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ABSTRACT   
 
Crashes are getting more attention in many countries. Crash prevention is vital in traffic safety 
especially on motorways where crashes are usually severe due to high speed. This paper 
proposes an approach for identifying traffic crash risk on the motorways in real-time using 
meteorological data and individual vehicle traffic data. The study site is on Swiss motorway A1 
between Bern and Olten. Crashes interested in are rear-end and sideswipe. 
 
Traffic conditions when there is no crash, called non-crash cases, are matched with traffic 
conditions leading to crashes, called pre-crash cases. After matching process, relevant non-crash 
cases are selected to compare with pre-crash cases whereas; irrelevant non-crash cases are not 
further considered. In reality, if a new traffic condition is not relevant to any pre-crash case it can 
be declared as non-crash. Thereafter, models are developed to distinguish pre-crash and relevant 
non-crash cases. Variables called risk indicators are generated and single-variable models are 
developed. Each risk indicator has certain performance in differentiating pre-crash and non-crash 
cases. To improve that performance, risk indicators are fused into a unique high performance 
model. Our results present high accuracy of more than 75% of non-crash and pre-crash cases 
correctly identified. 
 
Finally, to predict near future traffic crash risk in a real-time framework, traffic crash risk 
identified during the last intervals are used. The test with historical data shows that if two or 
three last intervals are identified as pre-crash, the chance for the coming interval to be pre-crash 
is more than 95%. 
 
Keywords: Traffic safety, risk indicators, real-time, individual traffic data, accident data, crash 
prevention. 
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BACKGROUND 
 
Studies in traffic safety during the last ten years can be divided into two groups: aggregate and 
disaggregate based on the units of analysis according to Golob and Recker, (2003). For aggregate 
studies, units of analysis are crash frequencies whereas; for disaggregate studies, units of 
analysis are individual crashes. The present study focuses on identification of real-time crashes 
and provides prediction on the occurrence of individual crashes. Therefore, this study is 
classified into the group of disaggregate studies. 
 
During the last decade, several disaggregate studies have been undertaken as presented in 
(Abdel-Aty et al., 2008; Abdel-Aty et al., 2007; Hossain and Muromachi, 2010; Hourdakis et al., 
2006; Lee et al., 2003; Oh et al., 2001; Pande and Abdel-Aty, 2007; Pham et al., 2011). 
However, in most of these studies, the performance of developed models in identifying real-time 
traffic crash risk is still low – lower than 70% (i.e. more than 30% crashes cannot be identified). 
Some models can do better with more than 70% out of crashes identified yet the cost for that 
accuracy is the higher rate of non-crash cases identified as crash cases (i.e. false alarm rate is 
more than 30%). 
 
The work presented in this paper is a further development of the study presented in (Pham et al., 
2011) aiming to improve the performance of developed models. Here, we present results of our 
study aiming at identifying and predicting motorway traffic rear-end and sideswipe crashes by 
using risk indicators. In section 2, the methodology applied in this study is presented. The study 
site is presented in the third section. Applying the methodology with data from the study site, 
obtained results and analyses are discussed in the fourth section. The conclusion is presented in 
the last section. 
 
METHODOLOGY  
 
Introduction 
 
The methodological frame work of the current study is presented in Figure 1. At first, pre-crash 
and non-crash cases are defined assuring that pre-crash and non-crash cases are not overlapping. 
As pre-crash cases which occur before crashes are rear events, it is necessary to select relevant 
non-crash cases to be compared with pre-crash cases. Pre-crash cases together with matched non-
crash cases make up Traffic Regimes. Under each Traffic Regime, models for identifying traffic 
conditions similar to pre-crashes cases are developed. To predict the near future crash risk, 
results from risk identification models under each Traffic Regimes are combined. 
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Figure 1 : Methodological framework 

 
Pre-crash and Non-crash Definition 
 
When a crash occurs, the traffic evolution preceding the crash is of interest in the current study. 
Traffic evolution following the crash is not considered as the traffic could be deviated by the 
crash itself or intervened by the police or emergency services that come to the crash location. As 
illustrated in Figure 2, for a crash there is a crash zone including traffic evolution before and 
after the crash. Crash zone is divided into three parts: pre-crash buffer zone and pre-crash zone 
that precede the crash and post-crash zone that follows the crash. Outside of the crash zone is the 
non-crash zone. The post-crash zone is not considered in this study. The pre-crash zone contains 
traffic evolution leading to the crash. Therefore, the pre-crash zone is used as the container of 
pre-crash cases. The pre-crash buffer zone is the frontier between the pre-crash zone and the non-
crash zone. The presence of the pre-crash buffer zone is necessary to avoid any potential 
overlapping between pre-crash and non-crash zones. 
 
The non-crash zone includes traffic evolution that is not within crash zones of all recorded 
crashes, including crashes which are not rear-end or sideswipe. 
 
In the current study, the duration of pre-crash buffer zone and pre-crash zone is fixed at 30 
minutes. According to our analysis, for some crashes, the traffic can only be recovered to normal 
state at three hours after the crash. Therefore, to avoid any possible post-crash effect, the Post-
crash zone is fixed at 210 minutes.  
  

 
Figure 2 :  Definition of Pre-crash and Non-crash cases 

 
Here, a traffic case is defined as traffic evolution during 5-minute interval. A pre-crash case is a 
traffic case occurring within pre-crash zones. As a pre-crash zone is a 30-minute interval, there 
are six pre-crash cases within a pre-crash zone. A non-crash case is a traffic case occurring 
within non-crash zones. In the current study, the proportions of traffic evolution that are 
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unconsidered include all crash zones of crashes which are not rear-end or sideswipe and all pre-
crash-buffer zones and post-crash zones of rear-end and sideswipe crashes. 
 
To conform to our previous work presented in (Pham, Bhaskar et al. 2011), we call non-crash 
cases as NTS and pre-crash cases as PTS. Both PTS and NTS are characterized by 21 variables: 
Time of the day (X1); Day of the week (X2); Flow, average speed, average headway, occupancy, 
headway variation, speed variation and percentage of heavy vehicles on the left (from X3 to X9, 
respectively) and on the right (from X10 to X16, respectively) lanes; speed difference between 
two lanes (X17); flow change, speed change on the left (X18 and X19, respectively) and the right 
(X20 and X21, respectively).  
 
Pre-crash and Non-crash Matching 
 
As crashes are rear events, the number of pre-crash cases is much lower than the number of pre-
crash cases. As stated in (Pham, Bhaskar et al. 2011), the models developed based on the 
imbalanced data sets might have high accuracy with training data, yet low prediction 
performance when used with new data. Moreover, as rear-end and sideswipe crashes only occur 
under certain traffic conditions, i.e. when the traffic flow is high, many non-crash cases such as 
midnight traffic might not be appropriate for being compared with pre-crash rush-hour traffic. 
Therefore, it is necessary to sample non-crash cases such that non-crash and pre-crash cases are 
comparable. 
 
Figure 3 presents the process for matching NTS with PTS. The process includes clustering NTS 
into groups called traffic regimes – TR represented by cluster centers and classifying PTS into 
obtained TR such that finally, under each TR, there are a set of NTS and a set of PTS. To cluster 
NTS, NTS data are transformed using Principal Component Analysis (PCA) to reduce the 
number of dimensions facilitating the clustering step. Eigen vectors used in PCA transformation 
of NTS are also used to transform PTS during classification step. 
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Figure 3 : Matching NTS with PTS 

 
Risk Identification Models 
 
Two risk indicators are used in this study: the inverse of Time-To-Collision – TTC (Hayward 
1971) and Platoon Barking Time Risk – PBTR (Pham, Mouzon et al. 2008). These indicators are 
calculated based on individual vehicle data. To aggregate the indicators for 5-minute intervals, 
the statistics of the indicators during 5 minutes are mean and standard deviation. The statistics of 
risk indicators are used as variables in the models for identifying traffic risks. Two risk indicators 
make up four variables. Together with 21 variables used for representing NTS and PTS, the total 
number of variables that can be used for developing risk identification models under each traffic 
regimes is 25. 
Under each regime, single-variable models for 25 variables are developed to distinguish NTS 
and PTS belonging to that regime. After that results of single-variable models (M1 to M25) are 
fused to generate a unique risk identification model, called fused Risk Identification Model – 
RIM under that regime as illustrated in Figure 5. 
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Figure 4 : Fusing single-model process 

 
The fusion process is based on a Dempster-Shaffer framework. 
 
Risk Prediction Model 
 
Once the traffic crash risk during the last 5-minute interval is identified in a real-time framework, 
near future crash risk can be predicted. Figure 6 present an example of the decision that needs to 
be done when the risk of the last six 5-minute intervals is identified: PTS-PTS-NTS-PTS-PTS-
PTS. With that pattern, what can be predicted? 
By testing the sensitivity of historical data, the number of 5-minute intervals that is necessary for 
predicting near future risk is decided. 
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Figure 5 : Traffic crash risk prediction process 
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STUDY SITE  
 
A study site for the present study is selected on Swiss motorway A1 between two cities Bern and 
Zurich. The main criteria for study site selection is the simultaneous availability of individual 
vehicle data from double loop traffic detectors and crash records around the location of traffic 
detectors. The selected study site is presented in Figure 6. At the study site, there are two lanes 
per traffic direction.  
 

Bern

X Traffic Detector Station X  
Figure 6 : Study site 

 
 
RESULTS AND ANALYSES  
 
Traffic Regimes 
 
Based on the clustering error, the number of traffic regimes equal to 8 is chosen. Eight regimes 
are named from A to H. This is because selecting more traffic regimes does not reduce 
significantly the clustering error. Figure 7 presents the results of NTS and PTS matching process. 
Under each of eight traffic regimes, there is certain number of NTS. However, under regimes A 
and F, there is no PTS classified in. Under regimes D and E, the number of PTS is also low 
whereas; the number of PTS is higher under regimes B, C, G, and H. 
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Figure 7 : Distribution of NTS and PTS under eight traffic regimes 

 
In  a real-time framework, whenever a new traffic case is classified into one of regimes A, B, D, 
and F, that traffic case can be declared as “risk free”. If the traffic case is classified into one of 
regimes B, C, G, and H, the fused RIM can be used to identified whether that traffic case is risky 
or not. 
 
Fused Risk Identification Models 
 
Single-variable models are developed using Random Forest (Breiman 2001) to classify a traffic 
case into one of two class NTS or PTS. For a traffic case, there are 25 results from 25 single-
variable models. The Fused RIM result is decided by voting single-variable results. 
presents the results obtained with Fused RIM for four traffic regimes B, C, G, and H. With data 
including NTS and PTS divided into three smaller data sets: training and validation the 
performance of the models is reduced for the validation data set yet still at high level. 
 

Table 1: Fused RIM results 

Traffic 
Regime 

Training (%) 
Validation 
(%) 

NTS PTS NTS PTS 
B 99.35 100.00 95.53 83.33 
C 95.64 100.00 90.91 90.00 
G 92.70 100.00 87.05 87.80 
H 93.59 100.00 83.35 75.31 
All four regimes 95.67 100.00 89.83 83.62 

 
Crash Risk Prediction Model 
 
Fused RIMs provide the affirmation of traffic crash risk for a traffic case that has occurred. In a 
real-time framework, the affirmation of traffic crash risk for several last traffic cases can be 
employed to predict the coming traffic case. Call the false alarm rate the percentage of NTS that 
are wrongly predicted as PTS and missed alarm rate the percentage of PTS identified as NTS. 
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The sensitivity test with historical PTS shows that there is a tradeoff between the false alarm rate 
and missed alarm rate: it is impossible to minimize false alarm rate and miss alarm rate at the 
same time. 
 
As illustrated in Figure 8, the number of the last traffic cases considered to predict the coming 
traffic case, called the length of risk memory, ranges from 1 to 5. The optimum length of risk 
memory can be 2 or 3 as with this length, the false alarm rate and the missed alarm rate are 
although not the lowest yet acceptably low compared to other length of risk memory. 
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Figure 8 : Tradeoff between false alarm rate and miss alarm rate 

 
If the length of risk memory is fixed at 2, more than nearly 99 NTS are correctly predicted and 
nearly 95% PTS are correctly predicted. 
 
CONCLUSIONS 
 
This paper describes our on-going work on developing models for predicting near future traffic 
crash risk on the motorway. Data fusion technique is used to combine results of single-variable 
risk identification models. Among 25 variables, four variables are extracted from risk indicators. 
Our results are encouraging and show that nearly 95% risky traffic cases can be predicted with 
the cost of more than 1% of the time, the non-crash traffic is classified as pre-crash. 
 
In reality, the false alarm rate of more than 1% is still high. Therefore, it is necessary to reduce 
the false alarm rate with the same or reduced missed alarm rate. One solution can be using other 
existing risk indicators or developing new risk indicators. 
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