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ABSTRACT 

 

In the recent decades quasi-induced exposure has enjoyed increasing popularity with applications 

in the traffic safety analysis. However, issues have been raised that the majority of the relevant 

studies do not particularly attempt to verify the validity of the induced exposure technique prior 

to its adoption. In an effort to validate the critical not-at-fault assumption at the core of the 

applications, complimentary set analysis (a technique to test whether a driving cohort is 

randomly selected by its complimentary set of drivers of the same classification) is used and 

tested. The paper supplements the technique with a comprehensive statistical testing framework, 

which will enable the validation of the assumption to be conducted for various driver-vehicle 

characteristics (>2) at much more finely-disaggregated levels. The main findings of the research 

include: 1) at the most aggregated level, statistical testing does not support the hypothesis that 

one innocent driver-vehicle combination in the driving population is randomly impacted by the 

culpable parties of the same classification, mainly due to data aggregation and exposure data 

irregularities; 2) statistical results demonstrate an increasing trend of p-values when data are 

finely disaggregated in a stepwise manner, confirming the random-selection assumption of quasi-

induced exposure; and 3) an important phenomenon inherent in the exposure matrix is that a 

driving cohort has a higher probability to collide with the same driving type as opposed to others 
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of the same classification. Through the study it has been verified that complementary set analysis 

is a straightforward, convenient, and effective technique to check the validity of quasi-induced 

exposure. 

 

Keywords: complimentary set analysis, validation, data disaggregation, quasi-induced exposure. 

 

INTRODUCTION 

 

In the field of safety and risk analysis, quantification of exposure is of great importance since it 

provides safety researchers a means to make normalized comparisons between different cohorts, 

considering that spatial and temporal circumstances where safety concerns occur may vary 

considerably. Similarly in traffic safety, although crash frequency can provide valuable insights 

into some highway safety problems or the effectiveness of certain traffic countermeasures 

(typically in before-and-after studies), the problem is that the use of crash frequency implicitly 

assumes there is no significant change of crash exposure during the study period. With 

recognition of the analytical limitations, a variety of measurements have been proposed to 

estimate the exposure to driving hazards, among which vehicle miles travelled (VMT) is 

believed to be the most prominent and widely adopted.  

 

The review of the literature reveals that concerns have been raised regarding the widespread use 

of VMT in the crash rate calculation. A theoretical assumption of linear conjecture between 

VMT and the crash frequency has been critically challenged (Janke, 1991; Hauer, 1995) and 

practically it is virtually impossible to obtain the VMT data at a finely disaggregated level (Lyles 

et al., 1991). A surrogate exposure measurement in the family of exposure measurements, 

namely induced exposure, appears to circumvent the drawbacks. The concept of induced 

exposure was first developed by Haight (1970), and subsequently modified and supplemented 

with a responsibility-assignment scheme and redefined as ―quasi-induced exposure.‖ The theory 

of quasi-induced exposure is constructed on two fundamental premises: 1) in a two-vehicle crash 

there are an at-fault driver (D1) and a not-at-fault driver (D2); and 2) the characteristics of the 

not-at-fault drivers (D2s) in two-vehicle crashes are representative of the general driving 

population on the road at the time and place of the crash occurrence. An exposure matrix 

(Lighthizer, 1989) containing D1s as the row and D2s as the column can be constructed to 

calculate crash propensity for different driving cohorts under different disaggregation levels.  

 

Due to its straightforward nature, quasi-induced exposure has enjoyed increased popularity with 

applications in the traffic safety analysis in the recent decades. For instance, it was implemented 

to study specific crash types such as rear-end crashes (Yan et al., 2005a) and red-light running 

crashes (Yan et al., 2005b), quantify the characteristics of crash propensity of young drivers 

(Kirk and Stamatiadis, 2001a; McGwin and Brown, 1999) and old drivers (Hing et al., 2003), 

evaluate the effectiveness of graduated driver licensing program in different states (Jiang and 

Lyles, 2011; Fohr et al., 2005; Rice et al., 2003), and explore risk factors in epidemiology 

(Lenguerrand et al., 2008; Lardelli-Claret et al., 2006). Potential issues have been raised that the 

majority of the relevant studies do not particularly attempt to verify the validity of the induced 

exposure technique prior to its adoption. Whether a given dataset satisfies the not-at-fault 

assumption of the quasi-induced exposure dictates the applicability of such an exposure 

measurement in the ongoing research exercise.  



 

Historical research related to the validation on the underlying assumptions of quasi-induced 

exposure typically requires substantial efforts of data collection to establish a firm understanding 

of (driving) exposure ―truth‖ either through sampling, surveying, or other data sources. Kirk and 

Stamatiadis (2001b) utilized a trip-diary method to estimate the travel exposure in the form of 

VMT and compared the distributions between the VMT and the estimates through quasi-induced 

exposure technique in Fayette County, KY. The small sample size of investigated trips from both 

the trip diary survey and the crashes caused difficulties in accurately estimating VMT and the 

relative exposure, which did not allow for a meaningful comparison between the two estimates. 

Stamatiadis and Deacon (1997) compared induced exposure estimates with vehicle classification 

data under 18 different disaggregation levels, including two development types (rural and urban), 

three roadway functional classifications (principal, minor arterials, and collectors), and three 

time periods (day, rush, and night) in Kentucky. Using regression analysis a good correlation 

between the estimates from the crash data and vehicle classification data was demonstrated and 

used to justify the selected use of quasi-induced exposure to obtain first-order approximations of 

relative travel by different road users. In New Zealand, Keall and Newstead (2009) compared the 

quasi-induced exposure estimates with VMT collected from the odometer readings of the 

inspected motor vehicles. The research objective was to identify the most appropriate crash type 

for induced exposure estimation to approximate vehicle distance driven. The results showed that 

none of the considered crash types demonstrated a good agreement between quasi-induced 

exposure and vehicle distance traveled. Vehicle distance driven data could not be finely broken 

down to reflect specific conditions such as lighting and injury levels, which might attribute to the 

discrepancy.  

 

Furthermore, some researchers test the validity of the not-at-fault hypothesis by means of the 

information readily available from the crash database. In two similar studies, Chandraratna and 

Stamatiadis (2009) and Jiang and Lyles (2010) both obtained the exposure estimates from multi-

vehicle crashes (>2 vehicles involved in a crash) and then compared it to the relative exposure 

calculated by quasi-induced exposure. Although different crash databases and different statistical 

testing methods were employed, the consensus was that no matter how many vehicles were 

involved in a multi-vehicle crash, the at-fault drivers appeared to collide with the not-at-fault 

drivers in a non-selective manner and no statistical differences were observed for different 

characteristics of interest (age, gender, and vehicle type). 

 

Using two-vehicle crash data, Lighthizer (1989) proposed a general framework named 

―complementary set analysis‖ to provide a creative avenue to test whether crash victims were 

randomly impacted. Specifically, the distribution of not-at-fault driver–vehicle cohorts involved 

in crashes caused by driver–vehicle combinations with certain characteristics is compared with 

the distribution of not-at-fault driver–vehicle combinations of crashes caused by the 

complementary set of driver–vehicle combinations. Simply put, if the proportions of a young 

not-at-fault age group are evenly distributed among the different at-fault age groups (i.e., young, 

middle-age, and old drivers), it is safe to conclude that the young age group is randomly selected 

by the driving population and consequently the quasi-induced exposure is applicable to the given 

dataset. Davis and Gao (1993) improved the technique by taking into account the random 

variation inherent in the crash data and developed a statistical procedure to calculate confidence 

bounds and induced exposure estimates for a typical 2 by 2 contingency table. In studying the 



crash propensity of drivers with suspended and revoked (S/R) licenses in California, DeYoung et 

al. (1997) utilized the concept to test the row percentage distributions for drivers with valid, S/R, 

and no license and the differences were found to be statistically insignificant.  

 

In general, using the crash data (e.g., two-vehicle crashes) to validate the underlying assumptions 

of quasi-induced poses a number of potential advantages as opposed to the exogenous exposure 

data: 1) it is readily available and there is no extra data collection effort necessary; 2) it reflects 

the similar environments when and where the crashes occur; and 3) since the crash records stored 

in the database are formatted in the same manner, data bias as a result of data inconsistency is 

likely to be minimized. Although the complementary set analysis is an innovative approach to 

verify the fundamentals of quasi-induced exposure, the framework has several theoretical 

limitations which require further improvements. The original idea of complementary set analysis 

by Lighthizer (1989) does not include statistical testing on different row percentage 

distributions—the row distributions are compared from the practical angle to see if the maximum 

percentage difference is greater than an empirical value (e.g., 4%). Davis and Gao (1993) 

improve the complimentary set analysis with statistical testing to consider the row and column 

marginal probabilities with the differences between row distributions being tested using a log 

cross-product ratio statistic. However, the method is only applicable to a 2 by 2 contingency 

table (e.g., driver gender) and can’t be implemented for a table with three or more categories 

(e.g., young, mid-aged, and old drivers). DeYoung et al. (1997) adopt the two-tailed difference 

of proportion test in the D1 and D2 exposure matrix, however the method is limited to compare 

two individual distributions (e.g., valid versus suspended/revoked license drivers) and unable to 

conduct comparisons among three or more distributions concurrently. These limitations can 

potentially prevent the widespread application of complimentary set analysis in the effort to 

validate the underlying assumptions of quasi-induced exposure.  

 

The objective of the research here is to develop a statistical approach that can be used to compare 

the differences among multiple (two or more) distributions in an integrated manner with the use 

of complimentary set analysis. Thus, the proposed method will enable the validation of the 

assumptions to be conducted for different driver-vehicle characteristics at much more finely-

disaggregated levels.  

 

METHODOLOGY 

 

Data Preparation  

 

In order to explore this validation approach, the latest crash data (year 2009) were obtained from 

Michigan Department of Transportation. It has been extensively reported (O’Day, 1993) that the 

raw crash data have a number of issues such as underreporting, incomplete observations, missing 

critical information, inaccurate crash data, conflicting information, or inconsistent reporting 

practices. The quasi-induced exposure technique has stringent requirements on a given dataset, 

particularly the type of crash data (two-vehicle crash data only) and responsibility assignment. In 

order that crash data are relatively ―clean,‖ a preliminary data screening process is developed to 

eliminate one-vehicle or three-or-more vehicle crashes, crashes with internally conflicting 

information (e.g., two-vehicle crashes with information on three vehicles), unreasonable values 

of key driver-vehicle characteristics (e.g., driver’s age below 14), missing or uncoded crash 



values, or unreasonable crash types (e.g., head-on crashes occurring on freeway segments). In 

order to avoid the ―negative halo effects‖ or ―crash proneness bias‖ (DeYoung et al., 1997), the 

crash responsibility is assigned solely based on the evidence of the hazardous actions instead of 

driver citation status since quasi-induced exposure is a driving-behavior oriented technique 

(Jiang and Lyles, 2010). The final dataset includes two-vehicle crash data with crash fault clearly 

assigned to one of the two involved drivers.  

 

Statistical Testing Framework 

 

As stated, the purpose of the research is to validate the underlying assumptions of quasi-induced 

exposure with the use of a technique called ―complementary set analysis,‖ which was originally 

introduced by Lighthizer (1989). Central to the technique is that in an exposure matrix with D1s 

as the row and D2s as the column, the row percentage distributions are compared to identify 

whether the differences among different rows are statistically significant. The null hypothesis is 

that there is no difference between row percentage distributions, that is, a specific driving cohort 

is randomly impacted by different driving cohorts on the road at the time of crash occurrence. 

 

The point here is to develop a general statistical testing framework/approach which can be used 

in examining the exposure differences for various driving cohorts at multiple (≥2) disaggregation 

levels. A K row (at-fault drivers) by K column (not-at-fault drivers) symmetric exposure matrix 

is constructed (Table 1).  Each cell in the matrix indicates the frequency (in numbers) that a 

certain driver-vehicle characteristic with K categories is selected or impacted by the same driving 

cohorts with K classifications. The goal of the statistical testing is to verify whether any type of 

not-at-fault drivers (e.g., young drivers) is randomly selected by different at-fault drivers within 

the same grouping categories (e.g., young drivers, mid-aged drivers, and old drivers). When the 

calculated p-value is smaller than        (significant level), the null hypothesis is rejected; 

otherwise the null hypothesis is accepted. The chi-square test extends naturally to the above-

described situation: 

 

                  (1) 

 

where f is the observed frequency in each cell and F is the frequency expected if the null 

hypothesis of independence holds. The F value is calculated as follows. 

 

Table 1 D1 and D2 matrix for certain driver-vehicle characteristic with K classifications 

 
Not-at-fault drivers (D2s) 

Total 
Categories 1 2 … K 

At-fault 

drivers 

(D1s) 

1 n11 n12 … n1K n1+ 

2 n21 n22 … n2K n2+ 

…
 

…
 

…
 

…
 

…
 

…
 

K nK1 nK2 … nKK nK+ 

Total  n+1 n+2 … n+K n 

 

In the population, let pr be the probability that a crash victim falls in row R and pc the probability 

that it falls in column C. Consistent with the hypothesis of independence, the expected number of 

crash victims F in row R and column C will be nprpc, where n is the total number crashes in 



Table 1. Take the ratio (row total, ni+)/n as the estimate of pr and the ratio (column total, n+j)/n as 

the estimate of pc. Let nij denote the count in the (i,j)
th

 cell of a K × K contingency table 

(i=1,…,K; j=1,…,K), so          ,           and          . Then in a symmetric K×K 

exposure matrix, the expected frequency F in the (i,j)
th

 cell is expressed as: 

 

                   (2) 

 

The sum of the deviations (f - F) in each row and column is zero, which dictates the number of 

degrees of freedom in χ
2
. Since there are (K-1)×(K-1) deviations in the K×K exposure matrix, the 

degree of freedom of the chi-square is (K-1)×(K-1). The hypothesis that the innocent drivers are 

randomly selected or impacted by the culpable drivers H0:            , where         
    , 

     
   

 
, , and         

              , can be tested, using 

 

     
                 

 

             

 
 

 
                    (3) 

 

The above structure is used in analyzing the patterns associated with the distributions for three 

key driver-vehicle characteristics, that is, driver gender (male and female), vehicle types 

(passenger cars, pickups, and heavy trucks), and driver age (young, mid-young, mid-old, and old 

drivers). The D2 percentage distributions of the variables of interest will be computed at the 

overall level (the population as a whole) and then the levels are gradually stratified to reflect 

more specific circumstances in the order of day of week (weekday versus weekend), 

development types (urban versus rural areas), roadway functional classifications (locals versus 

collectors or arterials), and time period (AM versus PM hours). Statistical tests are run at each 

individual level for three main characteristics to see if the underlying assertion of quasi-induced 

exposure can be effectively validated.   

 

RESULTS 

 

Overall Level 

 

Tables 2, 3 and 4 are the results of complementary set analysis for three variables of interest at 

the overall level (without any data disaggregation). The number in each cell represents the 

frequency of a non-responsible driver (D2, shown in the column) collided by a corresponding 

responsible driver (D1, shown in the row), while the percentage corresponds to the relative 

proportion of the column classification (different D2 drivers) within each row. Also displayed is 

the relative crash involvement ratio (IR) calculated by dividing the percentage who are at-fault 

by the percentage who are innocent for each group. IR is an indicator of relative crash over- or 

under-involvement for each driver group—depending on the values of IR, one can show whether 

any specific driver-vehicle combination is disproportionately over-involved (IR>1) or under-

involved (IR<1) in crashes relative to its proportion in the driving population.  

 

Tables 2, 3, and 4 demonstrate that the involvement ratios for each individual driver-vehicle type 

generally conform to a priori expectation or known knowledge. For example, the IR for young 

drivers (Table 4) is 1.48, illustrating that they cause proportionally more crashes than their 



existence in the driving population, while the IR for the mid-aged (young or old) drivers suggests 

the opposite. As for male drivers and pickup vehicles, the IRs indicate a relatively higher crash 

involvement compared to their counterparts. All these observations appear to be in good 

agreement with current research findings (Shinar 2007).  

 

Table 2 The characteristics of different driver genders at overall level (Michigan 2009) 

 
Driver gender 

Not-at-fault drivers (D2s), N(%) 
p-value 

 

Female Male Marginal totals 

At-fault drivers 

(D1s) 

Female 24969(48.9%) 26065(51.1%) 51034 

<0.0001 Male 27228(47.2%) 30459(52.8%) 57687 

Marginal totals 52197 56524 108721 

 

 

IRs 0.98 1.02 

   

Table 3 The characteristic of different vehicle types at overall level (Michigan 2009) 

 

Vehicle types 
Not-at-fault drivers (D2s), N(%) 

p-value Passenger cars Pickups Heavy trucks Marginal totals 

At-fault 

drivers 

D1s 

Passenger cars 80525(86.7%) 10377(11.2%) 1973(2.1%) 92875 

<0.0001 

Pickups 11855(84.2%) 1925(13.7%) 294(2.1%) 14074 

Heavy trucks 1473(83.1%) 208(11.7%) 91(5.1%) 1772 

Marginal totals 93853 12510 2358 108721 

 

 

IRs 0.99 1.13 0.75 

   

Table 4 The characteristics of different age groups at overall level (Michigan 2009) 

 

Age group 
Not-at-fault drivers (D2s), N(%) 

p-value 
Young Mid-young Mid-old Old Marginal totals 

At-fault 

drivers 

(D1s) 

Young 7687(23.0%) 9768(29.2%) 11249(33.6%) 4751(14.2%) 33455 

<0.0001 
Mid-young 5791(19.7%) 9122(31.1%) 10199(34.7%) 4253(14.5%) 29365 

Mid-old 5804(19.6%) 8954(30.3%) 10396(35.1%) 4430(15.0%) 29584 

Old 3272(20.1%) 4718(28.9%) 5521(33.8%) 2806(17.2%) 16317 

Marginal totals 22554 32562 37365 16240 108721 

 

 

IRs 1.48 0.90 0.79 1.00 

   

Important information exhibited in Table 2 is that the percentages along the diagonal of the 

exposure matrix are consistently greater than other values within the same column, which are 

noted as bold in each table. It tells that the drivers of the same characteristic are inclined to 

collide with each other rather than with others. For the example of not-at-fault young drivers, 

they have a higher probability of being selected by the same young drivers than by the mid-aged 

or old drivers. The phenomenon can be partially attributed to the similar driving behaviors and 

experiences demonstrated and roadway circumstances (e.g., roadways, time of day) traveled by 

the same driving cohort, relative to other types in the same classification.  

 

Comparison of the percentage distributions of not-at-fault drivers among different rows suggests 

that the maximum difference for three driver-vehicle characteristics is consistently smaller than 4 

percentage points. Although the threshold value of 4 percentage points is somewhat empirical, it 

reflects most of the natural data variations for the driver–vehicle characteristics of interest (Jiang 

and Lyles, 2010). Thus, from the practical point of view it is safe to argue that the differences of 

the row percentage distributions are insignificant and for each variable of interest the non-

responsible drivers are randomly impacted by other vehicles of the same classification. Although 



operationally the row percentage distributions vary within a reasonable and acceptable range, the 

chi-square p-values are shown to be smaller than 0.05, rejecting the hypothesis that the 

differences between rows are statistically insignificant. Considering that the proposed statistical 

testing method aims to compare the disparity of all the row distributions concurrently, relatively 

high proportions of crash frequency between the same driving cohorts (e.g., younger drivers with 

younger drivers) are identified to be the principal contributing factor to the rejection of the 

hypothesis. Evidentially, the high probability of collisions between the same driver types creates 

an imbalance among the row percentage distributions within each column.  

 

Disaggregated Levels 

 

One of the essential merits of quasi-induced exposure is that it can be used for the analysis of 

crash involvement at finely disaggregated levels. An attempt is also made to analyze the 

exposure change for different age groups and vehicle types, the purpose of which is to identify 

the transition pattern under various stratification levels of circumstances when or where crashes 

occur. The levels are disaggregated by temporal and spatial parameters in a superimposed 

manner. For age groups, the levels start from the overall level to weekend, then to urban area, 

local streets, and PM hours; for vehicle types, the disaggregation levels include overall, weekday, 

rural area, and arterials.  

 

Tables 5 and 6 are illustrations of the characteristic distributions for vehicle types and age groups, 

respectively under various disaggregation levels.  Also shown are the involvement ratios and chi-

square p-values. In general, the observations offered at the overall level can also be applicable to 

the data at various disaggregation levels. The cells marked as bold along the diagonal of the 

exposure matrix indicate that the same vehicle types or age groups tend to collide with each other 

compared to its counterparts. As for pickups, young and old drivers the involvement ratios 

consistently have higher crash propensity (IR>1), and generate relatively more crashes in 

contrast to their corresponding proportions in the driving population.  

 

Table 5 The characteristic distributions of vehicle types at different disaggregated levels 

Ordered 

levels 
Vehicle types (D1s) 

Not-at-fault drivers (D2s), N(%) 
p-value 

Passenger cars Pickups Heavy trucks Marginal totals 

 
Passenger cars 49535(86.4%) 6400(11.2%) 1417(2.5%) 57352 

0.021 
 

Pickups 7119(82.5%) 1299(15.1%) 207(2.4%) 8625 

Weekday Heavy trucks 1061(80.9%) 150(11.4%) 101(7.7%) 1312 

 
Marginal totals 57715 7849 1725 67289 

 
IRs 1.00  1.10  0.76  

 

 
Passenger cars 3669(73.6%) 1052(21.1%) 262(5.3%) 4983 

0.061 
 

Pickups 1080(69.9%) 394(25.5%) 71(4.6%) 1545 

Rural Heavy trucks 157(70.7%) 37(16.7%) 28(12.6%) 222 

 
Marginal totals 4906 1483 361 6750 

 
IRs 1.02  1.04  0.61  

 

 
Passenger cars 831(69.9%) 222(18.7%) 135(11.4%) 1188 

0.078 
 

Pickups 220(71.4%) 61(19.8%) 27(8.8%) 308 

Arterials Heavy trucks 65(73.9%) 6(6.8%) 17(19.3%) 88 

 
Marginal totals 1116 289 179 1584 

 
IRs 1.06  1.07  0.49  

 
 



Table 6 The characteristic distributions for age groups at different disaggregation levels 

Ordered 

levels 

Driver age 

(D1s) 

Not-at-fault drivers (D2s), N(%) 
p-value 

Young (<25) 

Mid-young  

(25-40) 

Mid-old  

(41-59) Old (>59) 

Marginal 

totals 

 

Young 3117(23.7%) 3816(29.0%) 4409(33.5%) 1830(13.9%) 13172 

0.007 
 

Mid-young 2402(21.3%) 3544(31.4%) 3704(32.9%) 1623(14.4%) 11273 

Weekend Mid-old 2269(20.8%) 3325(30.4%) 3734(34.2%) 1603(14.7%) 10931 

 

Old 1236(20.4%) 1803(29.8%) 1993(32.9%) 1024(16.9%) 6056 

 

Marginal totals 9024 12488 13840 6080 41432 

 

IRs 1.46  0.90  0.79  1.00  

 

 

Young 2673(23.4%) 3379(29.6%) 3788(33.2%) 1564(13.7%) 11404 

0.018 
 

Mid-young 2084(21.0%) 3168(32.0%) 3282(33.1%) 1377(13.9%) 9911 

Urban Mid-old 1945(20.6%) 2911(30.9%) 3213(34.1%) 1361(14.4%) 9430 

 

Old 1140(22.2%) 1548(30.1%) 1693(33.0%) 757(14.7%) 5138 

 

Marginal totals 7842 11006 11976 5059 35883 

 

IRs 1.45  0.90  0.79  1.02  

 

 

Young 324(28.6%) 345(30.4%) 331(29.2%) 134(11.8%) 1134 

0.191 
 

Mid-young 247(25.8%) 299(31.2%) 289(30.1%) 124(12.9%) 959 

Locals Mid-old 213(22.4%) 292(30.7%) 307(32.3%) 138(14.5%) 950 

 

Old 106(20.6%) 145(28.2%) 171(33.3%) 92(17.9%) 514 

 

Marginal totals 890 1081 1098 488 3557 

 

IRs 1.27  0.89  0.87  1.05  

 

 

Young 221(26.2%) 263(31.2%) 240(28.5%) 119(14.1%) 843 

0.729 
 

Mid-young 199(29.8%) 184(27.5%) 195(29.2%) 90(13.5%) 668 

PM Mid-old 178(27.1%) 191(29.1%) 215(32.7%) 73(11.1%) 657 

 

Old 95(27.8%) 94(27.5%) 112(32.7%) 41(12.0%) 342 

 

Marginal totals 693 732 762 323 2510 

 

IRs 1.22  0.91  0.86  1.06  

  

The cross-comparison between the overall and disaggregated levels serves to highlight three 

important issues. First, the operational difference among the row percentage distributions within 

each column gradually increases when the exposure is calculated at a finer stratification level. 

The phenomenon can be accredited to the smaller sample size of crash data as a result of data 

stratification to reflect a specific condition. For example in Table 5, there are only six (6) crashes 

of pickup trucks collided by heavy trucks on rural arterials in the weekdays, while the maximum 

row percentage difference reaches as much as 13%. Second, for the statistical testing it appears 

that the p-values increase considerably with the disaggregation levels. For rural areas and arterial 

roadways (Table 5), no statistical differences are found among different distributions for vehicle 

types (p>0.05). For local streets and in PM hours (Table 6), the differences among row 

percentage distributions for various age groups are not statistically significant. Consequently 

under these disaggregation conditions, the not-at-fault drivers are considered to be randomly 

selected by the culpable drivers at the time of crash occurrence. Third, compared to other driver-

vehicle types of the same classification, the row percentages and IRs for passenger cars and mid-

aged drivers remain relatively stable across the diverse data disaggregation spectrum. A plausible 

explanation is that these drivers are not particularly specific to certain temporal or spatial 

circumstances when or where crashes occur and thus their exposures on the roadway network 

may not be as sensitive to the diversified environmental settings.  

 



In order to further explore how the exposure for different driver-vehicle characteristics vary with 

the data disaggregation, Figures 1 and 2 graphically illustrate the average D2 percentages for 

different vehicle types and age groups under different disaggregation conditions.  

 

 
 

Figure 1 Average D2 percentage for different age groups under various disaggregation levels 

 

 
 

Figure 2 Average D2 percentage for different vehicle types under various disaggregation levels 

 

Figure 1 shows that the relative proportions of mid-aged drivers approximately stay unchanged, 

while for young drivers the percentages increase considerably from 20.74% at the overall level to 

27.61% on urban local streets in the weekend PM hours. Conversely, the percentages of old 

drivers (60+) decline steadily across the same levels of disaggregation. These outcomes are in 

accordance with the reality that young drivers are more active in the urbanized areas at the 

weekend night whereas the old drivers become less active. Similarly, figure 2 depicts the trend 

that the proportions of pickups and heavy vehicles gradually increase when crash data are 
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classified to specify the weekday, rural areas, and freeways in a stepwise manner, while the 

percentages for passenger cars show the opposite tendency. The phenomenon can be well 

explained by the fact that the rural arterials (mainly freeways and partially principal and minor 

arterials) are particularly favored by the heavy trucks compared with the local streets in the 

weekdays (Stamatiadis and Deacon, 1997).   

 

DISCUSSION 

 

The principal objective of the study was to further develop complimentary set analysis with a 

theoretical framework of statistical testing in the context of validating the underlying 

assumptions of quasi-induced exposure. The goal is to enable D2 row percentage distributions 

for multiple column classifications (>2) to be compared concurrently in the exposure (D1-D2) 

matrix. With the aid of complimentary set analysis, comparisons were conducted for three key 

driver-vehicle characteristics at a variety of data disaggregation levels (e.g., the overall level, 

time of day, hour of day) to see if the fundamental assertions of quasi-induced exposure are 

satisfied for a given dataset. There are three main findings from the exercise.  First, at the overall 

level the statistical testing does not seem to support the hypothesis that one non-responsible 

driver-vehicle combination in the driving population is randomly impacted by the culpable 

parties of the same classification; in other words, the innocent drivers involved the crashes may 

not be reasonably representative of the driving population. From an operational standpoint, the 

maximum difference among the row percentage distributions appears to fall within a natural data 

variation or noise. Second, with the crash data finely disaggregated to reflect more constrained 

circumstances, the statistical testing results demonstrate an increasing trend of p-values, 

suggesting that the difference between the D2 row percentage distributions is becoming 

statistically insignificant and consequently the stratified dataset satisfies the random-selection 

assumption of quasi-induced exposure. Third, an important phenomenon inherent in the exposure 

matrix is that a driving cohort has a higher probability to collide with the same driving type as 

opposed to others of the same classification, due to the similarity of driving behaviors and 

driving environments. Through the study it has been verified that complementary set analysis is a 

straightforward and effectual technique to check the validity of quasi-induced exposure.  

 

The complimentary set analysis fails to validate the not-at-fault assumptions of quasi-induced 

exposure with the proposed chi-square testing approach at the overall level, which is somewhat 

at odds with the past research findings (Jiang and Lyles, 2010). However, with the data gradually 

stratified over specific temporal and spatial conditions, the p-values given by the statistical 

testing start to increase and suggest that the underlying assumptions are generally met. Obviously, 

data disaggregation plays an important role in these validation efforts, which has been previously 

proven to reduce exposure data irregularities (Chandraratna and Stamatiadis, 2009). The 

exposure data irregularities typically occur at the overall level where the exposure estimate for a 

driver-vehicle combination is computed in an aggregated manner to represent various crash 

environments (e.g., time of day, weather conditions, day of week, roadway functional 

classification, and levels of land use development). For example in Figure 1, the young drivers 

account for approximately 20.7% of total driving population as a whole, increasing to 21.8% in 

the weekdays, 21.9% in the urban areas, 25.0% on the local streets, and jumping to 27.6% during 

the PM hours. Since for young drivers there is an inherent characteristic of changing exposure 

proportions under various circumstances, it can reasonably explain why the compounded 



exposure distribution (e.g., at the overall level) is less accurate to represent a random sample of 

its driving population. Also evidenced from Figure 1 that data disaggregation has less influence 

on the exposure proportions of mid-aged drivers (25-40) over the same disaggregation strata: 

their exposures remain fairly stable over the spectrum. Consequently, the finding of the research 

emphasizes that the quasi-induced exposure technique can be more beneficial to those driving 

cohorts with varying exposures in related to data disaggregation. 

 

Restrictions are placed on the extent of how finely the crash data can be disaggregated in order to 

maintain the row stability of the exposure matrix. As demonstrated from tables 5 and 6, the 

frequencies (representing the relative exposure) are substantially reduced with the stratification 

of crash data, while some practical discrepancy of row percentage distributions exceeds the 

threshold value (4 percentage points). When the sample size is relatively small, the data noise 

and/or natural data variation start to phase in and play a significant role, which can eventually 

dominate the testing results. In order to hold to the underlying assumptions of quasi-induced 

exposure, the crash sample size needs to be reasonably large to allow both statistical and 

practical significance to be examined. The research has identified an inherent pattern that the 

same driving cohort has the inclination to collide with each other especially when data are 

analyzed in an aggregated mode; however, for young drivers in Table 6 the pattern seems to 

decrease when the data are more highly disaggregated. Based on the chi-square calculation 

procedure, an unusual high proportion of innocent drivers within each column can skew the chi-

square statistic and consequently the test may produce a small p-value. Comparatively, the high 

probability of collisions between the same driver-vehicle types affects the results of the statistical 

testing more at the aggregated levels than at the finely disaggregated levels (the pattern is gone at 

the last disaggregation level in Table 6 where the null hypothesis is accepted). This reinforces the 

notion that reasonable data homogeneity in the driver/vehicle population shall be ensured when 

quasi-induced exposure technique is implemented in the risk analysis.  

 

Using the complimentary set analysis to validate the underlying assumptions of quasi-induced 

exposure has shown its promising capability and potential for widespread applications. First, the 

complimentary set analysis can be easily deployed on the exposure (D1-D2) matrix. Compared 

with using three-or-more vehicle crashes (Chandraratna and Stamatiadis, 2009; Jiang and Lyles, 

2010) or external exposure ―truth‖ (Kirk and Stamatiadis, 2001b) to accomplish the validation, 

the technique requires two-vehicle crash data only and there is no need for additional exposure 

data as the control reference. Second, the proposed testing framework for the complimentary set 

analysis is simplistic in nature and the resulting crash propensity from different age groups and 

vehicle types generally matches the priori expectations and current knowledge base. Third, the 

complimentary set analysis poses the ability to check the validity of quasi-induced exposure at 

finely disaggregated levels. This capacity matches with the strength of quasi-induced exposure to 

study the crash propensity of certain driver-vehicle characteristics at specified circumstances. 

This is important, because without a positive validation, the quasi-induced exposure method 

should not be used. It may be ideal to use VMT data to conduct the validation at a highly 

stratified level, however the validation as such can’t be achieved since it is practically infeasible 

to obtain VMT at the same level of disaggregation.  

 

There are also limitations associated with the proposed theoretical testing framework. The chi-

square testing method appears to be sensitive to the sample size of the cells in the exposure 



matrix. With identical row percentage distributions, the chi-square test is prone to reject the 

hypothesis when the sample size is comparatively large and accept the hypothesis when the 

sample size is relatively small. A methodological issue is related to the choice of threshold value 

in determining the operational significance. The four (4) percentage points are an empirical value 

and mainly depend on pragmatic practice and judgment so it may be arbitrary.  

 

The aforementioned limitations serve to suggest directions for the future research. A modified 

testing method should be pursued to conduct the analysis based on cell percentages rather than 

actual frequencies and thus mitigate the impacts of the sample size on the test results. After all, 

the percentage distributions are of the most concern in the context of validating the not-at-fault 

conjecture of quasi-induced exposure. An alternative solution is to use statistical and operational 

testing methods in a combinatory manner (Jiang and Lyles, 2010). One of the pitfalls of the 

statistical significance test is that it is unable to assess the probability that two samples were 

obtained by chance or if the D2 row distributions were simply atypical. The row percentage 

distributions in the D1-D2 matrix can be statistically different due to a relatively large sample 

size, but operationally insignificant due to a small effect. Therefore, it is essential that 

operational significance be considered in combination with statistical significance. From this 

perspective, further research effort is warranted to develop a more justifiable value for the 

operational significance.  

 

In summary, the research effort was mainly focused on providing a statistical testing framework 

to the complimentary set analysis in terms of validating the not-at-fault assumptions of quasi-

induced exposure. The method has demonstrated that at a finely disaggregated level the not-at-

fault drivers are randomly selected by the drivers of the same classification. Thus, the method 

has manifested its great potentials to estimate the relative exposure particularly at a highly 

stratified temporal or spatial circumstance. Considering the simplicity, the complementary set 

analysis will become a useful and convenient hand-on tool to validate the fundamentals of quasi-

induced theory before the exposure measurement can be implemented in the real application.  
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