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ABSTRACT

The most efficient strategy to ensure long terndroatwork safety is to integrate road safety
analysis into the planning process of a networla @orridor. Safety planning decision-support
tool outcomes should be reliable and realisticingnto account the main characteristics of this
particular level, which is characterized by scant ageneralized data. However, the tools
developed and presented in previous studies aexb@s models with a quantitative response,
usually the number of accidents, which may notfger@priate for this level. In order to develop
a more suitable tool while maintaining a measurgessment character, this work presents a
qualitative response model whose outcome is thkeofi®ccurring three degrees of hazards: low,
medium and high. In the present study, an orderetlippmodel was applied to an urban road
network using Porto (Portugal) data covering a &yeeriod. Hazard categories were defined
using accident frequency to reflect a measureefttiety of the road network studied.

The developed model provides a safety risk analysasroad network or a corridor for a future
period, considering road data that are easy tcegathestimate at the planning level, such as land
use, traffic volume, etc.

This methodology was applied to various segmeniates to provide an evaluation of changing
road features. Furthermore, a comparison betwealitafive and quantitative model outcomes is
presented, showing the former as an appropriateehtbdt enables a risk analysis approach.

Keywords: Ordered probitroad safety; transportation planning; risk.
INTRODUCTION

Around 85% of the EU’s GDP is generated in cit€srfimision of the European Communities,
2009). Efficient transport systems are needed ppau their economy and the welfare of their
inhabitants. Currently, urban mobility policies éaa challenge in providing sustainable transport
due to different principles that sometimes oppasehether. Research priorities and agendas for
urban mobility are mainly focused on energy and éheironment. However, road safety is a
social concern that should be included especiallping term evaluations of different solutions
and policies for urban road networks.



Over the last three decades, the number of roadieads in Portugal has decreased by 74%.
Despite this, the Portuguese average continues togher than the European average in terms of
the number of fatalities per million inhabitanss.total of 47% of these fatalities and 71% of
accidents resulting in injury occur on urban Panege roads (ANSR, 2009). In this context, road
safety considerations should be explicitly includea! weighed at an urban planning level. In
fact, ideally, road accidents should be preventedriicipating the risk of accident occurrence
when the road network is being planned. In addjtiaternative network options should be
recommended.

In order to provide safety planning decision-suppaols, several studies have presented accident
prediction models. The majority of these models amea-level models (macro-level), usually
based on data aggregated at the traffic analysis level (TAZ) (Levine et al., 1995, Hadayeghi
et al., 2003, Guevara et al., 2004, Sayed and Lroveg 2006, Hadayeghi et al., 2010, Naderan
and Shahi, 2010). In addition, some models appiedoad-level aggregation have also been
developed for evaluating alternative road netwdtiad and Persaud, 2004, Tarko et al., 2008,
Ferreira and Couto, 2011).

For the above-mentioned accident prediction modeigloped for the planning level, which is
featured by a lack of road network information, tuwtécome is the number of accidents per year,
l.e., a quantitative response. However, in the@sthopinion, this response is not consistent with
the poor level of road network characterizationilabde at the planning level. Moreover, at this
level, the goal is to select the best solution agrdifferent scenarios, taking into account a safety
indicator that evaluates safety in a broader mams¢ead of using a specific number of accidents
that is dependent on many factors that are unkreawvims level.

In this sense, this work presents a qualitativggaerse model whose outcome is a qualitative
measure that characterizes the road network scebgrithe degree of hazards. The hazard
categories were defined by a range of accident ewnio reflect the magnitude of the safety of
the road network studied, independent of the claratics of the road entity, thus providing a
more appropriate tool while maintaining the measassessment character. Three categories
illustrating the degree of hazard based on a rafgeimbers of accidents were defined as low,
medium and high. Using this qualitative approacadrentity scenarios can be assessed by the
occurrence probability of the three degrees, thawiging a risk analysis that offers selection
support for a safe solution. To achieve this, atewgd probit model (OPM) was developed and
applied to an urban road network using Porto (Ratjudata covering a 5-year period. The
independent variables used in the OPM geometricatiy functionally characterize segments
based on data gathered and/or estimated at thaiptatevel: traffic volume, segment length,
number of minor intersections (intersections witimon roads, usually without associated traffic
data such as access roads), land use and roadofurtassification. Although the OPM was
developed for urban segments to provide a compabgtween several road network scenarios,
the conceptual development can be applied to areggte model.

The results obtained using the parameter estimétesrate the impact of the independent
variables on the probability of the three categoridoreover, these results in agreement with
those of other studies using these variables imtedata models (Mountain et al., 1996, Karlaftis
and Tarko, 1997, Mountain et al., 1998, Ivan et2000, Greibe, 2003, Wedagama et al., 2006,
Wier et al., 2009) as well as with the results ofgd from a count-data model applied to the data

2



set used in the present study (Ferreira, 2010,effarrand Couto, 2011). Furthermore, a
hypothetical segment scenario was defined in otdelemonstrate a risk analysis of various
scenarios and the consequences of changing themxasg) factors.

The rest of this paper presents the background, atad methods, estimation results, analysis of
scenarios and a summary and conclusions regartieglévelopment and application of an
ordered response model as a safety planning modékt order.

BACKGROUND

Several studies have been presented to overcomaekaof available planning-level tools as
referred by De Leur and Sayed in (2002). From thatselies two different levels of data
aggregation have emerged: road-level and area-laved latter are usually based on data
aggregated at the TAZ and comprise the exposureaattinetwork data represented by vehicle
kilometers traveled, network density, populationmier of employees, etc. However, Tarko et
al. (2008) pointed out that area-level models a&ful for evaluating transportation and safety-
related policies and areawide solutions but lesactmwal for evaluating specific road
improvements, screening networks for dangerous sioabtimating the impact of road
characteristics or merely predicting future acctden specific road entities. In this sense, road-
level models have been developed by some authorsl @nd Persaud, 2004, Tarko et al., 2008,
Ferreira and Couto, 2011). In this case, the roanvark was characterized by a series of
nodes/intersections and links/segments and theredeparate models were developed using
variables such as traffic volume (usually definedle Annual Average Daily Traffic - AADT),
number of lanes, segment length, number of intésearms, etc.

Different approaches for both types of data agdeetgvel of accident prediction models have
been presented being however, noteworthy that armmtechnique namely Generalized Linear
Modeling (GLM) with the assumption of negative mmal (NB) error distribution has been
widely used (Hadayeghi et al., 2003, Guevara et2@04, Lord and Persaud, 2004, Sayed and
Lovegrove, 2006, Tarko et al., 2008, Naderan areh&2010). The GLM procedure, normally
used in the above-mentioned models, comprises shmation of parameters to represent the
average relationship between the dependent vayigigeeally number of accidents per TAZ or
per intersection and per segment depending on d¢kel lof data aggregation, and each
explanatory variable. Hence, these are count-datdel® whose outcome is a quantitative
measure of safety.

At the road planning level, especially in the deeismaking process, an assessment of safety by
a quantitative measure is not suitable when a peeel of information of road network
characteristics is available. In fact, at this lewae safety measure is needed to evaluate and
compare alternative scenarios but not necessaripredict a number of accidents whereas this
can be done later applying existing models and mithe accurate results.

In this sense, an alternative approach to evakeftgy at the road planning and decision level is
proposed in this work. This approach is based ocategorical modeling that defines the
dependent variable as an indicator of a discretécehi.e., the dependent variables are merely a
coding for some qualitative outcome (Greene, 2008}his approach, a general framework of
probability models are used to link the outcoma &et of factors (Greene, 2008):
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Prob(event j occurs) = Prob(Y=j)=F[effects, parareed] (1)
where the “event” is an individual’s choice amonggé of alternatives.

Different types of categorical modeling techniglese been widely applied in economics and
modeling of transportation behavior. In the fieldroad safety, categorical modeling techniques
have been more recently used to model accidentisevéhereas the severity level such as no
injury, injury and fatality, is a discrete outconTée most common techniques applied to analyze
accident severity were the multinomial logit, ndsiegit and ordered probit and logit formulation
(Carson and Mannering, 2001, Kockelman and Kwe@®22 Abdel-Aty, 2003, Eluru et al.,
2008, Wang and Abdel-Aty, 2008, Savolainen et24l11). These models can be grouped in two
response mechanisms: the ordered response (ordevbd and ordered logit) and unordered
response (multinomial logit, nested logit and nmdthial probit). The ordered response
mechanism has the advantage of being parsimonioustructure because it imposes the
restriction that the regression parameters areséimee for different severity levels. Hence, the
adjacent severity levels are correlated. On therdtland, the unordered response mechanism is
based on a utility-maximization principle hypotleesaind thus the severity levels are not
presumed to correspond to the successive partfi@enuni-dimension latent variable (Bhat and
Pulugurta, 1997).

There is not a clear consensus in the choice ofdbgonse mechanism to apply in the accident
severity analysis. Abdel-Aty (2003) compared theltimomial logit, nested logit and ordered
probit models for driver’s injury severity at tgldlaza and concluded that the nested logit model
produced the best fit. However, other authors (Kbolan and Kweon, 2002, Train, 2003) point
out that such specification does not actuallyhfé structure of the ordinal data.

In the context of accident frequency, the discdteice models were seldom used taking into
account the “count” nature of frequency data. Qale{2007) applied a random effects OPM to
model and predict accident likelihood (on-line mipdaking into account the preponderance of
nonaccident and few accident cases in a shortpgened analyzed. In this study three responses
(choices) were considered: nonaccident (0), onelect(1), and more than one accident (>1) per
time interval. Because the responses were ordindéred response model were used. The study
results illustrate that the model performs welidentifying factors associated with road accidents
and in forecasting the likelihood of accidents lbasa& both time-varying and site-specific
parameters.

Based on the review above, it is clear that thdiegdpns of discrete choice models were almost
limited to the analysis of accident severity. Besidon the authors’ knowledge, nobody has so
far examined the possibility of applying a discretmice model to evaluate safety of different

road solutions at the road planning level.

DATA AND METHODS

In order to illustrate the application of a diserehoice model for assessing safety at the road
planning level using a qualitative measure as tb&ame, an urban segment model was
developed using data from Porto, Portugal. At tlaming level, segment models can be used to
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analyze scenarios for a corridor or of a road ndtwentity (an intersection model was also
developed in a previous work (Ferreira, 2010) tovjgle a complete road network analysis).
Nonetheless, the conceptual approach presentdulsipaper can be applied to a data aggregate
model like such as an area-level model, whereasebalts suggest considerable potential for
further applications of these types of models.

The data used in this study consist of acciderda &tatm urban segments classified by local and
principal distributor roads collected over a 5-ygariod (' January 2001 to 31December
2005). Accident data were obtained from the offidfmrtuguese Police Security database,
covering all police-recorded accidents with logdbrmation (accidents resulting in injury and
accidents resulting in property damage omy).accidents were related to their specific looati
by applying a Geographic Information System (GI&)l.t The data consist of 5650 police-
recorded accidents; of these, 1183 were personfatyiraccidents and 4467 were property-
damage-only accidents that were related to 396 eetgm

Using these injury accidents and property-damadg-accidents, hazard categories were set to
reflect the magnitude of the hazard from an accifieguency standpoint (an accident severity
standpoint could be used as well) of the road netvetudied. Taking into account the road
planning context, instead of a risk factor giventbg accident frequency per unit of exposure
(i.e., a measure of “accident opportunity”), usydhe accident frequency per length or traffic
volume unit, the categories were based exclusiwrlaccident frequency. In a planning context,
when analyzing safety, one is more focused on ¢hgdsetween alternative road options or
assessing the factor exposure impacts, followedh biisk factor evaluatidn In the proposed
approach, the risk of different road alternativeanalyzed after the probabilities of each category
are determined.

Three categoriésillustrating the degree of hazard by a range ahibers of accidents were
defined: low, medium and high. The first categogpresents the 0 to 2 accidents. Such low
accident numbers are less likely to be relatechte sharacteristics of the road entity, but rather
to the unusual driver behavior, for example. Theorsd category aims to reflect a substantial
range of accident numbers that ultimately reswinfithe unsafe features of an urban segment.
The latter intends to illustrate the high range amcident frequencies that represent an
unacceptable safety situation. The boundary betweetast two categories can be defined by a
flexible criterion that can be easily determinedewtapplied ima jurisdiction different from the
one developed. In the present study, the bounday eonsidered to be the accident number
given by the 90th percentile of all recorded obagons, which is 8 accidents. This number
ensures that a serious situation as defined instefrsafety is an improbable situation. Therefore,
the three responses used to model the data weve(0Ol2 accidents); medium (3-8 accidents);
high (> 8 accidents). The sample distribution foese responses is: low (64%); medium (28%);
high (8%).

! For other purposes, such as hotspot identificationay be useful to use risk factors as the @ateal dependent
variable.

2 Other options for category definitions were anetyzincluding categories that differentiate accidseverity (0
accidents; injury accidents; no-injury accidentdhwever, based on the statistical significancehaf parameter
estimates, these options were rejected.



These responses were related to road networkwgslvepresented by independent variables.
The variables selected as independent variables ghesen by considering information that can
be gathered and/or estimated at the road planeired.ITherefore, to geometrically characterize a
segment, the two most common variables besidesaffie flow were usedthe segment length
and the number of minor intersections per segnamgth. These variables are usually used to
homogenize segments and are easy to determine aiahning level by, for example, using a
GIS tool. Furthermore, to describe the urban emvitent, road design and flow pattern
characterizing a road network, land use and roadtion classification variables were included.
These variables, especially the land use varididee been extensively studied as independent
variables (lvan et al., 2000, Greibe, 2003, Wedagatmal., 2006, Dissanayake et al., 2009). In
fact, the main decisions required in the urban mulagn process are related to land use and road
function classification.

In this study, five different types of land use &h®n the municipal master plan were taken into
consideration as dummy variables: Land Use 1 (LUhjgh density of buildings; Land Use 2
(LU2) — low density of buildings; Land Use 3 (LU3) — induet area; Land Use 4 (LU4) —
community building area (educational buildings aspmbrts grounds); Land Use 5 (LU5) —
historic center area. Figure 1 illustrates the lase classification of Porto city.

Figure 1 Land use classification of Porto city

In addition, the municipal master plan defines fonad classes, namely, arterial roads, principal
distributor roads, local distributor roads and asceads. However, only principal distributor

roads and local distributor roads were used (adsduanmy variables) due to the fact that arterial
roads have characteristics similar to those ofjhwiay and that there is a lack of traffic flow data
for access roads. Figure 2 shows the road functassification of the Porto road network.

% Segment length was defined as part of a road mktdata set used under a doctoral study (Ferr®it010)
where the influence area of an intersection waséters from the center of the intersection.
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Figure 2 Road function classification of the Padad network

A time trend variable was also included in thisdgtin order to reflect a potential change in the
overall accident level over time. A number of saslhave included a time trend variable that
allows for changes in terms of risk over time (Btidm et al., 1995, Mountain et al., 1998,
Greibe, 2003). It has been previously demonstritatthis variable has a negative effect on the
frequency of accidents, thus leading to an ovenairovement in relation to safety education,
enforcement, vehicles, etc. In this model, a geam&irm was used, assuming that the “general
safety development” is the same from year to ydaufptain et al., 1998). To test for possible
temporal correlations, a likelihood ratio test wasiducted as described by Poch and Mannering
(1996), revealing that this issue does not sigaifity affect the resulting estimates.

Finally, because traffic flow values are not aualgafor all road networks, the AADT was
estimated by the Porto “SATURN” traffic model andta provided by permanent counting
stations located throughout the principal city belonging to the Urban Traffic Center were
used. Traffic simulations have been used in othetias related to the planning level (Lord and
Persaud, 2004, Hadayeghi et al., 2010), and it weésd by Lord and Persaud (2004) that the
accuracy of such predictions is directly relateth® precision of the traffic flow estimates. Table
1 presents a statistical description of the dependad independent variables used in the
frequency modefs

Table 1 Statistical description of variables usedccident frequency models (5-year)

Variable Min. Max. Average S.D.
Accident frequency 0 27 2.85 3.90
AADT 142.37 64067.80 15240.38  11699.49
Segment length (in meters) 20.71 3342.78 313.18 .5852
Number of minor intersections per kilometer 0.00 .032 457 5.18
High density of buildings (LU1) 0 1 0.55 0.50
Low density of buildings (LU2) 0 1 0.22 0.42
Industrial (LU3) 0 1 0.03 0.17
Community buildings (LU4) 0 1 0.06 0.23
Historic center (LU5) 0 1 0.14 0.35
Local distributor roads 0 1 0.50 0.50
Principal distributor roads 0 1 0.50 0.50

4 Correlations among the variables were analyzeugusicorrelation matrix. This allows one to asstina the
explanatory variables are not correlatpdQ(3) (Ferreira, S., 2010).
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As is shown in Table 1, a high degree of heteroigeng present in some of the variables,
namely, the density of minor intersections and #egment length, reflecting the urban
environment. The former has a maximum value thatiea an average distance between minor
intersections of about 30 meters. However, onlyuali#® of the segments have a minor
intersection density greater than 20 per kilomeAeditionally, low segment length values (less
than 50 meters) are exhibited by only 11% of thgnsnts studied. These extreme value
observations were maintained in the data set toridbesall of the urban road network.

Because the three responses (choices) mentioneek adre ordinal and have an eventual
correlation between adjacent categories, ordersporesse models were selected. Both ordered
response probit and logit models were tested. Ae&rd, the results obtained were very similar
because both these ordinal model forms are esBemguivalent and differ only in whether a
logistic or a normal distribution is used for thechastic component in the latent propensity that
Is assumed to underlie the observed accident freyueBecause the ordered response probit
model (OPM) results were slightly better, this fonas selected.

This model is specified based on a latent regregsiadel as illustrated below:

Y =x"nB + &p n=1,...,N (2)

Vn unobserved components

x',  vector of independent variables
i vector of parameters

N total number of road segments

In Eq. (2), the unobserved compongptis associated with impacting factors, and baseg,;on
the observed accident frequengys associated with impacting factors as definedwel

0 if <0 (low)
yp=4 1 if 0<y,<p (medium) 3
2 if ya>u (high)

where:
U positive threshold

In Eq. (3), the three coded responses 0, 1 angrgent the (un)safety categories discussed
above.

The probabilities associated with the coded responsthe OPM are as follows:

Pn(O) = Pr(yn =0) = (l)(_x,nﬁ)’ (4)
Pn(]-) = Pr(yn =1) = (1)(# - x,nﬁ) - cl)(_x’nﬁ)! (5)
Pn(z) = Pr(yn =2)=1- (l)(/" - x’nﬁ)- (6)
where:

#(.) standard normal cumulative distribution function
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Using these probabilities, the paramefeesdu can be estimated using the maximum likelihood
method.

Taking into account the increasing nature of thdeogd classes, the interpretation of the
parameters is as follows: positive signs indicatkigher risk as the value of the associated
variable increases, while negative signs suggestetherse. However, in probability models such
as the OPM, the sign of does not always determine the direction of thesatffon the
intermediate outcomes. In that sense, the margifetts can provide a better interpretation of
changes in the independent variafgss follows:

0D — —p(x' BB, -
PIBOD  [p ) = b = X nBIB ®
%}E}:mz d)(u_x’nﬁ)ﬁ- (9)
where:

¢(.)  probability mass function of the standard ndrdistribution

Note that the marginal effect of a dummy varialsléhie difference between the two probabilities
associated with the dummy values 0 and 1 (withoud aith the variable, respectively):
Prly|x=1] - Pr[y|x=0].

ESTIMATION RESULTS

The estimation results of the OPM and the margaftgcts for each variable are presented in
Table 2. The parameter estimates and the threglaskineter are significant at the 95% level,
indicating a possible relationship between thes&abkes and the occurrence probability of the
three categories. The parameter estimates indibateffect of the independent variables on the
latent propensity of accident occurrence for thgmsmts. The marginal effects represent the
directionality and magnitude of the effects of ttagiables on the probabilities of each category.
Note that the sum of the marginal effects is zeroich follows from the requirement that the

probabilities add to one (Greene, 2008).

The marginal effects of the traffic volume (AADT3egment length and minor intersection
density are positive for categories 1 (medium) ar(igh), suggesting the likelihood that these
variables are associated with a high risk of andect occurring. These findings are in line with
those reported by various studies based on couatrdadels (Mountain et al., 1996, Karlaftis
and Tarko, 1997, Mountain et al., 1998, lvan et2000, Greibe, 2003, Wedagama et al., 2006,
Wier et al., 2009) as well as with the results ofgd from a count-data model applied to the data
set used in the present study (Ferreira, 2010effarand Couto, 2011). The time trend effect
represented by the time trend variable is negdtvethe two last categories (1 and 2), thus
indicating an annual decline in accident frequefocythe segments with higher risk.



Table 2 Ordered probit model results

Estimated Standard Marginal Effects

Parameter Value Error P[2>7] Low Medium High
Constant -9.984 0.505 0.0000 - - -
LnAADT 0.393 0.045 0.0000 -0.129 0.116 0.013
LnLength 1.107 0.047 0.0000 -0.364 0.328 0.036
TimeTrend -0.056 0.022 0.0119 0.018 -0.017 -0.002
Minor intersections 0.038 0.007 0.0000 -0.012 0.011 0.001
Low density of buildings (LU2) -0.287 0.082 0.0005 0.089 -0.081 -0.008
Industrial (LU3) 0.614 0.175 0.0005 -0.229 0.190 038
Community buildings (LU4) -0.494 0.132 0.0002 0.138 -0.128 -0.010
Historic center (LU5) 0.299 0.093 0.0012 -0.104 2.0 0.013
Local distributor roads -0.186 0.069 0.0076 0.061 -0.055 -0.006
u 1.614 0.062 0.0000 - - -
Log-likelihood at zero -1682.965
Log-likelihood at convergence -1158.103
Percentage correctly predicted 73%

The parameter estimates for LU3 (industrial areal) [dJ5 (historic center area) are positive and
are thus associated with a higher risk of an aatidecurring, with positive marginal effects for
categories 1 and Zhis is consistent with the findings of previousearch (Ilvan et al., 2000,
Greibe, 2003) and is logical considering the larslysisLU3 is only composed of one zone in
the city although there are various trip attracttepending on the hour and the day of the week.
During working hours, this zone is associated wita presence of heavy vehicles and goods
deliveries for the industry sector there. On weekesnd non-working hours, this zone is related
to risk behaviors associated with driving (alcolggeeding, etc.) due to the fact that there are
bars and restaurants in the area. This may exfilaipositive value of the parameter estimates,
which demonstrates an increase in the probabilityaro accident occurring in the segments
located in this type of land use area. Furthermioré¢he case of LU5, the positive value of the
parameter estimates may be related to the factthimtis a historic center area with a high-
density building zone with old and outdated roddastructures. In addition, there is also a high
pedestrian volume and various forms of public tpans The negative values of the parameter
estimates for LU2 and LU4 are also in line with esgations. In fact, zones with low densities of
buildings, as is the case for LU2, are associatgd & decrease in terms of accident risk. In
addition, in Porto city, the community building ase(LU4) encompass two zones that include a
hospital, a sports hall and university buildingheTreduced accident risk in these zones may be
explained by the low density of buildings with sitite road infrastructures and perhaps by highly
seasonal movements associated with fewer traffiflicts in this zone.

Moreover, the effect of road function classification accident occurrence probability was also
as expected. Thus, the negative value for the petearmastimates of the local distributor segments
reveal a decrease in accident risk that may becedsed with narrower streets, which promote
better driving behavior (e.g., lower speeds).

Finally, the analysis of the distribution of thedh category probabilities of the 396 segments
used in this study indicates that, in 69% of thgnsents, the “low” category is more likely to
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occur (27% and 4% for “medium” and “high”, respeety). For road network evaluation
purposes, this kind of result can be compared éorésults of other possible scenarios while
maintaining the ability to identify segments thatncbe improved, based on a road safety
perspective.

Table 3 — Cross tabulation of predicted versusactiservations

Actual Total actual Predicted values
observations observations 0 1 2
0 1260 1101 155 4
1 557 249 283 25
2 163 12 99 52

Total predicted

1980 1362 537 81
values

These results correspond to a correct predictionepgage of 73% (bold values in Table 3).
Table 3 shows the accuracy of prediction for eatlgory. The “high” category (represented in
the table by the number 2) has the highest rataistlassification of observations predicted by
the model, which may be due to the fact that tlaeeefewer observations for this category, thus
resulting in heterogeneity phenomena.

ANALYSISOF HYPOTHETICAL SCENARIOS

The qualitative response model outcome is a sgtrababilities of each category for specific

features of a segment, thus providing the posgididir a risk analysis. In order to demonstrate
this novel qualitative outcome interpretation, @M was applied to a hypothetical scenario of
an urban segment based on the independent variabégsin this study. Table 4 presents the
percentage of probabilities computed for a segrme@dt meters in length through which 40,000
AADT have passed, with 1 intersection per km. Tégnsent is classified as a local distributor
road and is located in a low density building aiiga2). With these characteristics, this segment
Is associated with a 73% probability of being ie thigh” category; thus, this segment may be
classified as high risk.

Table 4 Scenario effects: results of the OPM anthtdata model

Y&
Pro?/(y—O) ProE)/(y—l) ProE)/(y—Z) (accident
0 0 0
number)

So: Reference segment scenario-
AADT=40000;Length=600;1.67 minor inter. per km; 1 26 73 5.2
LU2; local distributor road
Si: +30% of AADT 1 19 80 5.7
S,: From LU2 to LU4 9 52 39 5.3
S;: From local dist. to principal dist. 0 14 86 6.2
S,: Cumulative effects =:$S+S; 1 21 78 6.9

a) These predicted values were based on a NB mafdehich, the parameter estimates were statisfisgnificant
with R = 67% (Ferreira, 2010).

Additionally, in Table 4, the probabilities assde with the different scenarios are presented,
representing changes regarding the reference socedantified above. As shown in Table 4, a
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30% increase in traffic volume produces a slighange in the probability percentage while
keeping category 2 as the most likely. It shouldhbted that major changes in the road safety
level mainly arise from changes in the land usenffthe low-density building area - LU2 - to the
community building area - LU4). In fact, with thiblange in the reference scenario, the highest
percentage probability changes greatly, sufficiedtwering the probability of the “high”
category such that the “medium” category has tgadst probability.

The cumulative impacts arising from the analyzezhacios are shown in Table 4 as scenajio S
This final scenario may be high risk because thgh'hcategory has the highest probability of
occurring. By comparing this risk analysis with tipeantitative response presented in Table 4
resulting from a count-data model (NB model) applie the same data set, one can see that the
number of accidents expected for the reference segatenario is 5.2. This number fits in the
“medium” category (3-8 accident), which is not tbategory with the highest probability of
occurring according to the OPM. Although a propalibration methodology for comparing the
results is needed to assess this simple compatisermain point is the general outcome that a
qualitative response model allows for a risk analymsed on probability results instead of a
unique number. Note that for an urban plannerfetys#ool is one of many tools used to analyze
a road network, which should provide simple anthbd results that are consistent for a wide
level of analysis.

SUMMARY AND CONCLUSION

A common technique used for safety planning modaiise GLM procedure with the assumption
of a NB or Poisson error distribution. With thichaique, the dependent variable is usually the
number of accidents per TAZ or per segment anddatgion in the case of area-level or road-
level models, respectively. Thus, the model outc@sre quantitative response. However, at the
road planning level, there is a lack of data fapgarly assessing safety by predicting the number
of accidents because such a value is associatbdavgeries of factors that are unknown at this
point. Furthermore, the main point of a safety plag model is to compare and evaluate
alternative solutions rather than to predict/fost@number.

In this sense, this work presents an alternatiyeageh based on a qualitative response model.
Three responses were defined in order to refldfd#rdnt categories based on a range of accident
numbers that can be associated with degrees ofrchaZae methodology for defining the
response is flexible and can be adjusted to otimgsdictions. Thus, an OPM was applied to
estimate the parameters and compute the margifegt&f All of the parameter estimates were
statistically significant, and the marginal effa@lues were in line with findings reported by
several count-data models and with the resultsirddafrom a count-data model applied to the
same data set used in the present study. Moretheerresults of the case studied demonstrate
that, in 69% of the segments, the “low” categomsfirdng a low degree of hazard, is more likely
to occur (27% and 4% for “medium” and “high”, respeely), with a correct prediction
percentage of 73%. In addition, an analysis of kiypiical scenarios for a segment was presented
to illustrate an application of the OPM in typifgina risk analysis of scenarios. Hence, the
probability of each response (category) occurringswomputed, taking into account the
attributes of the segment. In order to highliglgt #lvantage of this approach, gradual changes in
those attributes were analyzed in terms of affgctisk. Furthermore, the probabilities obtained
for each category by the OPM were compared toxpeaed number of accidents determined by

12



a NB model (count-data model) applied to the saata det. Besides the fact the latter did not
match the category with the highest probability afcurrence, the quantitative response
constraining the analysis did not allow for a breradsk analysis. Based on these issues, it can
be concluded that the OPM presents an alternappeoach as a safety tool for road planners,
providing a risk analysis with a simple and reatishterpretation of the variable effects. The
OPM outcomes can be used among other traditioreduiation criteria in the strategic planning
process of a road network or a corridor, thus englslafety to be included. Note that the concept
of this approach can be applied to an aggregateeimod

This research represents a step towards an app®pnd reliable safety analysis at the planning
level. However, further research should be doneydmg on applying alternative discrete choice
models to compare the ordered response mechanidnthanunordered response mechanism
(represented by, for example, a multinomial logddal) in order to select the more appropriate
mechanism.
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