protection equipment use atewarly important to explain unique single-
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motorcycle accidents. This result is demonstratethe increasing effect size of the behavioral
interactions when the tree complexity increasesa other words, the harder cases are
approximated more closely when the behavioral auisons are valued more in developing the
BRTs model. The result may suggest that the wegtiunique single-motorcycle accidents
result from the combinations of some unexpectednalesired behaviors whose negative effect
overrides the protective effect provided by thedrdasign. To reduce such accidents requires
safety education to improve drivers’ unsafe behaaial attitudes.

Data quality is a typical issue in all the modelor example, the cellphone use variable is one
of the most influential variables, and its mostrpieent category is “unknown”. The reason for
the prominence of the unknown category is simmdoag as the at-fault motorcyclists die at the
crash site, police tend to record the cellphoneassenknown if no witness or further evidence is
found. In other words, the significantly positieéfect for the unknown category of cellphone
use is a mixture of use and no use of cellphon&ilé/fhis category seems useless to explain the
relationship between cellphone use and the sevefitsingle-motorcycle accidents, the BRT
model shows that the relative contribution of tlknown category of cellphone use decreases
as the tree complexity of BRT models increases. atTih, while this unknown category
approximates most fatal accidents well, it canixplan the relatively unique fatal accidents.

CONCLUDING REMARKS

This paper applies the boosted regression treeauidth investigate the factor complexity of
single-motorcycle accidents. The advantages of 8BRddels are demonstrated in the empirical
study, including no need to pre-specify functiomoor to select variables or merge categories,
and the abilities to consider numerous predictas r@onlinear relationship, provide satisfactory
predictive performance, and offer quantitative hssior interpretations. On the other hand, the
disadvantages should also be noticed. Like othtx ohining methods, some parameters need to
be tested for their best setting in developing BRiiedels; the parameters include tree
complexity, learning rate, and bagging fraction.orbbver, as tree complexity increases, the
computation time also increases. A balance betweerputation cost and tree complexity and
learning rate needs to be considered while devetppoosted regression tree models.

Although providing interpretable statistics, theobted regression tree is a data-driven approach.
Therefore, boosted regression trees may be patiguluseful to explore the unknown
relationships between accident outcomes and affgdiactors, especially complicated and
nonlinear relationships. The explored relationshipn be considered a basis or reference to
develop behavioral theories.
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