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ABSTRACT 
 
Factor complexity is regarded as a typical characteristic of traffic accidents.  This paper proposes 
a novel method, named boosted regression trees (BRTs), which is particularly appropriate for 
investigating complicated and nonlinear relationships in high-variance traffic accident data.  The 
Taiwan 2004–2005 single-motorcycle accident data are adopted to demonstrate the usefulness of 
BRTs.  Traditional logistic regression and classification and regression tree (CART) models are 
also developed to compare their estimation results and predictive performance.  Both the in-
sample cross-validation and out-of-sample validation results show that the increase of tree 
complexity provides better but declining improvement on the predictive performance, indicating 
a limited factor complexity of single-motorcycle accidents.  While a certain portion of fatal 
accidents can be explained by the main effects of crucial variables including geographical, time, 
and socio-demographic factors, the relatively unique fatal accidents are better approximated by 
interactive terms, especially the combinations of behavioral factors.  The BRTs models generally 
provide better transferability than logistic and CART models.  The implications of analysis 
results for devising safety policies are also provided. 
 
Keywords: boosted regression trees, crash prediction, motorcycle accidents, machine learning. 
 
 
INTRODUCTION 
 
Complexity is regarded as a typical feature in the occurrence of traffic accidents.  Many studies 
have addressed the importance of controlling confounding factors when modeling traffic 
accidents, especially in cross-sectional studies where causes are not known a priori (Hauer 2006).  
The relationship between the response variable and the predictors may be nonlinear, which 
further increases complexity.  For example, the relationship between accident severity and the 
driver’s age is nonlinear.  Young and old drivers are more likely to be involved in a fatal 
accident than middle-aged drivers, typically because young drivers tend to drive fast and old 
drivers have relatively fragile bodies (Rutter and Quine 1996, Lin et al. 2003a, Chang and Yeh 
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2007).  Another example is the relationship between accident occurrence and traffic flow, which 
is regarded as a concave curve, since a relatively small number of accidents can be observed 
when traffic flow is extremely low (too few exposures) or high (too congested), and more 
accidents can be observed for traffic flow volumes in between the two extremes (Qin et al. 2004).  
The interactions between explanatory variables could also be complicated.  This effect can be 
seen from the recent applications of support vector machine (SVM) methods which model factor 
interactions in a high-order factor space (Li et al. 2008b). 
 
Data mining methods are a typical choice to investigate the aforementioned factor complexities.  
In a series of studies, Wong and Chung (2007, 2008b, a) used rough sets to explore the 
circumstances that distinguish accident severity.  They used 25 variables, including driver 
characteristics, trip characteristics, behavioral conditions, and road environment, to describe 
typical circumstances. Their studies indicated that some circumstances, i.e., combinations of 
factors, are frequently repeated while some circumstances are sparse and unique.  In other words, 
factor complexity did exist for part of the observed accidents; these accidents did not occur 
merely due to randomness.  Chang and Wang (2006) examined the injury severity of traffic 
accidents in Taiwan using classification and regression tree (CART) models.  Their results 
demonstrated how CART models can provide a satisfactory predictive performance when 
numerous predictors with multicollinearity concerns are considered.  Li et al. (2008b) developed 
SVM models for accident frequencies on rural frontage roads in Texas.  Their results suggested 
that the SVM models have a better predictive performance than the negative binomial models.  A 
nonlinear relationship between average daily traffic (ADT) and crash frequencies was found 
using sensitivity analysis.  To analyze the influential factors on pre-crash maneuvers, Harb et al. 
(2009) combined the techniques of classification trees and random forests; the tree technique was 
applied to explore the relationship between accident outcomes and selected factors, while the 
forest technique was adopted to rank the importance of the selected variables.  Abdel-Aty and 
Haleem (2011) analyzed the occurrence of angle crashes at unsignalized intersections using 
multivariate adaptive regression splines (MARS), a method that can include a great number of 
variables, nonlinearity, multicollinearity, and a high degree of interaction among predictors.  
Their results exhibited a nonlinear relationship between annual average daily traffic (AADT) and 
angle crash frequency. 
 
These studies clearly indicate the complexity of factor effects for traffic accidents; the affecting 
factors are numerous, possibly related nonlinearly to the response variable, and may be 
multicollinear with each other.  Such features have led to the attempts of using non-parametric 
modeling techniques, such as rough sets, CART, and SVM, which allow no pre-specification of 
function form.  However, some difficulties remain: which factors should be incorporated in the 
model, how complicated of the interactions are, and how the results could be interpreted are still 
a challenge1. 
 
To shed light on the factor complexity of accident occurrence, this study adopts a novel method, 
named boosted regression trees (BRTs).  The BRTs method is a tree-based data mining method, 
and thus has advantages such as no need to pre-specify function forms, and the ability to 
consider numerous predictors and their possible nonlinear relationship with the response variable.  

                                                 
1 For example, a huge decision tree could be obtained if a loose pruning strategy is applied.  Or, the model-training 
process is a black-box, and little information can be interpreted for accident causality. 
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Meanwhile, by incorporating statistical techniques such as bagging, boosting, and shrinkage, the 
BRTs method can simultaneously reduce the variance and bias of prediction errors and gradually 
focus on the difficult cases (i.e., relatively unique traffic accidents).  This advantage is 
particularly crucial to accident modeling because traffic accidents are typically unique and highly 
imbalanced (e.g., fatal accidents only account for a small portion of the total).  Due to these 
statistical techniques, the BRTs method also provides interpretable results.  Details of the BRTs 
models will be introduced in the following section. 
 
To demonstrate the usefulness of BRTs, an empirical dataset of single-motorcycle accidents is 
adopted and accident severity (fatal vs. non-fatal) is analyzed.  As vehicles, motorcycles offer 
consumers the advantages of low initial cost and, for some models, good fuel efficiency.  High 
fuel prices in recent years have led to an increasing number of registered motorcycles in some 
countries.  In the United States, there are more than 6.2 million registered motorcycles.  More 
than five thousand motorcyclists were killed in 2009, accounting for 12 percent of all highway 
fatalities (NHTSA 2009).  The situation is even worse in developing countries, where powered 
two-wheelers are a primary mode of transportation in urban areas.  For example, motorcycles 
account for two-thirds of all registered vehicles in Taiwan, and 45 percent of traffic accidents 
involve motorcyclists (MTC 2007).  Single-motorcycle accidents are those that involve only one 
vehicle (motorcycle).  Although single-motorcycle accidents account for a relatively small 
portion of accidents, they are usually serious.  In addition, the occurrence of single-vehicle 
accidents is expected to be simpler to study than that of multi-vehicle accidents, which is 
appropriate for this preliminary study to investigate factor complexity of accident occurrence.  
 
Theoretically, the BRTs models can provide satisfactory performance.  Yet, to demonstrate the 
transferability of BRT models with empirical data, logistic regression and CART models are also 
developed and compared.  These two basic models are chosen instead of advanced econometric 
models (e.g. ordered probit/logit or mixed logit models (Kockelman and Kweon 2002, Milton et 
al. 2008)) or other data mining and soft computing models (e.g. rough sets, SVM, random forests, 
or MAR) based on two rationales.  First, the effectiveness of these two models has been 
demonstrated in past studies, especially the logistic regression models (Al-Ghamdi 2002, Bedard 
et al. 2002, Valent et al. 2002).  Second, using advanced econometric models requires delicate 
model specification and, sometimes, more assumptions on function forms and parameters.  The 
aforementioned complexity of accident occurrence poses challenges of using such models.  On 
the other hand, logistic and CART models provide a good start to compare with the BRTs 
models. 
 
The remaining parts of this paper are organized as follows.  The following section introduces the 
methodology including a brief introduction of boosted regression tree models, the data and 
variables, and the analysis procedure.  This paper then presents the analysis results, followed by 
discussions.  The concluding remarks are presented in the final section. 
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METHODOLOGY 
 
Boosted Regression Trees 
 
Boosted regression trees can be characterized by two terms: regression trees and boosting.  A 
BRTs model grows a number of trees by bootstrapping the training data, i.e., randomly selecting 
a certain proportion of observations from the training data with replacement.  Each tree grows as 
developing a CART, a form of binary recursive partitioning.  The term “binary” implies that 
each group of traffic accidents, represented by a “node” in a decision tree, can only be split into 
two groups (i.e., a parent node can only have two child nodes).  The term “recursive” refers to 
the fact that the binary partitioning process can be applied over and over again.  Lastly, the term 
“partitioning” refers to the fact that the dataset is split into sections or partitioned.  Splitting 
functions, which measure the purity (or impurity) of a tree, are applied to determine which 
variable should be included to split the tree; common functions include Gini, Twoing, and 
Entropy.  To prevent overfitting data, trees are typically pruned to cut off the nodes (or branches) 
resulting in high classification costs (Chang and Wang 2006).  A complexity parameter, usually 
defined as a cost function of misclassification of data, is used to determine which node to prune.  
Finally, the best tree can be selected using cross-validation or out-of-sample validation. 
 
Despite the advantages of CART models, a single tree is sometimes a weak classifier, especially 
for high-variance data such as the data for traffic accidents.  To deal with this issue, the BRTs 
model introduces a technique termed as bagging.  To control the effects of confounding factors, 
numerous predictors are usually included in modeling classification and regression trees, which 
typically results in a model with high variance and low bias.  Bagging is a technique for reducing 
the high variance and involves the following steps: 1) take a bootstrap sample from the training 
dataset; 2) fit the tree to this bootstrapped dataset; 3) repeat the previous two steps a certain 
number of times (typically 50–1000); and 4) make predictions for new data using each of the 
fitted models and average the predictions.  The principle behind the bagging technique is used in 
the random forests method.  Random forests develop each tree by taking a bootstrap sample and 
selecting a random subset of predictors (Harb et al. 2009).  The randomly selected predictors 
reduce the correlations between predictors and thus reduce the variance component of prediction 
error. 
 
In addition to bagging, the BRTs model applies a special mechanism to bootstrap samples, 
named boosting.  Boosting uses the same principle of bagging that a given weak algorithm is 
repeatedly run, and the computed classifiers are combined in the final estimation or prediction.  
In other words, boosting, like bagging, can effectively reduce the variance.  Yet, while 
conventional bagging focuses on randomly selecting observations from the original data with 
replacement, boosting further considers the hardness of the training cases; when repeatedly 
selecting sub-datasets, boosting tends to generate distributions that concentrate on the harder 
training cases (Freund and Schapire 1996).  This feature is crucial in accident studies because 
fatal accidents typically account for only a small portion of all accidents. 
 
The algorithm for developing BRTs models is as follows.  Suppose we want to build a function 

 to approximate a response  where  is a vector of predictors.  To estimate the function, a 
loss function is typically specified; for example, a squared-error loss function, 
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, is mainly used to estimate a linear regression with function form 
 where  is a matrix of parameters.  For CART models, additive models (Hastie et al. 

2009) express  as a sum of basis function  as follows: 
. 

For boosted trees, the function  represents individual trees, with  defining the split 
variables, their values at each node, and the predicted values.  The  values represent weights 
given to the nodes of each tree in the collection and determine how predictions from the 
individual trees are combined (De'ath 2007). 
 
To estimate parameters, the gradient boosting technique is applied (Friedman 2001).  Its 
procedure can be summarized as follows (De'ath 2007): 

1) Initialize . 
2) For  to : 

a. Calculate the residuals, . 
b. Fit a least-squares regression tree to  to get the estimate of  of . 
c. Get the estimate  by minimizing . 
d. Update . 

3) Calculate . 
Step 2a calculates the residuals as the negative of the first derivative of the loss function 
evaluated for the current value of .  Step 2b uses a least-squares regression tree to estimate 

.  Least-squares trees are used irrespective of the chosen loss function and are computationally 
very efficient (De'ath 2007).  Step 2c then estimates the values  assigned to the nodes of the 
tree to minimize the overall loss. 
 
To reduce the effect of overfitting, the boosted regression tree further applies a shrinkage 
strategy.  A learning rate, , is introduced at step 2d when the algorithm updates the estimated 
function: 

 where . 
A smaller learning rate requires more iterations (i.e., trees) in the boosting sequence.  Studies 
indicated that a 10-fold reduction in learning rate requires an approximately 10-fold increase in 
iterations (De'ath 2007), and at least 1,000 trees are recommended (Elith et al. 2008). 
 
Subjects and Data 
 
The subjects used to demonstrate the factor complexity are single-motorcycle accidents.  Single-
motorcycle accidents are those in which only a single motorcycle is involved.  The data include 
two years (2004–2005) of single-motorcycle accidents, provided by the National Police Agency 
of Taiwan.  The total number of single-motorcycle accidents was 7,634 in 2004 and 9,869 in 
2005, with fatal accident rates of 3.52%, and 3.98%, respectively.  The extremely low fatal 
accident rates indicate the adopted dataset is highly imbalanced. 
 
Variables 
 
The dataset contains 29 variables as summarized in Table 1.  The dependent variable is the 
severity of the accidents, coded as a binary variable with value 1 if fatal and 0 otherwise.  The 
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remaining 28 variables include driver characteristics, trip characteristics, driving behavior, 
weather conditions, and road environment.  All the variables are categorical variables except 
driver’s age, speed limit, and hour. 
 

Table 1  Variables to develop single-motorcycle accident models 
Category Variable Definition Type 

Dependent 
variable 

Severity Fatal, Injury only Binary 

Driver 
characteristics 

Age  Continuous 
Gender Male, Female (2 types) Categorical 

 License type Trucks, Buses, Automobiles, Motorcycles, etc. (16 types) Categorical 

 Occupation Students, Administration, Education, Engineering, etc. (21 
categories) 

Categorical 

 License condition With proper license, Drive w/o license, Revoked license, etc. 
(7 conditions) 

Categorical 

Trip 
characteristics 

Trip purpose School, Work, Business, Social activity, Shopping, etc. (9 
categories) 

Categorical 

Month January, February, …, December (12 months) Categorical 

 Day of Week Monday, Tuesday, …, Sunday (7 days) Categorical 

 Hour 0–23 Continuous 

 County Taipei city, Taipei county, etc. (25 counties) Categorical 

Driving 
behavior 

Protection equipment Wear (helmet), Not wear, Others (3 categories) Categorical 

Cellphone use No use, Handheld, Earphone, Hands free, Others (4 types) Categorical 

 Movement prior 
to accident 

Going straight, Left turn, Right turn, etc. (14 types) Categorical 

 Drinking condition No drinking, BAC < 0.05%, etc. (8 categories) Categorical 

Weather 
condition 

Climate Sun, Cloud, Rain, Fog, etc. (7 conditions) Categorical 

Road 
environment 

Illumination Day light, Night with illumination, etc. (4 types) Categorical 

Road level Highway, Arterial roads, Streets, etc. (7 levels) Categorical 

 Road type 3-way junctions, straight road, etc. (17 types) Categorical 

 Road location Within intersections, Fast lane, Mixed lane, etc. (21 types) Categorical 

 Pavement type Asphalt, Cement, Rubble, Others, None (5 types) Categorical 

 Surface condition Dry, Wet, Muddy, Slippery, Snow (5 conditions) Categorical 

 Surface deficiency None, Holes, Bumping, Soft (4 types) Categorical 

 Obstacles None, Work zone, Fixed objects, Others (5 types) Categorical 

 Sight distance Good, Curve road, Others, etc. (7 types) Categorical 

 Signal type Regular traffic light, Flash, etc. (4 types) Categorical 

 Median type Median, Markers, Marking, etc. (10 types) Categorical 

 Roadside With marking, Without marking (2 types) Categorical 

 Speed limit Kilometers per hour Continuous 
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Analysis Procedure 
 
Based on the 2004 single-motorcycle accident data, this study develops three types of models: 
the BRTs models, the logistic regression models, and the classification and regression tree 
(CART) models.  This study develops the BRTs models, mainly following the suggestions by 
Elith et al. (2008).  The BRTs models are built using the software R (R Development Core Team 
2009) with the package gbm. 
 
Three parameters are jointly considered to optimize the BRTs models, the number of trees, 
learning rate, and tree complexity.  This study does not particularly control the number of trees 
as long as it stays at a reasonable size, 1,000–10,0002.  On the other hand, this study tests the 
combinations of varying values of learning rates (0.05–0.0001) and tree complexity levels (1–18) 
to develop the best BRTs model.  Meanwhile, to reduce overfitting and improve accuracy, trees 
are boosted based on random draws from the full training dataset.  In this study, 50% of the data 
are drawn at random without replacement at each iteration. 
 
A model with zero training error is overfit to the training data and will typically generalize 
poorly.  To prevent this problem and determine the best setting of the BRT model for the 2004 
single-motorcycle accidents, the cross-validation (CV) technique is applied when the various 
combinations of learning rates and tree complexity levels are examined.  In particular, 10-fold 
CV is chosen, and predictive deviance is applied to measure the success of the models.  Because 
the dependent variable is binary, the BRTs models are a form of logistic regression that models 
the probability that a fatal traffic accident occurs, , with explanatory variables , 

.  The Bernoulli loss function3 is chosen as the deviance for the binary 
response variable.  All 28 explanatory variables listed in Table 1 are used to develop the BRT 
models.  Variables are implicitly selected by down-weighting variable contributions at each 
iteration (Elith et al. 2008), known as a shrinkage method in data mining. 
 
The numerous explanatory variables and categories challenge the model specification of logistic 
regression models.  To comprehensively account for the factor effects, this study applies a 
general-to-specific approach to develop the logistic regression models; all the explanatory 
variables are considered in the initial model, and then non-significant variables are dropped 
based on test statistics including deviance, the Wald statistic, Hosmer-Lemeshow tests, and the 
Akaike Information Criterion (AIC) measure.  For categorical variables, the non-significant 
categories are collapsed considering their practical definition. 
 
The CART models are developed using the cost-complexity pruning strategy, meaning that the 
tree growing process is stopped only when some node size is reached that minimizes the cross-
validated errors (Hastie et al. 2009).  The Gini function is chosen as the splitting function. 
 

                                                 
2 The rule of thumb suggested by Elith et al. (2008) is fitting models with at least 1,000 trees.  The analysis results, 
as presented at the following sections, show that all models converge within 10,000 trees. 
3 The Bernoulli deviance: , where  is the reponse,  is the vector 

of explanatory variables, and  are the observation weights (Ridgeway, G., 2007. Generalized boosted models: A 
guide to the gbm package.) Equal weights are used in this study. 
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The 2005 single-motorcycle accident data are used to examine the out-of-sample predictive 
performance for the developed BRT, logistic, and CART models using the 2004 data. 
 
ESTIMATION RESULTS OF BOOSTED REGRESSION TREE MODELS 
 
Optimal Setting 
 
A learning rate of 0.01 is too fast for most BRTs models for which the fitting process stops at a 
tree size smaller than 1000.  The only exception is the model with tree complexity of 1; as shown 
in the top left panel of Figure 1, the model stops growing trees (i.e., the predictive deviance 
becomes flat) at a tree size just over 1000 (the vertical gray dotted line).  In other words, to 
obtain robust learning results, the learning rate for the 2004 single-motorcycle accidents should 
be set to at least 0.005.  On the other hand, a learning rate of 0.0005 is only too slow for some 
low-tree complexity models such as a tree complexity of 1, but appropriate for most tree 
complexities.  Models with a learning rate of 0.0001 are unreported because this extremely slow 
learning rate makes the growth of most trees unstoppable before the tree size reaches 10,000.  
Moreover, reducing learning rates does not decrease the predictive deviance when the tree 
complexity exceeds a certain level.  Figure 1 shows that models with a learning rate of 0.001 
(green line) generally exhibit lower predictive deviance than those with a learning rate of 0.0005 
(blue line), and also lower than those with a learning rate of 0.005 when tree complexity exceeds 
a certain level, for example 10. 
 
Increasing tree complexity consistently improves the predictive deviance; however, the 
improvement decreases as the tree complexity increases.  The bottom right panel of Figure 1 
shows that when the learning rate is fixed at 0.001, the predictive deviance continuously reduces 
when the tree complexity grows.  Yet the predictive deviance lines fitted by the models with a 
tree complexity of 17 (pink line) and of 18 (yellow line) almost overlap, indicating their close 
predictive performance.  To sum up, the model with a learning rate of 0.001 and tree complexity 
approximately 18 is the best 2004 single-motorcycle accident BRTs model based on the cross-
validation results. 
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Figure 1  Predictive deviance against number of trees for models fitted with various tree 

complexities and learning rates 
 
Relative Contributions of Explanatory Variables 
 
With the learning rate fixed at 0.001, the relative contributions of explanatory variables for 
boosted regression tree models with various tree complexity levels (tc = 3, 8, 11, 17, and 18) are 
summarized in Table 2.  The relative contributions are measured as the number of times a 
variable is selected for splitting, weighted by the squared improvement to the model as a result of 
each split, and averaged over all trees (Elith et al. 2008). 
 
While the predictive deviance is incrementally reduced with the increase of tree complexity, the 
relative contributions of explanatory variables are comparatively stable.  As shown in Table 2, 
regardless of tree complexity, the county variable is recognized as the most influential variable, 
implying that factors that are geographically heterogeneous such as local driving culture, the 
relatively long distance from hospitals in rural areas, or road design elements (Eiksund 2009) are 
crucial to distinguish the severity of single-motorcycle accidents.  The occupation and month 
variables are in the second- and third-most influential variables; the occupation variable may 
suggest the different lifestyles and motorcycle usage (Lin et al. 2003b, Bina et al. 2006), and the 
month variable indicates that factors associated with seasonal variation are critical to 
differentiate the severity of single-motorcycle accidents. 
 
The following two factors, drinking conditions and cellphone use, have been intensively 
discussed in past studies; driving under the influence of alcohol and using a cellphone while 
driving are more likely to increase the possibility of traffic accidents and their severity.  Road 
location is recognized in the sixth place of influential variables.  Wong and Chung (2007, 2008b) 
showed that some road locations such as intersections where relatively more fixed objects are set 
raise the possibility of bump-into-fixed-object traffic accidents and their severity.  Usage of 
protective equipment, i.e., wearing a helmet, and day of the week are the next two influential 
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variables.  Helmet wearing has shown a significant effect on reducing the severity of motorcycle 
accidents by protecting the brain in both longitudinal and cross-sectional studies (e.g. Hotz et al. 
2002, Hundley et al. 2004).  The median-type variable, accounting for 2 to 3 percent of relative 
contributions, is ranked ninth.  While road levels affect the selection and construction of median 
types, a wide median island creates fixed objects on the road and therefore increases the 
possibility of traffic accidents and their severity (Wong and Chung 2007, 2008b).  The age 
variable is the only continuous variable in the top 10 most influential variables, and suggests the 
influence of various physical conditions of motorcyclist age groups on the fatality of traffic 
accidents. 
 
As shown in Table 2, most of the top 10 most influential variables are variables related to driver 
characteristics, trip characteristics, and driving behaviors.  The only weather-condition variable 
and most road environment variables contribute only a small portion to the fatality of single-
motorcycle accidents. 
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Table 2  Relative contributions (%) of explanatory variables for boosted regression tree models with various tree complexity levels* 1 
tc = 3 tc = 8 tc = 11 tc = 17 tc = 18 

Variable Relative 
contributions 

Variable Relative 
contributions 

Variable Relative 
contributions 

Variable Relative 
contributions 

Variable Relative 
contributions 

County 26.7126 County 22.8054 County 22.6009 County 22.1200 County 21.7453 
Drinking condition 15.4440 Occupation 13.8236 Occupation 13.9133 Month 13.9536 Month 14.1118 
Occupation 13.5531 Month 11.8642 Month 12.7811 Occupation 13.7416 Occupation 13.7439 
Cellphone use 13.5344 Drinking condition 10.4327 Drinking condition 9.6189 Drinking condition 8.5430 Drinking condition 8.5410 
Road location 6.3239 Cellphone use 9.0465 Cellphone use 8.4542 Cellphone use 8.1362 Cellphone use 8.0936 
Protection 
equipment 

5.6958 Road location 6.6369 Road location 6.7089 Road location 6.8731 Road location 6.8667 

Month 5.2931 Protection 
equipment 

4.1089 Day of week 4.1816 Day of week 4.4924 Day of week 4.5932 

Day of week 1.8697 Day of week 3.9049 Protection 
equipment 

3.9250 Protection 
equipment 

3.6529 Protection 
equipment 

3.6868 

Age 1.4053 Median type 2.2975 Median type 2.7229 Median type 3.0675 Median type 3.0990 
License type 1.2994 Age 2.1879 Age 2.2911 Age 2.2750 Age 2.4188 
Road type 1.2803 Road level 2.0198 Road level 2.0380 Road level 2.2456 Road level 2.3407 
License condition 1.2256 Road type 1.8958 Road type 1.9833 Road type 2.1512 Road type 2.0348 
Movement prior to 
accident 

1.1808 Hour 1.6640 Hour 1.7253 Hour 1.8155 Hour 1.8205 

Hour 1.0194 Trip purpose 1.4865 Trip purpose 1.4934 Trip purpose 1.5495 Trip purpose 1.5819 
Trip purpose 0.9707 License condition 1.3306 License condition 1.4487 License condition 1.4016 License condition 1.3704 
Illumination 0.8189 License type 1.2384 License type 1.1236 License type 1.0969 License type 1.0380 
Sight distance 0.6142 Illumination 0.9549 Illumination 0.8746 Illumination 0.8923 Illumination 0.9179 
Median type 0.6124 Movement prior to 

accident 
0.7745 Movement prior to 

accident 
0.6375 Movement prior to 

accident 
0.5064 Sight distance 0.5180 

Road level 0.5785 Sight distance 0.6315 Sight distance 0.5695 Sight distance 0.4739 Movement prior to 
accident 

0.4836 

Speed limit 0.4111 Speed limit 0.5032 Speed limit 0.4722 Speed limit 0.4350 Speed limit 0.3999 
Climate 0.1321 Climate 0.2227 Climate 0.2546 Climate 0.3021 Climate 0.3073 
Gender 0.0127 Roadside 0.0874 Roadside 0.1208 Roadside 0.1598 Roadside 0.1844 
Roadside 0.0069 Gender 0.0464 Gender 0.0265 Gender 0.0496 Gender 0.0450 

Signal type 0.0031 Surface condition 0.0193 Surface condition 0.0188 Surface condition 0.0291 Surface condition 0.0240 
Surface condition 0.0023 Signal type 0.0080 Obstacles 0.0097 Obstacles 0.0205 Obstacles 0.0202 
Pavement 0.0000 Obstacles 0.0078 Signal type 0.0056 Signal type 0.0157 Signal type 0.0126 
Surface deficiency 0.0000 Surface deficiency 0.0006 Pavement type 0.0000 Pavement type 0.0000 Surface deficiency 0.0006 
Obstacles 0.0000 Pavement type 0.0000 Surface deficiency 0.0000 Surface deficiency 0.0000 Pavement type 0.0000 

*Learning rates fixed at 0.001 2 
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Marginal Effects of Explanatory Variables 3 
 4 
To further investigate the effect of the most influential variables, the partial-dependence plots 5 
that show the effect of a variable on the fatality of single-motorcycle accidents after controlling 6 
for the average effects of all other variables in the model, are illustrated in Figure 2.  These 7 
results are from the BRT with a learning rate of 0.001 and tree complexity of 17. 8 
 9 
Figure 2(a) shows the various effects provided by geographical factors in Taiwan.  The most 10 
influential regions are those located in the middle of western Taiwan, including HsinChu County, 11 
Changhua County, and Chiayi City and County, and one eastern region, Hualien County.  These 12 
regions are mostly classified in the third levels of administrative bureaucracy in Taiwan, and 13 
typically have a tighter budget in public construction including road infrastructure.  The poorer 14 
road quality implies less protection for motorcyclists when an accident occurs, and thus leads to 15 
a higher fatality rate.  HsinChu County, Changhua County, and Chiayi City have a population 16 
density as high as the counties in the first-level administrative bureaucracy.  These regions are 17 
expected to have many economic activities and thus create a lot of trips.  The many trips in a 18 
poorer-quality road network may be a reason for the high fatality rates.  The primary industry in 19 
Chiayi and Hulien Counties is tourism, and a certain portion of tourists drive motorcycles to visit 20 
these regions.  The unfamiliar road environment to tourist motorcyclists increases the possibility 21 
of traffic accidents and severity.  The eastern county, Hualien, has the largest area and the lowest 22 
motorcycle density (per kilometer square), which may imply a higher driving speed on average.  23 
Finally, the police-to-population ratio of Hualien is one of the lowest in Taiwan, which suggests 24 
a lower level of police enforcement and a higher possibility of violations such as speeding. 25 
 26 
Figures 2(b) and 2(g) demonstrate the various effects of seasonal factors.  Figure 2(b) shows that 27 
months January, March, July, and November are associated with higher fatality rates.  January, 28 
March, and July are the months for lunar New Year, spring vacation, and summer vacation, 29 
respectively.  Figure 2(g) exhibits a higher fatality rate on typical working days, Tuesday, 30 
Wednesday, and Thursday, as well as Sunday. 31 
 32 
Figure 2(c) and 2(j) describes two driver characteristics, occupation and age, related to fatality 33 
rates.  Motorcyclists who are high school students, bus or railroad occupational drivers, or police 34 
officers are associated with higher fatality rates in single-motorcycle accidents.  High school 35 
students who are mostly under age 18 may not legally drive a motorcycle; moreover, the lifestyle 36 
of students is typically different from others at a similar age, which might also lead to a higher 37 
possibility of accidents and fatality rates (Lin et al. 2003a).  A certain portion of police officers 38 
and occupational drivers require shift work in Taiwan; such workers are more likely to have 39 
sleep problems and a higher level of pressure from work, which consequently result in a higher 40 
possibility of traffic accidents and severer injury levels. 41 
 42 
The age variable demonstrates a nonlinear marginal effect on the probability of fatal single-43 
motorcycle accidents as illustrated in Figure 2(j).  As expected, the older motorcyclists are more 44 
likely to be involved in a fatal accident than other age groups, especially when the motorcyclists 45 
are older than 60.  The motorcyclists who are younger than 20 also demonstrate a certain level of 46 
marginal effect on the probability of being involved in a fatal single-motorcycle accident.  The 47 
motorcyclists at an age around 40 show the lowest marginal effect on the probability of being 48 
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involved in a fatal single-motorcycle accident.  The motorcyclists at this age are expected to have 49 
accumulated a certain level of driving experience; they also have relatively mature physical and 50 
psychological conditions (compared to young drivers) with a well-functioning body (compared 51 
to older drivers) (Yagil 1998).  Consequently, this age group is associated with a lower fatality 52 
rate. 53 
 54 
Figures 2(d), (e), and (h) illustrate the marginal effect of three driving behavioral variables, 55 
drinking condition, cellphone use, and protection equipment use, on the probability of fatal 56 
single-motorcycle accidents.  Figure 2(d) shows that while sober motorcyclists are associated 57 
with the lowest level of marginal effects on the fatality rate, a nonlinear relationship is found for 58 
those driving under the influence of alcohol.  The motorcyclists who are heavily drunk 59 
demonstrate the largest effect on the fatality rate, followed by slightly drunk motorcyclists.  The 60 
motorcyclists with blood alcohol content in the middle range, i.e., between 0.26–0.55 61 
micrograms per liter, have a relatively lower marginal effect.  Motorcyclists who are heavily 62 
drunk cannot maneuver the motorcycle well, neither can they protect themselves if an accident 63 
occurs, and consequently are associated with a high fatality rate.  On the other hand, slightly 64 
drunk motorcyclists may easily ignore their deteriorating physical conditions, thus leading to a 65 
higher fatality rate.  Figure 2(e) shows the marginal effect of cellphone use on the fatality rate, 66 
and the unknown category exhibits the highest marginal effect.  This result indicates the 67 
difficulty of reporting cellphone use for traffic accidents.  Finally, Figure 2(h) shows that not 68 
wearing helmets is connected to an extremely high marginal effect on the fatality rate of single-69 
motorcycle accidents, consistent with past studies (Li  et al. 2008a). 70 
 71 
Figures 2(f), (i), (k), and (l) illustrate the marginal effects provided by the four road-72 
environmental variables.  Figure 2(f) indicates the road locations connected to a relatively higher 73 
fatality rate of single-motorcycle accidents including exclusive bus lanes, nearby ramps, and 74 
motorcycle waiting zones.  Exclusive bus lanes are typically designed for areas with a high 75 
population density as well as high public transportation demand.  A road segment equipped with 76 
exclusive bus lanes is typically wider and has a higher speed limit.  Its road geometric design is 77 
also more complicated than other roads.  In other words, the road environment encourages a high 78 
driving speed, and requires the motorcyclists to pay attention to the complicated design, 79 
consequently leading some motorcyclists into fatal accidents.  Similar reasoning can be applied 80 
to explain the significant effect of the vicinity of ramps and motorcycle waiting zones.  The 81 
roads approaching highway ramps are typically wide and have a high speed limit for vehicles to 82 
enter highways4.  The motorcycle waiting zones are designed for motorcyclists to turn left at a 83 
wide intersection (i.e., two or more lanes in one direction).  Its speed limit is usually high and has 84 
a relatively complicated geometry, compared to narrow intersections. 85 
 86 
The median types associated with high fatality rates of single-motorcycle accidents are narrow 87 
median islands (shorter than 50 centimeter) and markings that prohibit overtaking.  While the 88 
installation of median islands can prevent conflicts between vehicles from opposite directions, it 89 
also creates fixed objects on the road and raises the probability of accidents and severity.  The 90 
markings that prohibit overtaking are typically drawn on the road segments approaching 91 
intersections or without sufficient sight distance.  Fatal single-motorcycle accidents at these 92 
locations may suggest high speed, which is inappropriate for these locations. 93 
                                                 
4 In Taiwan, no motorcycles are allowed to drive on national highways. 
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 94 
Figure 2(k) demonstrates a nonlinear relationship between the road levels and their marginal 95 
effect on the fatality rate of single-motorcycle accidents.  Significant marginal effects are 96 
observed on the high- and low-level roads, while small marginal effects are seen on the middle-97 
level roads.  High-level roads such as national and provincial highways have a high speed limit, 98 
and the accidents are expected to be severer due to the driving speed.  On the other hand, the 99 
low-level roads cannot provide sufficient protection for motorcyclists if an accident occurs, and 100 
therefore, relatively more fatal accidents are observed on them.  Finally, Figure 2(l) shows that a 101 
higher fatality rate is associated with road types requiring more sophisticated driving skills 102 
including roundabouts, culverts, elevated roads, and graded roads. 103 
 104 

 105 
Figure 2  Partial-dependence plots for the 12 most influential variables in the model for fatal 106 

single-motorcycle accidents 107 
 108 
Important Interactions 109 
 110 
The pairwise interactions with effect size greater than 10 for models with various tree complexity 111 
levels are illustrated in Figure 3.  While the 28 explanatory variables considered can generate 112 
378 combinations of variable pairs, only a few of them play a crucial role in explaining the 113 
variance of the fatality for single-motorcycle accidents.  No matter what the tree complexity is, 114 
the analysis shows that up to seven variable pairs contribute an effect size greater than 10.  115 
Moreover, those same variable pairs play the most critical roles across all the BRT models. 116 



15 
 

 117 
Among the seven variable pairs, the two pairs that combine two behavioral variables demonstrate 118 
an explicitly upward trend when the tree complexity increases.  The first pair is the combination 119 
of cellphone use and protection equipment use.  As shown in Figure 3, the effect size of the 120 
cellphone-protection pair (black line) becomes extremely prominent when tree complexity 121 
increases.  The other pair is the combination of drinking condition and protection equipment use.  122 
Its effect (green line) stably increases as tree complexity rises.  The combination of occupation 123 
and drinking condition is the last variable pair that shows an upward trend (pink line) although 124 
its increase is relatively small.  These results indicate that when the occurrence of single-125 
motorcycle accidents is modeled with more complicated interactions (i.e., a higher level of tree 126 
complexity), the interaction between behavioral variables plays a more important role.  On the 127 
other hand, the three interactions that involve the county variable exhibit a bumpy but relatively 128 
flat trend, including protection-county (red line), drinking-county (blue line), and cellphone-129 
county (light blue line).  These results suggest that no matter how comprehensively the traffic 130 
accidents are modeled, the interaction between behavioral variables and geographically 131 
heterogeneous factors (represented by the county variable) has a relatively stable effect. 132 
 133 
 134 

 135 
Figure 3  Top seven interaction effects for boosted regression tree models with various tree 136 

complexity levels 137 
138 



16 
 

Out-of-Sample Prediction Using 2005 Data 139 
 140 
While the cross-validation results suggest that the BRT model with tree complexity around 18 141 
and learning rate 0.001 has the lowest predictive deviance, the 2005 single-motorcycle accidents 142 
are adopted to investigate the out-of-sample predictive performance.  A logistic regression and a 143 
CART model that were developed using the 2004 single-motorcycle accident data are also tested 144 
for their out-of-sample predictive performance with the 2005 data.  The best logistic regression 145 
model developed with the 2004 data contains 12 variables where variables are selected and 146 
categories are merged using deviance and Wald z tests.  The Hosmer-Le Cessie omnibus test 147 
fails to find evidence of a lack of fit. 148 
 149 
The estimation results of logistic models are summarized in Table 3.  One driver characteristic, 150 
gender, is included in the logistic model, indicating that the odds of female motorcyclists being 151 
involved in a fatal single-motorcycle accident are 0.66 times those of male motorcyclists. 152 
 153 
The next four variables are trip characteristics.  The trip-purpose variable suggests that 154 
sightseeing trips have 4.03 times the risk of being involved in a fatal single-motorcycle accident 155 
compared to trips with work, school, or business purposes.  The month variable indicates a 156 
seasonal effect that November is associated with a significantly positive effect on the fatality of 157 
single-motorcycle accidents.  The county variable significantly contributes to explaining the 158 
response variable where almost all the 24 counties (one county is chosen as the reference 159 
category) demonstrate a significant effect. 160 
 161 
Three behavioral variables are included in the model.  The results in Table 3 indicate that 162 
motorcyclists wearing helmets have about one-quarter the risk of being involved in a fatal single-163 
motorcycle accident compared to those who do not wear helmets.  While motorcyclists who use 164 
handheld and hand-free cellphones are insignificantly different from those who do not use 165 
cellphones, motorcyclists who have an unknown cellphone use have 6.35 times the risk of being 166 
involved in a fatal single-motorcycle accident compared to those who do not use a cellphone.  As 167 
for the drinking condition, motorcyclists who are slightly drunk or heavily drunk have a 168 
significantly high odds of being involved in a fatal single-motorcycle accident; in particular, the 169 
slightly drunk motorcyclists have 5.71 times and the heavily drunk motorcyclists have 4.93 times 170 
the risk of being involved in a fatal accident compared to those who do not drink.  The result 171 
reveals a “U”-shaped relationship between alcohol consumption level and accident severity.  The 172 
relationship may result from two possibilities: reckless driving is more often on intoxicated 173 
drivers compared to sober ones, and the adverse physiological effects of alcohol on the body 174 
(Bedard et al. 2002). 175 
 176 
Four road environment variables show significant effects in the logistic model.  Some road 177 
locations have a significant connection with fatal accidents.  A single-motorcycle accident that 178 
occurs at the roadside has 3.33 times the risk of being a fatal accident compared to one that 179 
occurs within an intersection.  A road segment with median markings or without medians is less 180 
likely to have a fatal single-motorcycle accident compared to a road segment with median islands 181 
or markers; the odds are about 0.78.  Roadside and illumination have non-significant estimation 182 
results but are selected due to their improvement on the Akaike’s Information Criterion. 183 

184 
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Table 3  Estimation results of the logistic model using 2004 data 185 
Variable Category Estimate  Odds ratio Variable Category Estimate Odds ratio

Gender Female −0.415 * 0.660 Protection
equipment

Yes −1.356***  0.258

Trip purpose Sightseeing 1.394 * 4.031 Other −1.745***  0.175

 Others 0.457 * 1.580 Cellphone 
use

Handheld −15.440 0.000

Month November 0.424 . 1.528 Handfree −1.300 0.273

Hour  −0.023 * 0.977 Other 1.849***  6.353

County County 2 −0.961  0.382 Drinking
condition

No alcohol response 0.592* 1.808

 County 3 0.071  1.074 BAC < 0.25 mg/L 1.743***  5.714

 County 4 −2.160 ** 0.115 0.26 < BAC < 0.55 mg/L 0.798 2.220

 County 5 0.883 . 2.417 > 0.55 mg/L 1.595***  4.928

 County 6 −0.085  0.919 Cannot detect 3.130***  22.874

 County 7 −1.679 ** 0.187 Other 2.114***  8.281

 County 8 −1.779 ** 0.169 Illumination Nighttime with illumination −0.225 0.799

 County 9 −15.610  0.000 Road
location

Near intersection, median island, 
fast, slow and mixed lanes 

0.505* 1.656

 County 10 −0.162  0.850  

 County 11 −1.717 ***  0.180 Roadside 1.204***  3.333

 County 12 −16.560  0.000 Other 1.046** 2.846

 County 13 −1.265 * 0.282 Median type Markings or none −0.248. 0.780

 County 14 −0.758 . 0.468 Roadside With marking −0.159 0.853

 County 15 −0.802  0.448 Intercept  −3.087***  0.046

 County 16 −1.010 ** 0.364  

 County 17 −1.135 * 0.321  

 County 18 −2.021 ** 0.133  

 County 19 −2.105 ***  0.122  

 County 20 −0.882 * 0.414  

 County 21 −1.081 ***  0.339  

 County 22 −0.786 . 0.456  

 County 23 −0.583  0.558  

 County 24 −1.997 ***  0.136  

 County 25 −1.675 ***  0.187  

***<0.001, **<0.01, *<0.05, .<0.10 186 
 187 
The 2004 CART model is developed using the Gini splitting function as illustrated in Figure 4.  188 
The model contains the following variables: cellphone use, county, drinking condition, sight 189 
distance, road location, month, occupation, and road type.  The result shows that most of the 190 
variables selected for the CART model are also the influential or significant variables for the 191 
BRT and logistics models. 192 
 193 
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 194 
Figure 4  Classification tree and regression tree model using 2004 data 195 

 196 
Based on 1,000 simulations where each simulation randomly draws 1,000 samples from the 2005 197 
dataset with a fixed percentage of fatal accidents5 , Figure 5 compares the out-of-sample 198 
performance rankings (1 the best, 20 the worst) between the logistic regression model, CART 199 
model, and BRT models with various tree complexities.  The performance is measured with the 200 
indicator of area under the receiver operating characteristic (ROC) curve (AUC).  The result 201 
clearly indicates that the CART model is the worst model and has the worst performance most of 202 
the time.  This result is no surprise because conventional CART models tend to focus on the 203 
major category when dealing with imbalance datasets (Chang and Wang 2006); ignoring the 204 
minor category produces lower AUC values because of the extremely low true-positive rate and 205 
high false-negative rate.  The BRT model with tree complexity of one is similar to a logistic 206 
regression; therefore, their performances are similar. 207 
 208 
Figure 5 shows that the out-of-sample predictive performance deteriorates when tree complexity 209 
increases.  This result is different from the in-sample validation results that the predictive 210 
performance improves with a declining trend when tree complexity increases.  The variance of 211 
predictive performance is large when tree complexity is low and high, but is small when tree 212 
complexity is around 7 to 11, as can be seen from the expansion and shrinkage of the boxes.  213 
This result may suggest that models with tree complexity below 7 underestimate the complexity 214 
of traffic accidents while those with tree complexity above 11 overestimate the complexity of 215 
traffic accidents.  Generally, the BRT model with tree complexity of eight is preferred because it 216 
                                                 
5 The percentage is at a fixed level of 3.98%, the percentage of fatal accidents for the whole 2005 
data. 
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has satisfactory (small bias) and efficient (small variance) predictive performance.  In other 217 
words, models with eighth-order interactions provide the best transferability. 218 
 219 

 220 
Figure 5  Out-of-sample performance rankings using 2005 data 221 

 222 
DISCUSSIONS 223 
 224 
This paper investigates the complexity of traffic accidents with a novel method, the boosted 225 
regression trees.  An empirical dataset, 2004–2005 Taiwan single-motorcycle accidents, is 226 
adopted to demonstrate the method’s usefulness.  The analysis shows the ability of BRTs models 227 
to consider a great number of predictors, explore the nonlinear relationship between predictors 228 
and the response variable, and have satisfactory, if not better, predictive performance compared 229 
to logistic regression and classification and regression tree models. 230 
 231 
The BRTs modeling results show that the models considering higher-order interactions exhibit 232 
better in-sample and out-of-sample predictive performance than the first-order models (i.e., the 233 
traditional logistic regression including only main effects, and the BRTs model with tree 234 
complexity of one).  This result may suggest the existence of complicated accidents that are 235 
difficult to be approximated by models containing merely first- or low-order factors.  For these 236 
accidents, the effect provided by some factors is conditioned on many other factors.  In other 237 
words, the factor effects for complicated accidents are highly heterogeneous.  On the other hand, 238 
accidents that are better approximated by high-order factor interactions account for only a 239 
relatively small portion of the total, as can be seen by the cross-validation result that the 240 
improvement of predictive performance decreases as the tree complexity increases.  In other 241 
words, how factors affect the severity of most single-motorcycle accidents is not affected by 242 
(conditioned on) other factors.  However, for a small portion that accident occurrence is 243 
complicated, the factor effects could change dramatically if the driving conditions alter.  This 244 
result partially explains why good road safety countermeasures are effective to reduce most 245 
target accidents, but not all. 246 
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 247 
Despite the great ability to consider a large number of predictors, the empirical results show that 248 
the relative contributions concentrate on a few predictors.  In our empirical demonstration, 249 
merely three predictors explain approximately half of the variation, indicating that a few 250 
predictors can determine the fatality of single-motorcycle accidents.  Although the number of 251 
influential variables is small, the three most influential predictors, including county, occupation, 252 
and month, cannot provide straightforward explanations.  The county, occupation, and month 253 
predictors respectively represent the geographical, personal, and seasonal factors that might 254 
affect the severity of single-motorcycle accidents.  However, the exact nature of those factors is 255 
unknown.  For example, geographical factors can relate to local driving culture or local road 256 
quality; both have been regarded as crucial factors to explain traffic accidents (Eiksund 2009, 257 
Rakauskas et al. 2009).  Therefore, more studies are required to study the exact effects of such 258 
complex factors.  One limitation of the relative contribution measure is the lack of confidence 259 
bounds; consequently, it would be difficult to tell the significance of relative contribution 260 
differences. 261 
 262 
It should be noted that a highly-branching predictor, i.e. one that can be split into distinct classes, 263 
does not necessarily have a higher value of relative contribution because the BRTs models use 264 
the cross-validation technique to reduce overfitting.  For example, as shown in Table 2, the 265 
variable cellphone use has only four categories and is ranked at the top-five influential variables; 266 
on the other hand, the variable movement prior to accident has 14 categories and is ranked 267 
among the least influential variables. 268 
 269 
While the logistic regression, CART, and BRTs models discern similar influential (or significant) 270 
variables, how those variables are associated with accident severity is recognized differently.  271 
The CART model may be the most limited among these models, since only the importance 272 
ranking can be determined by observing the entrance order of the variables.  Although tree-based 273 
models, including CART models, can fit nonlinear relationships, the conventional CART models 274 
do not provide quantified results, and thus it is difficult to interpret the relationship between the 275 
included predictors and the response variable.  On the other hand, the logistic regression model 276 
provides the significance of the predictors, but it is difficult to specify the interaction terms in 277 
advance.  It is recognized that econometric models, including logistic models, are not designed to 278 
explore a complicated structure; instead, they should be developed based on economic (or 279 
behavioral) theories.  A parsimony logistic model should be valued more than a complicated 280 
logistic model if both models can capture crucial factor effects.  However, modeling traffic 281 
accidents usually faces the challenges of numerous confounding factors (and categories) and 282 
nonlinear relationships.  In particular, if variables such as age or drinking condition, which 283 
exhibit a nonlinear relationship with accident severity as shown in the empirical study, are not 284 
specified properly, the estimation results of logistic models may be erroneous.  One possible way 285 
to resolve this problem is to combine the BRTs model and logistic regression model; i.e., using 286 
BRTs models to explore the relationship between the considered explanatory variables and the 287 
response variable, then transforming the variables, if necessary, to develop a representative 288 
model. 289 
 290 
Among the predictors considered, the behavioral predictors including drinking condition, 291 
cellphone use, and protection equipment use are particularly important to explain unique single-292 
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motorcycle accidents.  This result is demonstrated by the increasing effect size of the behavioral 293 
interactions when the tree complexity increases.  In other words, the harder cases are 294 
approximated more closely when the behavioral interactions are valued more in developing the 295 
BRTs model.  The result may suggest that the relatively unique single-motorcycle accidents 296 
result from the combinations of some unexpected or undesired behaviors whose negative effect 297 
overrides the protective effect provided by the road design.  To reduce such accidents requires 298 
safety education to improve drivers’ unsafe behavior and attitudes. 299 
 300 
Data quality is a typical issue in all the models.  For example, the cellphone use variable is one 301 
of the most influential variables, and its most prominent category is “unknown”.  The reason for 302 
the prominence of the unknown category is simple: as long as the at-fault motorcyclists die at the 303 
crash site, police tend to record the cellphone use as unknown if no witness or further evidence is 304 
found.  In other words, the significantly positive effect for the unknown category of cellphone 305 
use is a mixture of use and no use of cellphone.  While this category seems useless to explain the 306 
relationship between cellphone use and the severity of single-motorcycle accidents, the BRT 307 
model shows that the relative contribution of the unknown category of cellphone use decreases 308 
as the tree complexity of BRT models increases.  That is, while this unknown category 309 
approximates most fatal accidents well, it cannot explain the relatively unique fatal accidents. 310 
 311 
CONCLUDING REMARKS 312 
 313 
This paper applies the boosted regression tree method to investigate the factor complexity of 314 
single-motorcycle accidents.  The advantages of BRTs models are demonstrated in the empirical 315 
study, including no need to pre-specify function form or to select variables or merge categories, 316 
and the abilities to consider numerous predictors and nonlinear relationship, provide satisfactory 317 
predictive performance, and offer quantitative results for interpretations.  On the other hand, the 318 
disadvantages should also be noticed.  Like other data mining methods, some parameters need to 319 
be tested for their best setting in developing BRTs models; the parameters include tree 320 
complexity, learning rate, and bagging fraction.  Moreover, as tree complexity increases, the 321 
computation time also increases.  A balance between computation cost and tree complexity and 322 
learning rate needs to be considered while developing boosted regression tree models. 323 
 324 
Although providing interpretable statistics, the boosted regression tree is a data-driven approach.  325 
Therefore, boosted regression trees may be particularly useful to explore the unknown 326 
relationships between accident outcomes and affecting factors, especially complicated and 327 
nonlinear relationships.  The explored relationships can be considered a basis or reference to 328 
develop behavioral theories. 329 
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