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ABSTRACT

Naturalistic driving studies provide an excellepportunity to better understand crash causality
and to supplement crash observations with a mugedaumber of near crash events. The goal
of this research is the development of a rigorai®tdiagnostic procedures to identify and
validate useful crash and near crash events thaveaised in enhanced safety analyses. As such,
the research seeks to apply statistical methoga@®f the methodology. A way to better
understand crash occurrence and identify poteciahtermeasures to improve safety is to learn
from and use near-crash events, particularly these-crashes that have a common etiology to
crash outcomes. This paper demonstrates that &stage modeling framework can make the
analysis of naturalistic driving data tractableeTgrocedure is tested using data from the VTTI
100-car study for road departure events. A tot&lohon-intersections and 12 intersection-
related events are included in an application efftamework. While the sample sizes are
limited in this empirical study, the authors bekdhe procedure is ready for testing in other
applications.

Keywords: traffic safety,crash surrogate, naturalistic driving study.
INTRODUCTION

Considerable research has been conducted oveash&(d years on the development of crash
surrogates for assessing traffic safety (Datta91®&fauer, 1982; Hydén, 1987; Chin and Quek,
1997; Archer, 2004; Shankar, et al., 2008; Tarkal.e2009; McGehee et al., 2010; Jovanis, et
al., 2010; Guo et al., 2010). Nevertheless, thetienited agreement concerning fundamental
issues such as the definition of a surrogate,déetification of a surrogate from field data and
the validation of particular events as crash swates) The lack of agreement has hindered the
ability of researchers and practitioners to rigatguwse crash surrogates in traffic safety studies.



One area of emerging agreement is the definiticam @frrogate (Hauer, 1982; Hauer and
Gardner, 1986; Dauvis et al., 2008; Shankar, e2@D8; and Tarko et al., 2009). As stated by
Hauer, it isNumber of crashes expected to occur on an entiingla certain period of timet}

= crash-to-surrogate ratio for that entityt* number of crash surrogates occurring on an gntit
in that time (c)or:

A =mc (1)

This statement and its application by several rebeas provide support for the view of
surrogates as linked to crashes through a rabeldd, .

Another perspective is provided by Grayson and ldetk{d 987) who suggest that surrogates are
more than simple replacements for crashes; thegusethat they should be studied for their own
insights. This discussion leads one to see thdttdrature already reveals challenges in the use
of crash surrogates; most of this literature eviblfirem an interest in a particular surrogate, the
traffic conflicts technique, first proposed by Hasgkand Harris (1967) and codified in a series of
studies by Hydén (1987). Interestingly, William®8D) argued that the absence of standard
techniques for defining surrogates in traffic canfstudies led to the production of a series of
research results which were difficult to comparae@f the goals of the research by Hydén and
his colleagues was the standardization of traffiefloct measurement so that results could be
compared across studies.

The emerging use of naturalistic driving studiefersfthe unique opportunity to observe both
crashes and near crash events as they occur ooatheThe Strategic Highway Research
Program 2 (SHRP 2) has a safety program whichdw@sgnized the importance of surrogates as
a potential enhancement to safety research andlteasly resulted in several studies with
surrogates as at least part of their focus (e.@rRISHE web site).

Naturalistic driving has been applied to studiedmfers from the regular driving population
(e.g., Dingus et al., 2005), truck drivers (e.ganiwski et al., 2005; Hanowski et al., 2007a;
Hanowski et al., 2007b), young drivers and olderets (VTTI web site, 2010). There have also
been a series of technology tests of on-boardysatptipment that have used the naturalistic
technique (e.g. Bogard et al., 1998; LeBlanc e28l06; University of Michigan Transportation
Research Institute and General Motors Researcibamdlopment Center (UMTRI), 2005).

There are two distinguishing features of naturalidtiving studies. First, vehicles are
instrumented with an array of sensing technologes video cameras, radars, GPS,
accelerometers, gyroscopic sensors) that obseevériver and the road ahead of the vehicle
continuously during driving. As a result, eventsrdérest such as crashes and near crashes are
recorded with multiple sensors, allowing unpreceéel@mpportunities to gain insight on crash
etiology. Second, drivers are asked to drive ag tleemally would (i.e. without specific
experimental or operational protocols and not &maulator or test track). The period of
observation can vary from several weeks to a yearaye.

All these data are recorded and stored within abaard data acquisition system (i.e. DAS). The
DAS for each vehicle is periodically copied intsearchable data base and assembled for later



analysis. Rather than relying on law enforcemefi¢@f judgment or witness recollection, the
DAS can record virtually all the actions of the gab driver before, during and after each event.
Because events are recorded using video and vedanbors, individual events of interest can
generally be described with greater accuracy alngbiity than using crash reports assembled
after the fact.

Crash and near crash events in naturalistic drignegtypically identified through the detection
of unusual vehicle kinematics recorded electrotyadarough accelerometers and gyroscopic
sensors. Table 1 is an example of search criised to identify events for the VTTI 100-car
study (Dingus et al., 2005). Vehicle-based acceteters gyros are used to measure lateral and
longitudinal acceleration and vehicle rotation;staeneasures are used individually or with time-
to-collision (TTC) estimates from radar to initialtlentify potential events. The driver may also
highlight a driving event by using an "event" buattocated in the vehicle for this purpose.
Forward and rear Time-To-Collision (TTC) can beduséth vehicle kinematics (including
measurements of a target vehicle) to identify aold#l events. Once identified kinematically,
the events are reviewed through use of forwardfacel video. They are retained if verified as
safety-related events and discarded if not. Widaioh event, factors that precipitated the event,
that contributed to the event, and that were aasatiwith the event are grouped into pre-event
maneuvers, precipitating factors, contributing dast associated factors, and avoidance
maneuvers. The event begins at the onset of thugpieging factors and ends after the evasive
maneuvers. Data for the period shortly before,rdpand shortly after the event are then
preserved.

Table 1 Summary of kinematic search criteria fagrds in VTTI study

Trigger Type Description

1. Lateral Acceleration * Lateral accel> 0.7 g.

* Accel. or decel> 0.6g.

* Accel. or decal> 0.5 and forward TTG 4 sec.

» 0.4g<longitudinal decel. < 0.5g, forward TT<4 sec.,
and forward range at the min. TRCLOO ft.

2. Longitudinal Acceleration

* Activated by the driver by pressing a button lodate the dashboard when an

3. Event Button event occurred that he/she deemed critical.

* Accel. or decel> 0.5g and TTCG 4 sec.
4. Forward Time-to-Collision | « 0.4g< longitudinal decel. < 0.5g, forward TT4 sec.,
and forward range at the min. TRCLOO ft.

* Rear TTC< 2 sec., rear range50 feet, and absolute accel. of the following

5. Rear Time-to-Collision vehicle > 0.3g

» Any value greater than or equal to a plus AND midukegree change
6. Yaw rate in heading (i.e., vehicle must return to the saemegal direction of travel)
within a 3 second window of time.

In addition to the kinematic variables discusseovabthere are three other sets of data routinely
collected in naturalistic driving studies:
1. Context variables — these are descriptors of tlysipal features such as road and
environment at the time of the event including getra alignment and environmental
factors (e.g. rain or snow; day or night). Somengetic features may be obtained by



linking on-board GPS to existing geographical infation systems (e.g. roadway
inventory systems maintained by most state hightepartments).

2. Event attributes - attributes of the event occgrimmediately prior to and during event
occurrence. Examples include the occurrence oeddistraction (sometimes identified
by type of distraction) and presence of fatigue.

3. Driver attributes - typically obtained during suttfjentake to the study and may include
age, stated prior driving record, propensity teetakks when driving and physiological
conditions such as vision and reactions time.

While some aspects of events remain unobservedtfe gctions of drivers in other vehicles and
events beyond the range of cameras and sensassanitunquestioned advantage to observe the
actions of individual drivers, over long periodstiofies, including crash and near-crash events
involvements. Although the result is a set of pt#dly very rich data that offers insight to
crashes and near crash events that have beenysivimavailable, a challenge remains in
evaluating the near crashes and seeking a cledations ship between them and crashes.

STUDY GOALS

While naturalistic driving studies provide unigugportunities for safety analyses, the challenge
of standardized measurement and observation renfastandardized definition of a surrogate
is a beginning, but more is needed. There is a teeddvelop a standard procedure to examine
the validity of the events identified by using thefinitions. This validation for naturalistic data
has several steps:
1. The initial screening of possible events of interegluding crashes and near crashes
2. An assessment of the events to classify them gg& current classification of road
crash types are a useful place to begin (e.g.depdrture, rear end).
3. The events remaining after initial screening arsgsification need to be further analyzed
so that the crashes and near crashes have a eohgiblogy.

One can think of this goal by comparison with madtitesting and diagnosis. Physicians and
other medical professionals conduct standardiz&ld tesing accepted diagnostic procedures to
identify the presence of disease in patients. &u reafety analysis, particularly with near crashes,
the challenge is to develop valid consistent digjngrocedures that can be used to assess
safety problems for locations in the network owdrs in the population. The key is the
standardization of diagnoses so that findings neaggplied across studies through the
accumulation of a firm knowledge base.

The goal of this research is the development gjrehatic procedures to identify and validate
useful crash and near-crash events that can bamusatianced safety analyses.

METHODOLOGY

Figure 1 is a conceptualization of the analysiswfogates, crashes, and near crashes using
naturalistic driving data. Normal driving (i.e. toealistic) leads to a series of events that may be
of interest for further study based upon pre-deteech screening criteria; this is the First
Screening. These criteria should be set to be shawf many possible events, with particular



care in not excluding events that may be a crastear crash. Candidate screening criteria
include those listed in Table 1 and possibly oth€&hss first screening is based on an analysis of
computer-stored data (likely from the DAS and oth&rmation integrated into a data base).
This first screening does not require analysisid¢®.

H
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Surrogate Event
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Any Event of

Near Crash
Interest

[ Normal Driving

Further Event

No Further Event

First Screening Classification; Validation; Modeling w in Eq.(1)
Second Screening;

Figure 1 Conceptualization of the Relationship leetwCrashes and Near Crashes in Naturalistic
Driving Data

This sets the stage for Classification, which laraoutcome the grouping of crash and near
crash events with similar etiologies or generatihgracteristics. The classification criteria
include kinematic or vehicle movement-related mess(e.g. lateral acceleration rate) and event
attributes, e.g., intersection location or roadwasve location. After the Classification, the
Second Screening further refines the set of ewvaritderest. Once the Second Screening is
complete, the Validation determines that the evehisterest for a particular study have been
properly identified and separated from those nohtarest, because they fail the tests for a
similar etiology or crash generating process. Noti@t the notation is that the events selected
from the Validation (i.e. the model outcome) arbbech‘surrogate events,” even though they
include both crashes and near crashes. This allowsotation to be consistent with that of
Equation (1).

At the end of Validation stage, there are two ctadal probabilities of interest: the probability
of a crash outcome given either branch of the (@éber Y; = 1 orY; = 0). These conditional
probabilities are explored through an event-basedeh Notice that therob(Y, = 1|Y; = 1),
represents the conditional probability of a crastergan event identified as a surrogate event.
The conditional crash probability is interpretedtzes proportion of surrogate events would end
up with crashes; this is, in fact the'‘of equation 1. A test of the event-based modeleiscribed
in a companion paper (Wu and Jovanis, 2011). Twerddranch (Y = 0) represents events
deemed not of interest; these may be re-examibe sure there are no further events of interest
(Y2 = 1) although this is not conducted in this papéis branch is intended to capture the
analysis of events that lead to crashes but dbana large kinematic signatures; these events
were observed in the VTTI data, so this outconspexifically mentioned as an area in need of
specific analysis.



The Analytic Procedure

Figure 2 is an overview of the proposed framew&ch step in the procedure is described in
the following section. Statistical approaches dfered at each step but these are examples;
other approaches are certainly possible. The glé@aundergo a sequence of statistical tests with
the overall goal of identifying crashes and a $aiimilar near crashes for later analyses.
Because the description of the framework is cemtréhe paper, we provide rather detailed
descriptions of each step and the methods apmiedrtdata set.

First Screening

First Screening seeks to detect possible evenigerkest using information collected in the
DAS. One way to think about the screening of cia@sth near crash events is in parallel with
medical diagnosis. The result of a diagnostictastbe classified as a true positive (TP), a true
negative (TN), a false positive (FP), or a falsgate (FN). As the names suggest, a true
positive result occurs when a diseased subjedriectly classified with a positive test; a true
negative is a situation where the subject doehae¢ the disease and the test says so. Both of
these outcomes are desirable. A false negativét sturs when a diseased subject tests
negative; similarly, a false positive occurs whema-diseased subject has positive result. At
this stage we want to have true positives in diagrgpcrash and near crash events and true
negatives in identifying events that are not safetgited or not of interest. The test threshold
determines the number of true positives, true negmtfalse positives and false negatives.

Receiver Operating Characteristic (ROC) Curve

One way to examine tradeoffs with the 4 outcomendtis the Receiver Operating Characteristic
(ROC) Curve, which can be conceptualized as detengnithe optimal diagnostic point (Peat
and Barton, 2005). The ROC technique is commonrdy uis medical science to handle this
problem (e.g. Swets, 1988; Centor, 1991; Obuchqvizld3; Pepe, 2003). We first define a
thresholdc for a marker Z as positive # > ¢, or as negative & < c. A marker in the medical

field indicates a diagnostic test score for a \@eaised to discriminate between a diseased and
non-diseased subject. In our safety analysis, tuden is the variable used to identify the event
of interest in First Screening. A marker could dereematic variable or a combination of
kinematic variables, context variable, and evefnibattes. Let the corresponding true and false
positive rate at the threshaibe TPR€) and FPRY), respectively.

TPR(c) = True Positive Rate(c) = P(Z =c|Y =1) (2)

FPR(c) = False Positive Rate(c) = P(Z = c|Y = 0) (3)
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As the threshola@ increases, both the false positive and true pesrate decreases. Generally,
the thresholds of the criteria should be set ttunhe a high proportion of events of interest (i.e.
high sensitivity). The desired goal is to achieneaaceptable sensitivity (correctly detect event
of interest), say at least 90 percent, at the maxirapecificity (minimum false alarm rate).

Receiver Operating Characteristic (ROC) Regression

Conveniently for safety studies, some medical rebegis (Janes and Pepe, 2008) have found
that some covariatel), that are associated with disease can also intipacharker Z, and hence
impact the inherent discriminatory accuracy ofitherker (i.e. the ROC curve). For example, if
male drivers tend to depress brake pedal harderfémaale drivers (i.e., decelerate faster), then
gender is associated with the marker decelerafibarefore, threshold of the marker may better
discriminate events of interest for female drivdsan for male drivers because female drivers
will have severe decelerations less often. ROCes=gjon methods can be used to test and handle
this situation, where covariates affect the scregnif events of interest (Pepe 2000; Alonzon
and Pepe, 2002). Implementation proceeds in twass{é) model the distribution of the marker
among controls as a function of covariates, ancutatle the case percentile values; and (2)
model the cumulative density function of the RO@vewas a function of covariates. The ROC
curves can therefore be modeled parametricallysoygu

ROC,(f) = ®{ay + ay; @~ (f) + a,M} (4)

where® is the standard normdlis a discrete set of FPR points, angla; anda, are estimated
parameters. lf, is positive then an increaseMfenhances the accuracy of the marker.

Classification

Once initial events are identified, there is a neeskatistically distinguish different event types
Here we seek crashes with similar contributingdescaind etiologies. A counterpart to the Chow
test as suggested by Greene (2003), is proposattiErtake this step. The procedure tests
whether the log-likelihood for a pooled-dataset elasl significantly different from the sum of
log-likelihoods for reduced dataset models. Thelted the classification is the division of
events into groups with similar etiologies; manffatent groups can be identified but it is
expected that most studies, at least initially] usle two different crash types. There is a need to
conduct a second, more refined, screening of teatevto identify even more similar and
consistent crash and near crash events by answg&Vimgt is a good marker? What is a good
threshold?

Second Screening

To provide readers a better sense of the datasasttdp, vehicle lateral acceleration and yaw rate
difference measured using a three second time wirade presented in Figure 3. The lateral
acceleration rate difference is the difference eetwthe minimum and maximum lateral
deceleration within the window (3 seconds in tlase). Each individual trace is a separate event.
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Figure 3 lllustrative Example for Data at Seconde$ning

One can see that the vehicle kinematics for crashts (left side of figure) tend to be more
volatile than that for near crashes. Therefore,aareexpect that a well-defined trigger should be
able to identify the crashes. Notice in particuber figure in the lower right corner of Figure 3.
The near crash events have vehicle traces th&iginer than those for the crash events in the
lower left corner. In concept, these are the evemtare seeking to identify: events that are
similar enough to crash events, but did not raawutcrash outcome. Because the focus now is
time-varying variables, and the crash risk oveetihring the events is also of interest, survival
analysis is well-suited for detecting influentiatfors during the event. It is not only the duratio
of the event, per se, that is interesting, but #iedikelihood that the event will end in "the hex
period” given that it has lasted as long as it(agene, 2003).

Different types of events would essentially begeed by different vehicle movement-related
variables and event attributes. As an examplerdbéeceleration rate may play a more
important role in run-off-road than in rear-end g The challenge in identifying an effective
vehicle movement-related measure is that it is-ileeendent and interacts with other event
attributes during the event. The response variedotebe translated into time-to-failure, where
crash occurrence and the effects of time-varyingadates are of interest. Survival models have
been used in several transportation studies (evanis and Chang, 1989; Hensher and
Mannering, 1994) and they fit well in this analysaadigm.

At this step, the original trigger criteria sholid refined, since the initial criteria are simpkel
an entry threshold to sort events of interest. fEfi@ed thresholds should be determined
differently for each type of event. The ROC curee be applied to identify a threshold that has



the best ability to correctly classify crashes aadr crashes. Although there is no definitive
formula for determining the most suitable cut-ading, the general guidance at this step is that
one needs an ability to effectively filter out tnuegatives in order to "diagnose" similar
surrogate events, though at the expense of noigdsie crashes. However, those true crash
events lost here can possible indicate crash eteaitsre not similar to the near crash events
defined. Finally, one may have more than one sateomeasure with specific thresholds. With a
large sample, a surrogate event can be identiisddbon more than one surrogate measure. The
use of multiple screening criteria is suggestethieyfeedback loop in Figure 2. It is suggested
that criteria be tested one at a time, with spetifreshold levels and that the validity of the
near-crash to crash relationship be tested. Thdbexk returning to the first screening may be
used to change the kinematic trigger, the time aimdsed to compute variable values or some
combination. With our small sample, we provide amhypass through the data.

Validation

General Discussion of Validation

To validate whether an event of interest is a gat® event, it is best to start with the definition
of a surrogate event. Generally, a surrogate eegnésents a circumstance in which a driver
needs to recover to normal driving by either adapgvasive maneuvers (Amundsen and Heden,
1977) or other appropriate response, otherwisashds likely (e.g. Shankar et al., 2008).

Ideally, a set of conditions (¥1) that define a perfect surrogate event can litewras:

where crashes would definitely occur as the evatsfges the conditions of ;Yin terms of event
attributes and context variables. Moreover, Equaf) implies that the association/correlation
between Y and Y, is positive one.

Cov(Yy, Y5 |X1,X5) = 1 (6)

whereX; andX; represents factors that affect ahd Y, respectively.
Equation (5) and (6) provide guidelines for defqanvalid surrogate event. First, though it is not
necessary to have every such event ending up vatash, the conditional crash probability for a

valid but weak surrogate event should still be ificemtly greater than zero, as shown in
Equation ((7.

Pr(Y, =1|Y; = 1,X) » 0 (7)

And there should be a significantly positive asaton/correlation between crash and surrogate
event, as shown in Equation (8).
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Cov(Yy, Y,|X1,X3) » 0 (8)

In this study, a bivariate Probit model is appliedest the Equation (8) using the Tetrachoric
correlation; a correlation measure for a pair ofloy variables Yand Y,. To test Equation (7), a
Probit model is first applied to model the relasbipPr(Y, = 1|¥; = 1,X); endpoint
transformation is then applied to construct confeintervals for the conditional crash
probability for each event, please refer to Xu hadg (2005) for more details. Only events
satisfying Equation (7) and Y&vill be referred to as surrogate events, andlvéltarried into the
next step. It should be noted that a well-defingdagate event should not only satisfy Equation
(7) and (8), but also five general criteria: cotesisy with the basic definitions of a surrogate
(Tarko, 2005; Sevensson, 1998); correlated withctimecal meaningful outcome (Tarko et al.,
2009; Davis and Swenson, 2006; Davis et al., 28b&nkar et al., 2008; Jovanis et al., 2010;
McGehee et al., 2010; Guo et al., 2010; Hauer, 198%e a statistical and causal relationship to
crashes (Sevensson, 1998; Guo et al., 2010); daliyure the effect of the treatment in a way
similar to how the treatment would affect crashéauer, 1999; Shankar et al., 2008; Tarko et
al., 2009).; and, be useful as a "marker” indigptirtime scale underpinning (Shankar et al.,
2008; see Wu and Jovanis, 2011 for additional disiom).

Bivariate Probit Model

To test Equation (8), let whether an event wildeemed as a surrogate evefl) and whether

the surrogate event ends up in a craghle two latent processes; the Tetrachoric coroglas
appropriate for analyzing multivariate relationghijetween the dichotomous variables. The
Tetrachoric correlation for binary variables estiesathe Pearson correlation of the latent
continuous variables. Since the occurrence of gateevents affects crash risk, a bivariate
Probit model is suitable in terms of this situat{@reene, 2003). Formally; = 1 indicates an
event passing all specific conditions through fasteening, classification, and second screening
(Y1=0, otherwise), and X1 indicates a crash occurrende=0, near crash). The surrogate event
and crash generating processes can be written as:

Y/ =XiB1+¢&, Y1 =1if Y7 > 0,0 otherwise 9)
Yy =XB,+¢&, Y, =1if Y; > 0,0 otherwise (10)
E(&11X1,X3) = E(&21X1,X2) =0 (11)
Var(e,1X1,X3) = Var(e,]X1,X,) =1 (12)
Cov(Yy, Y2|X1,X2) = Cov(ey, &;1X1,X2) =p (13)

And the bivariate normal cumulative density funotie
X2 X1
PTOb(Xl < xl, X2 < xz) = f f d)z(zl, Z2, p)le Z2 (14)

11



o —(3) e +x3-2px1x2)/(1-p?)

27-[(1 — p2)1/2

(15)

$2(21,25,p) =

Estimating the Conditional Crash Probability Using Valid Surrogate Events

At this step, one simply uses valid surrogate evemestimate the conditional crash probability
Pr(Y, = 1|Y; = 1,X) in terms of a variety of event scenarios. A geliwzd formulation to
specify the conditional crash probability is deysd in Wu and Jovanis (2011).

THE DATA

A subset of the Virginia Tech Transportation Inggt(VTTI) 100-Car Naturalistic Driving

Study dataset is applied to test the framework gDénet al., 2005). In the 100-car study 241
primary and secondary drivers drove for 12 to 131ithe following the naturalistic driving
protocols described in section 1. Based upon teetesriteria in Table 1, VTTI researchers
identified 69 crashes, 761 near crashes and 828&atevents during the entire study. A focus
on road departure events led to a sample sizé sir@)le-vehicle-conflict crashes and 42 near
crashes. Various aspects of the driving environmemé recorded at the moment of the event,
specifically at the onset of the precipitating éacthrough the use of video and radar. Table 2 is
a list of variable names, definitions, types, aathdources. All covariates available in the VTTI
data set were tested in the analysis. The predistuown in Table 2 are those which extensive
modeling indicated were most consistently assodiaiéh event outcomes. Literally hundreds of
models were explored to produce the reduced gatedlictors in Table 2.

Table 2 Variable Definitions

Group Variable Measurement Variable
Type
Vehicle lateral acceleration rate (Lat) Measureergventh of a second Time Varying
Maximum lateral acceleration rate difference . .
© LATD within 3-second window Time Varying
Instantaneous maximum lateral acceleratior . .
© LATM rate within 3-second window Time Varying
Kinematic . T . ) ]
Variable Vehicle longitudinal deceleration rate  Measuredrgventh of a second Time Varying
Vehicle yaw rate (Yaw) Measured every tenth of@sd Time Varying
Maximum change of yaw rate within 3-second . .
YAWD window Time Varying
Vehicle speed Measured every 3 to 10 tenth of argkc Time Varying
Eyent Presence of driver fatigue Fatigue (1); othery@ye Time Independent
Attributes '
Context Event occurred on a horizontal curve  Curve (1)eotlise (0) Time Independen
Variable The presence of daylight Daylight (1); otherwisg (0 Time Independent

12



DATA ANALYSIS

This section demonstrates how the whole procedursdreening, identifying, and validating
surrogate events is implemented as shown in Figuvée conduct the analysis of the data as we
would with an actual data set, but in this applaatwe can assess the accuracy of our
framework because we have verified surrogate estaolbgies as shown in the Appendix.

First Screening

Given the raw naturalistic driving data, the fi@s$k is to screen events of interest. We use all
information in the 63 "trips" obtained from VTTI Q&ar study to examine how the selection of
first screening criteria would affect the accuratyetecting event of interest. As shown in the
left panel in Figure 4, since the data for eagh¢onsists of 30 seconds before the event, during
the event, and 10 seconds after the event, datagesiods A and C are seen as event not of
interest and data from period B for both crash raeal crash events are considered as
observations with events of interest. As long aspie-specified first screening criteria can "hit"
at least one of the observations in data chunk@&etent of interest would be detected. In other
words, the threshold would be more effective dauld pick out the one extreme lateral
acceleration in Figure 4, without detecting thds#salarm” shown in the right panel of the
figure.

Maximum lateral acceleration difference greatent@alg (LATD), maximum lateral
acceleration (LATM) and maximum change of yaw (&t&WD) within 3-second window were
selected as the marker (the first screening ooibgtior examining their accuracy for detecting
event of interest (period B in Figure 4). The apggiion of the ROC analysis is summarized in
Figure 5. The 45 degree line (the solid line) iatks the reference line; the greater the area
between the ROC curve and the reference line,dtterithe accuracy of the marker. If the ROC
area for a marker is not significantly greater tbas then the discriminating ability for the
marker is no better than random guess. It was foatlateral deceleration difference performs
significantly better than maximum lateral accelerat These test results suggest that the use of
maximum difference within a time window can enhatimemarker's accuracy. Meanwhile,
lateral deceleration performs significantly bettean yaw rate difference.

True Event
of Interest
Detected

10

- C

10 seconds after

A

30seconds before

False
Alarm

Lateral Acceleration (g)
5

Threshold

Maximum Lat. Acce. Difference in 3-sec Window

1}

T T T T T T T T T T
40700 40800 40900 41000 41100 7400 7500 7 7700 7800
ime

00
Time

Figure 4 (Left) Event of Interest vs. (Right) Evéudt of Interest: The Impact of The Selection
of the Threshold.

13



1.00
L

0.75
|

e Ho: area(LATD) = area(LATM)
chi2(1) = 5.25, p-value = 0.02

Sensitivity
0.50
)

0.25
L

* Ho: area(LATD) = area(YAWD)
chi2(1) = 9.72, p-value = 0.002

0.00
L

0.50 0.75 1.00
1-Specificity

————— LATD ROC area: 0.7512 ——= LATM ROC area: 0.7096
--------- YAWD ROC area: 0.6549 Reference

Figure 5 ROC Curves for LATD, LATM, and YAWD

Note that at this step, the goal is to detect asymnaa true events of interest without including too
many false alarms. As an example, one of the triggeria used by VTTI researchers is
maximum lateral acceleration greater than or etpu@l7g; Table 3 indicates that this criteria can
achieve 90 percent specificity (only 10 percerddadlarms), but at the expense of only 27
percent sensitivity (only 27 percent true eventstdrest detected). VTTI did not lose the other
73 percent of events of interest; they used otiggdr criteria (as shown in Table 1) to enhance
the overall sensitivity. Similarly, if one usesdedl acceleration rate difference greater than,0.7g
the sensitivity is almost doubled, though at thpemse of 10 percentage points less specificity.
This confirms that lateral acceleration rate défeze can perform better than maximum lateral
acceleration.

In this study, we will carry events with LATD greatthan 0.4g during the entire events into the
next step as a demonstration of this procedurendJdsATD greater than 0.4g, there are total 99
events detected from the 63 trips. The longesttdasted for 6.3 seconds, the shortest one lasted
for 0.2 second, and the average event duratiorbisetonds. These 99 events will be carried to
classification stage to test the need of furthassification.

Table 3 ROC Curves Analysis for LATM and LATD

LATM LATD
Cut-off point Sensitivity Specificity Sensitivity p&cificity

>=0.0g 100.00% 0.00% 100.00% 0.00%
>=0.1g 100.00% 4.80% 100.00% 2.40%
>=0.29 98.41% 22.40% 100.00% 13.60%
>=0.3¢g 92.06% 33.60% 96.83% 28.00%
>=0.49g 71.43% 60.80% 93.65% 41.60%
>=0.5¢g 46.03% 77.60% 84.13% 56.80%
>=0.69 38.10% 84.00% 63.49% 72.80%
>=0.79g 26.98% 89.60% 49.21% 80.00%
>=0.8¢g 12.70% 95.20% 41.27% 83.20%
>=0.99 7.94% 96.80% 36.51% 84.80%
>=1.0g 4.76% 98.40% 25.40% 90.40%

>1.09 0.00% 100.00% 0.00% 100.00%
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Classification

One of the characteristics of valid surrogate eventhe similarity among them, no matter
whether they end up with crashes or near craslns stiggests that similar surrogate events
should have similar crash probabilities in termsafitext. Figure 6 shows that the crash
probabilities for VTTI single-vehicle conflict evenare quite different depending on whether the
events occurred at intersections or non-intersecegments. This suggests that some of or all
the regression coefficients are different for tlve subsets of the data.

| ® Non-intersection-related
Intersection-related

A4 .6 .8
| | |

Predicted Crash Probability

2
1
[ ]

6 8 1
Maximum Lateral Acceleration Difference in 3-second Window (unit:0.1g)

Figure 6. Structural Difference on Crash Probabsgibetween Events with Different Context

In order to test whether the crash generating gt intersection-related and non-
intersection-related events are the same, the algmitvof a Chow test for structural change was
applied (see Figure 6). Due to the small sample &2 total events), only lateral acceleration
rate difference was included to model the crashabdities. The log-likelihood for the pooled
model is -43.97, as shown in Table 4. The log-iik@bds for the model based on single vehicle
run-of-road and intersection related events aEs-@nd -33.07, respectively. The log-likelihood
for the unrestricted model with separate coefficisrthus the sum, -40.22. The chi-square
statistic for testing the two restrictions of theoped model is twice the difference, LR = 2*[-
40.22-(-43.97)] = 7.5. The 95 percent critical veafar the chi-square distribution with two
degrees of freedom is 5.99 (the p-value of thisscjiare test is 0.02). Therefore, at this
significant level, the hypothesis that the constarh and LATD are the same for both types of
event-based model is rejected. That is, thergyisfstant structural change between the event-
based models for intersection-related and nonsgettion-related events, and hence the model
including both types of events would be inconsistén interesting finding is also revealed in
Table 4, it is that the same LATD would cause higitash probability at intersections than non-
intersections. As a result, 81 non-intersectioatesl single vehicle conflict events will be
carried into second screening stage.
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Table 4 Chow Test for Intersection v.s. Non-intetea Related Events
Dependent Variable: crash occurrence Pooled Modelon-INtersection  Intersection

LATD 0.475 0.376 0.883
(S.E) (0.116) (0.132) (0.371)
p-value 0.000 0.004 0.017
Constant -4.355 -4.002 -5.963
(S.E) (0.867) (0.979) (2.513)
p-value 0.000 0.000 0.018
Observations 99 81 18
Pseudo R-squared 0.181 0.113 0.427
Log likelihood -43.97 -33.07 -7.150

Second Screening

At this step, to identify non-crash events thatsaneilar to crashes, we are not only looking for a
threshold that is best predicting crash occurrebgealso a marker that is influential to crash
risk during the event. Even with a refined sampkd has gone through the previous two steps,
the results from the survival analysis still suggélat in terms of the magnitude of the estimated
coefficient, LATD is more influential as a time-yarg covariate than LATM and YAWD. The
coefficient of 0.12 is interpreted to mean thatstnevents with higher LATD once entering a
situation where LATD greater than or equal to (hdge a higher risk of having a crash, as
shown in Table 5. The greater ROC area for LATDhtfea YAWD also points to the same

result (Ho: area (LATD) = area (YAWD), chi2 (1) 2.06, p-value = 0.0005), as shown in
Figure 7. Note that, if one solely relies on ROChtaques at this step, the time-varying effects
of either kinematic variables, event attributesg@ometric alignment cannot be captured.

Table 5 Survival Analysis in Second Screening

Coef. Std. Err. z P>z 95% ClI
LATD 0.12 0.24 0.50 0.62 -0.35 0.59
LATM 0.03 0.24 0.12 0.90 -0.44 0.50
YAWD 0.07 0.33 0.21 0.83 -0.58 0.72

Sensitivity
0.50
1

T T T T
0.00 0.25 0.75 1.00

0.50
1-Specificity

————— LATD ROC area: 0.7583  ----------- YAWD ROC area: 0.5263
Reference

Figure 7 ROC Curve for LATD and YAWD at Second &criag
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Table 7 summarizes threshold testing for LATD gee#ttan 0.7g, which was selected at the
second screening for two reasons: (1) with ovegp&@ent specificity, the cut-off point is high
enough to leave almost no crash events; and (Zn#rginal increase of specificities for LATD
from greater than or equal to 0.7g to greater tivaequal to 0.8g is only 2.5 percent, but the
sensitivity decreased by 17 percent, suggestinggfleater than or equal to 0.7g can both
provide decent sample size and specificity.

Table 6 ROC Curves Analysis for LATD at Second Soneg

Cut-off point Sensitivity Specificity Near Crashes Crashes
>=0.49g 100.00% 0.00% 24 3
>= 0.5¢ 82.61% 35.53% 21 2
>= 0.69 73.91% 67.11% 8 0
>=0.7g 73.91% 80.26% 2 2
>=0.8¢g 56.52% 82.89% 2 0
>=0.99 56.52% 86.84% 5 1
>=1.0g 47.83% 93.42% 5 4

>1.0g 0.00% 100.00% 0 2

Validation

Use of the bivariate Probit model to test the t#toamic correlation with LATD greater than or
equal to 0.7g, indicates that the correlationgsiicantly greater than zero. In other words,
Equation (8) holds (Likelihood-ratio test @f 0: chf (1) = 7.55, p-value = 0.006). The results in
Table 7 also indicate that higher speed will inseethe probability of exceeding an LATD of
0.7g during an event. This is a useful connectietavben driver behavior (i.e. speed choice) and
event outcome. Conversely, reducing speed durirgyant would reflect higher deceleration
rate, which would reduce the probability of excegdLATD greater than 0.7g during an event,
and hence reduce probability of crash occurreneglight condition would reduce the
probability of crash, though not significant.

Table 7 Bivariate Probit Model for Crash Occurreand Events with LATD Greater Than or

Equal to 0.7g

Coef. Std. Err. z P>z 95% Cl
LATD >= 0.7g Equation
Deceleration Rate (g) -1.09 0.81 -1.35 0.18 -2.68 .500
Speed (mph) 0.01 0.01 1.33 0.18 -0.01 0.03
Constant -1.10 0.36 -3.03 0.00 -1.81 -0.39
Crash Occurrence Equation
Daytime Condition -0.36 0.31 -1.15 0.25 -0.97 0.25
Constant -0.80 0.23 -3.53 0.00 -1.25 -0.36
p 0.65 0.18 0.15 0.88

This study considers the lower bound of the comitgeintervals less than 0.1 as not satisfying
Equation (7). It suggests that events with LATDagee than 0.7g but less than 0.8g, and events
with LATD greater than 0.8g but less than 0.9gattitne condition are invalid surrogate events.
Hence, in this study, the specific conditions fefiding surrogate events are events that are: (1)
with LATD greater than or equal to 0.4g during #rgire events, (2) non-intersection related,
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and (3) with LATD greater or equal to 0.9g and @gemnith LATD between 0.8g to 0.9g at
nighttime condition. A review of narratives accompiag the VTTI data revealed that the
identified grouping of crashes and near crashesapp be qualitatively quite similar (see
Appendix). The narratives indicate that a commarekiatic maneuver by the driver is that the
drivers undertook an abrupt evasive maneuver taldvtiing a roadside object no matter
whether the event ended up with a crash or neahcra

Conditional Crash Probabilities

The event-based model was constructed to modelahéitional crash probabilities using valid
surrogate events and instrumental variable Probdehto handle potential endogeneity
(Cameron and Trivedi, 2005). The goodness of fia\ch?(2) = 5.01; Prob > chi= 0.08) of

the event-based model in Table 8 shows the appatepess of this model specification.
Although the suspected endogeneity is not statibfisignificant (Wald test of exogeneity:
chi2(1) = 1.28, Prob > chi 0.26), this model is still a more generalizedrf®f regular Probit
model. Based on this event-based model, the conditcrash probabilities in terms of a variety
of combinations of LATD and daytime condition agtimated and shown in Table 9.

Table 8 The Event-based Model Using Valid Surrogatents

Coef. Std. Err. z P>z 95% ClI
Stage 2- Dependent Variable: Crash occurrence
LATD 2.85 1.32 2.15 0.03 0.25 5.45
Daytime Condition -0.37 0.82 -0.45 0.66 -1.98 1.24
Constant -3.43 1.85 -1.85 0.06 -7.06 0.20
Stage 1- Dependent Variable: LATD
Daytime Condition 0.40 0.21 1.87 0.06 -0.02 0.82
Speed (mph) -0.01 0.01 -1.03 0.30 -0.03 0.01
Deceleration Rate (g) -0.63 0.22 -2.79 0.01 -1.07 0.19
Constant 1.24 0.45 2.73 0.01 0.35 2.12

The predicted conditional crash probabilities aaedal on all predictors in Table 8, including
LATD, daytime condition, vehicle average speed, mr@kimum deceleration rate during the
event, hence the predicted probability for the saosmario will be somewhat different due to
different vehicle average speed and maximum dex@errate during the event. The lower and
upper bound conditional crash probabilities forrescenario can be therefore constructed. As an
example, for event scenario one, the average donditcrash probability is predicted as 0.08,
meaning that for every 100 events satisfying tbisditions, 8 crashes is expected. The lower
and upper bound conditional crash probabilitiesswmstructed based the two surrogate events
falling into this scenario. Given two such surragavents observed, we expect to see 0.16
crashes, and there is actually no crash satistyilsgcondition observed. The ranges of the
conditional crash probability for scenario four divé are large, partly because of small sample
size and some crash events containing extremelegdtilreematics. As comparing scenario two to
three, and four to five, it was found that givea #ame LATD, events occurred during daytime
condition have lower crash probability than dunmghttime.
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Table 9 Conditional Crash Probabilities Using Véidrrogate Events
Average

. - Surrogate
Scenario D_aytlr_ne/ LATD Conditional  Lower Upper Event Crashes Crashes
Nighttime Crash Bound Bound Expected Observed
. Observed
Probability
1 Night >=0.8g 0.08 0.07 0.08 2 0.16 0
2 Night >=0.99 0.13 0.13 0.13 1 0.13 0
3 Day >=0.99 0.09 0.07 0.12 5 0.45 1
4 Night >=1.0g 0.57 0.26 0.86 3 1.71 2
5 Day >=1.0g 0.56 0.13 1.00 8 4.48 4

CONCLUSION AND DISCUSSION
Conclusion

Naturalistic driving studies provide an excellepportunity to better understand crash causality
and to supplement crash observations with a mugedaumber of near crash events. The goal
of this research is the development of a rigorai®tdiagnostic procedures to identify and
validate useful crash and near crash events thaveaised in enhanced safety analyses. As such,
the research seeks to apply statistical methoga@®f the methodology. A way to better
understand crash occurrence and identify poteciahtermeasures to improve safety is to learn
from and use near-crash events, particularly tnese-crashes that have a common etiology to
crash outcomes. This paper demonstrates that &stage modeling framework can make the
analysis of naturalistic driving data tractablethwut substantial use of video screening.

The paper begins by defining a crash surrogatecassé or near crash event, consistent with the
stream of work published since the 1980’s concerthie traffic conflicts technique. A
standardized definition is a beginning, but moredsded to fully utilize the analysis potential of
both naturalistic driving studies and near crasgtné. A standard procedure is developed that is
applicable to virtually any naturalistic drivingtdahat contains a stream of vehicle kinematic
and context data. The procedure seeks to iderdiig mear crash events by:

1. The initial screening of possible events of interegluding crashes and near crashes.
The input to this part of the process is expeabeoketan entire set of vehicle kinematic
data for all vehicles in a study. Knowledge of beswithin the data steam is required,
but this seems a reasonable expectation giverspaties and the current experience in
the U.S. Strategic Highway Research Program 2 (SB)RFafety Program. As long as
the kinematic signatures of the crashes are knaleng with GPS-based location
information, the proposed procedure should be @béxtract an initial set of candidate
near crashes for subsequent processing. In thdg,dirst Screening was conducted
using Receiver Operating Characteristic (ROC) natho

2. Once the initial screening is complete, the procedalls for a classification of events to
group those with similar etiology. The classificatishould be applicable to different
road or driver crash types. The result of the diaasion is a reduced set of crashes and
near crashes that are closer in etiology than thuessified at the end of the First
Screening.
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3. The events remaining after initial screening arsgsification undergo a second screening
and a series of tests to identify the most effectiereening kinematic and context
variables. A test is conducted of different trigggrlevels for individual variables or
combinations of variables. The procedure ends avithlidation test comparing crashes
and near crashes in a common statistical modetrardthe estimation of crash and near
crash probabilities and expected values so thaeteddestimates can be compared to
those from the data themselves. A number of staishethods may be used in these
steps including ROC regression and survival theespgecially due to the time-
dependencies in the markers for events.

The framework is applied data from the VTTI 100-stardy for road departure events. A total of
63 events are included in the study: 51 non-inttisies and 12 intersection-related. While the
sample sizes are limited in the empirical studg,dhthors believe the procedure is ready for
testing in other applications. While the team maglemented specific statistical approaches in
each of the steps of the procedure (See Figuree2pelieve the process is flexible enough to
accommodate a range of methods.

With the appropriate caveats concerning the arsabfsa single data set, the empirical findings
include:

* Introducing the use of maximum difference withitirme window on crash and near-
crash markers offers advantages as to improvenres&nsitivity (correctly detecting
event of interest), with good specificity (minimdalse alarm rate). In this case, the
markermaximum difference in lateral accelerati@in a 3-second window) achieved the
highest level of sensitivity and best specificithis testing used the ROC method of
analysis.

» Using ROC regression, the presence of driver fatigas found to increase a marker's
accuracy, but was found not to be statisticallpsigant. Given the small sample sizes in
this study, lack of statistical significance is satprising; this example indicates that
kinematic markers along with driver attributes nyatd superior performance compared
to kinematics alone.

* For single vehicle conflict events, there is a ndedseparate events occuring at
intersections and non-intersections.

* In this study, the specific conditions for definiagrrogate events are events that are: (1)
detected using a maximum lateral acceleration diffee of greater than or equal to 0.4g
during entire event duration; (2) non-intersecti@tated; and, (3) have a maximum
lateral acceleration difference of greater tharegual to 0.9g/events with a maximum
lateral acceleration difference between 0.8g tg di®ing nighttime conditions.

» For valid surrogate events, the same maximum latareeleration difference, during
daytime has a lower crash probability than duriigipttime.

Discussion
One can think of the accomplishment of the studyl g comparison with medical testing and
diagnosis. Physicians and other medical profesEaunduct standardized tests using accepted

diagnostic procedures to identify the presencasdate in patients. In road safety analysis,
particularly with surrogates, the challenge is¢veop valid consistent diagnostic procedures
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that can be used to assess safety problems fdrdosan the network or drivers in the
population. The key is the standardization of dags so that findings may be applied across
studies through the accumulation of a firm knowketgse

A recent study found that the contribution of tnregthear-crash events as crash observations can
reduce the standard errors for the estimationegtfects of crash contributing factors because
of the increase of the sample size (Guo et al.0R0dhe team’s review of the diverse traffic
conflicts literature (e.g. Williams, 1981; Haue®8P; Grayson and Hakkert, 1987; Hauer, 1999)
suggests there are additional potential benefdisiding:

» given well-defined surrogate events (the outpuhefValidation step), it should be
possible to use the models to assess what factituemce the conditional probability of a
crash outcome and then, what countermeasure weuh@lpful in reducing crash
probability. It was not possible to conduct thisessment due to limitations in sample
size, but data from the SHRP Naturalistic Drivingl& Study should provide ample data
for such a test.

* Given the difference between crash and near-cnasit @utcomes, it would be
interesting to conduct additional diagnosis offéors that stop a surrogate event from
becoming a crash given that both events shareaignerating processes (this is similar
in concept to some of the work conducted by Garyi®af University of Minnesota for
SHRP 2 and others).

» Given the surrogate-to-crash evolution processoiild be useful to determine the
triggering of near-crash events during normal digviwe can thus better understand
what we can do to reduce the probability of neaslerevent occurrence, and hence crash
occurrence.

It is hoped that this paper has offered some usefggiestions on the use of crash and near-crash
data from naturalistic driving studies that will bgeful in improving our knowledge of road
safety.
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Appen

dix

Surrogate Event 1: crash event. Subject driverslasatrol of vehicle in the snow. The vehicle
spins 180 degrees counter clockwise while movimgitoidinally and laterally and the passenger
side of the vehicle hits a snow bank off the opjgoside of the road.

Surrogate Event 2: crash event. Subject drivesleep and hits the median.

Surrogate Event 3: near crash. Subject driveriisgmo fast, and nearly hits the median on the
other side.

Surrogate Event 4: crash. Subject driver is ad)gstie radio while driving. At the last minute
he moves into a left turn lane. The left turn I@separated from his initial lane by a median.
When he moves into the turn lane he hits the median

Surrogate Event 5: near crash. Subject driverdstsnserted a cd into cd player and is closing
the cd case as he veers off the road to the right.

Surrogate Event 6: crash. Subject driver is singind appears to be driving too fast on wet roads
while making a right turn. She loses control of vieéicle and ends up on the median to the left
of the road she turns on to.

Surrogate Event 7: near crash. Subject driver looitdis left window (no other traffic is present
and he appears to be looking at the scenery). ddakaurves and the vehicle runs off the right
side of the road.

Surrogate Event 8: near crash. Subject driverabndj phone and crossing over double yellow
line. Then, the road curves and the vehicle ruhthefroad on the right.

Surrogate Event 9: near crash. Subject driverakifg at a piece of paper as he drives under an
overpass. The road curves to the left and the \ehaers left and nearly hits the left median.
Surrogate Event 10: near crash. Subject driveragdatigued and is hegotiating a curve to the
right while on an exit/entrance ramp. He is driviog fast and goes off the road on the left side.
Surrogate Event 11: crash. Subject driver hitstpatace on the roadway and vehicle slides over
double lane line on the left. Subject driver owerects and vehicle swerves across right lane and
off onto right shoulder hitting the guardrail.

Surrogate Event 12: crash. Subject driver appearssy and possibly under the influence of
drugs or alcohol. He falls asleep and the vehidfsdff the right side of the road, nearly hitiin

a parked vehicle. Then the vehicle goes up onteaihe. The vehicle travels on the curb hitting a
mailbox before returning to the roadway and nehittyng another parked vehicle.

Surrogate Event 13: near crash. Subject driverivéng in the left lane. The median to his left
has snow plowed against it in places. It appeatsttie vehicle hits either the median on the left
or snow covering it. Video data is missing for fhevard view. Changed the "Traffic Flow"
variable after reviewing on satellite map.

Surrogate Event 14: near crash. Subject vehidlaigling on snowy roadway and appears to get
tire caught in snow on right side of roadway whieluses him to hit the right median.

Surrogate Event 15: near crash. Subject driverawsly and falling asleep while driving. The
vehicle runs off the road on the right.

Surrogate Event 16: crash. Subject driver appeamssy. He obtains some aerosol air freshener
from his glove box, sprays it, and begins to pbkitk in the glove box when the vehicle runs off
the road on the right, hitting the curb.

Surrogate Event 17: near crash. Subject driveragmrowsy and is looking at a book he has
placed near the steering wheel while driving iroastruction zone. The road curves to the right
and the vehicle runs off the right side of the patrated by the construction barrels.

Surrogate Event 18: near crash. Subject drives &dleep while driving and the vehicle runs off
the road on the right.

Surrogate Event 19: near crash. Subject driveragmrowsy and the vehicle runs off the road
on the right side and almost hits a telephone pole.
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