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ABSTRACT 
 
Naturalistic driving studies provide an excellent opportunity to better understand crash causality 
and to supplement crash observations with a much larger number of near crash events. The goal 
of this research is the development of a rigorous set of diagnostic procedures to identify and 
validate useful crash and near crash events that can be used in enhanced safety analyses. As such, 
the research seeks to apply statistical methods as part of the methodology. A way to better 
understand crash occurrence and identify potential countermeasures to improve safety is to learn 
from and use near-crash events, particularly those near-crashes that have a common etiology to 
crash outcomes. This paper demonstrates that a multi-stage modeling framework can make the 
analysis of naturalistic driving data tractable. The procedure is tested using data from the VTTI 
100-car study for road departure events. A total of 51 non-intersections and 12 intersection-
related events are included in an application of the framework. While the sample sizes are 
limited in this empirical study, the authors believe the procedure is ready for testing in other 
applications. 
 
Keywords: traffic safety, crash surrogate, naturalistic driving study. 
 
INTRODUCTION 
 
Considerable research has been conducted over the last 30 years on the development of crash 
surrogates for assessing traffic safety (Datta, 1979; Hauer, 1982; Hydén, 1987; Chin and Quek, 
1997; Archer, 2004; Shankar, et al., 2008; Tarko et al., 2009; McGehee et al., 2010; Jovanis, et 
al., 2010; Guo et al., 2010). Nevertheless, there is limited agreement concerning fundamental 
issues such as the definition of a surrogate, the identification of a surrogate from field data and 
the validation of particular events as crash surrogates. The lack of agreement has hindered the 
ability of researchers and practitioners to rigorously use crash surrogates in traffic safety studies.  
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One area of emerging agreement is the definition of a surrogate (Hauer, 1982; Hauer and 
Gardner, 1986; Davis et al., 2008; Shankar, et al., 2008; and Tarko et al., 2009). As stated by 
Hauer, it is, Number of crashes expected to occur on an entity during a certain period of time (λ) 
= crash-to-surrogate ratio for that entity (π)* number of crash surrogates occurring on an entity 
in that time (c) or: 
 

� � �� (1) 
 
This statement and its application by several researchers provide support for the view of 
surrogates as linked to crashes through a ratio, labeled, �.  
 
Another perspective is provided by Grayson and Hakkert (1987) who suggest that surrogates are 
more than simple replacements for crashes; they believe that they should be studied for their own 
insights. This discussion leads one to see that the literature already reveals challenges in the use 
of crash surrogates; most of this literature evolved from an interest in a particular surrogate, the 
traffic conflicts technique, first proposed by Perkins and Harris (1967) and codified in a series of 
studies by Hydén (1987). Interestingly, Williams (1980) argued that the absence of standard 
techniques for defining surrogates in traffic conflict studies led to the production of a series of 
research results which were difficult to compare. One of the goals of the research by Hydén and 
his colleagues was the standardization of traffic conflict measurement so that results could be 
compared across studies. 
 
The emerging use of naturalistic driving studies offers the unique opportunity to observe both 
crashes and near crash events as they occur on the road. The Strategic Highway Research 
Program 2 (SHRP 2) has a safety program which has recognized the importance of surrogates as 
a potential enhancement to safety research and has already resulted in several studies with 
surrogates as at least part of their focus (e.g. SHRP 2 web site). 
 
Naturalistic driving has been applied to studies of drivers from the regular driving population 
(e.g., Dingus et al., 2005), truck drivers (e.g., Hanowski et al., 2005; Hanowski et al., 2007a; 
Hanowski et al., 2007b), young drivers and older drivers (VTTI web site, 2010). There have also 
been a series of technology tests of on-board safety equipment that have used the naturalistic 
technique (e.g. Bogard et al., 1998; LeBlanc et al., 2006; University of Michigan Transportation 
Research Institute and General Motors Research and Development Center (UMTRI), 2005).  
 
There are two distinguishing features of naturalistic driving studies. First, vehicles are 
instrumented with an array of sensing technologies (e.g. video cameras, radars, GPS, 
accelerometers, gyroscopic sensors) that observe the driver and the road ahead of the vehicle 
continuously during driving. As a result, events of interest such as crashes and near crashes are 
recorded with multiple sensors, allowing unprecedented opportunities to gain insight on crash 
etiology. Second, drivers are asked to drive as they normally would (i.e. without specific 
experimental or operational protocols and not in a simulator or test track). The period of 
observation can vary from several weeks to a year or more. 
 
All these data are recorded and stored within an on-board data acquisition system (i.e. DAS). The 
DAS for each vehicle is periodically copied into a searchable data base and assembled for later 
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analysis. Rather than relying on law enforcement officer judgment or witness recollection, the 
DAS can record virtually all the actions of the subject driver before, during and after each event. 
Because events are recorded using video and vehicle sensors, individual events of interest can 
generally be described with greater accuracy and reliability than using crash reports assembled 
after the fact.  
 
Crash and near crash events in naturalistic driving are typically identified through the detection 
of unusual vehicle kinematics recorded electronically through accelerometers and gyroscopic 
sensors.  Table 1 is an example of search criteria used to identify events for the VTTI 100-car 
study (Dingus et al., 2005). Vehicle-based accelerometers gyros are used to measure lateral and 
longitudinal acceleration and vehicle rotation; these measures are used individually or with time-
to-collision (TTC) estimates from radar to initially identify potential events. The driver may also 
highlight a driving event by using an "event" button located in the vehicle for this purpose. 
Forward and rear Time-To-Collision (TTC) can be used with vehicle kinematics (including 
measurements of a target vehicle) to identify additional events. Once identified kinematically, 
the events are reviewed through use of forward and face video. They are retained if verified as 
safety-related events and discarded if not. Within each event, factors that precipitated the event, 
that contributed to the event, and that were associated with the event are grouped into pre-event 
maneuvers, precipitating factors, contributing factors, associated factors, and avoidance 
maneuvers. The event begins at the onset of the precipitating factors and ends after the evasive 
maneuvers. Data for the period shortly before, during and shortly after the event are then 
preserved. 
 

Table 1 Summary of kinematic search criteria for events in VTTI study 
Trigger Type Description 

1. Lateral Acceleration • Lateral accel. ≥ 0.7 g. 

2. Longitudinal Acceleration 

• Accel. or decel. ≥ 0.6g. 
• Accel. or decal. ≥ 0.5 and forward TTC ≤ 4 sec. 
• 0.4g ≤ longitudinal decel. < 0.5g, forward TTC ≤ 4 sec.,  

and forward range at the min. TTC ≤ 100 ft. 

3. Event Button • Activated by the driver by pressing a button located on the dashboard when an 
event occurred that he/she deemed critical. 

4. Forward Time-to-Collision 
• Accel. or decel. ≥ 0.5g and TTC ≤ 4 sec. 
• 0.4g ≤ longitudinal decel. < 0.5g, forward TTC ≤ 4 sec.,  

and forward range at the min. TTC ≤ 100 ft. 

5. Rear Time-to-Collision • Rear TTC ≤ 2 sec., rear range ≤ 50 feet, and absolute accel. of the following 
vehicle > 0.3g 

6. Yaw rate 
• Any value greater than or equal to a plus AND minus 4 degree change 

in heading (i.e., vehicle must return to the same general direction of travel) 
within a 3 second window of time. 

 
In addition to the kinematic variables discussed above, there are three other sets of data routinely 
collected in naturalistic driving studies: 

1. Context variables – these are descriptors of the physical features such as road and 
environment at the time of the event including geometric alignment and environmental 
factors (e.g. rain or snow; day or night). Some geometric features may be obtained by 
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linking on-board GPS to existing geographical information systems (e.g. roadway 
inventory systems maintained by most state highway departments).   

2. Event attributes - attributes of the event occurring immediately prior to and during event 
occurrence. Examples include the occurrence of driver distraction (sometimes identified 
by type of distraction) and presence of fatigue.  

3. Driver attributes - typically obtained during subject intake to the study and may include 
age, stated prior driving record, propensity to take risks when driving and physiological 
conditions such as vision and reactions time. 

 
While some aspects of events remain unobserved (e.g. the actions of drivers in other vehicles and 
events beyond the range of cameras and sensors), it is an unquestioned advantage to observe the 
actions of individual drivers, over long periods of times, including crash and near-crash events 
involvements. Although the result is a set of potentially very rich data that offers insight to 
crashes and near crash events that have been previously unavailable, a challenge remains in 
evaluating the near crashes and seeking a clearer relations ship between them and crashes.  
 
STUDY GOALS 
 
While naturalistic driving studies provide unique opportunities for safety analyses, the challenge 
of standardized measurement and observation remains. A standardized definition of a surrogate 
is a beginning, but more is needed. There is a need to develop a standard procedure to examine 
the validity of the events identified by using the definitions. This validation for naturalistic data 
has several steps:  

1. The initial screening of possible events of interest, including crashes and near crashes 
2. An assessment of the events to classify them as to type; current classification of road 

crash types are a useful place to begin (e.g. road departure, rear end). 
3. The events remaining after initial screening and classification need to be further analyzed 

so that the crashes and near crashes have a consistent etiology. 
 
One can think of this goal by comparison with medical testing and diagnosis. Physicians and 
other medical professionals conduct standardized tests using accepted diagnostic procedures to 
identify the presence of disease in patients. In road safety analysis, particularly with near crashes, 
the challenge is to develop valid consistent diagnostic procedures that can be used to assess 
safety problems for locations in the network or drivers in the population. The key is the 
standardization of diagnoses so that findings may be applied across studies through the 
accumulation of a firm knowledge base.   
 
The goal of this research is the development of diagnostic procedures to identify and validate 
useful crash and near-crash events that can be used in enhanced safety analyses.  
 
METHODOLOGY  
 
Figure 1 is a conceptualization of the analysis of surrogates, crashes, and near crashes using 
naturalistic driving data. Normal driving (i.e., naturalistic) leads to a series of events that may be 
of interest for further study based upon pre-determined screening criteria; this is the First 
Screening. These criteria should be set to be inclusive of many possible events, with particular 
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care in not excluding events that may be a crash or near crash. Candidate screening criteria 
include those listed in Table 1 and possibly others. This first screening is based on an analysis of 
computer-stored data (likely from the DAS and other information integrated into a data base). 
This first screening does not require analysis of video. 
 

 
Figure 1 Conceptualization of the Relationship between Crashes and Near Crashes in Naturalistic 

Driving Data 
 
This sets the stage for Classification, which has as an outcome the grouping of crash and near 
crash events with similar etiologies or generating characteristics. The classification criteria 
include kinematic or vehicle movement-related measures (e.g. lateral acceleration rate) and event 
attributes, e.g., intersection location or roadway curve location. After the Classification, the 
Second Screening further refines the set of events of interest. Once the Second Screening is 
complete, the Validation determines that the events of interest for a particular study have been 
properly identified and separated from those not of interest, because they fail the tests for a 
similar etiology or crash generating process. Notice that the notation is that the events selected 
from the Validation (i.e. the model outcome) are called “surrogate events,” even though they 
include both crashes and near crashes. This allows our notation to be consistent with that of 
Equation (1).  
 
At the end of Validation stage, there are two conditional probabilities of interest: the probability 
of a crash outcome given either branch of the tree (either  �� � 1 or �� � 0). These conditional 
probabilities are explored through an event-based model. Notice that the 	
��
�� � 1|�� � 1�, 
represents the conditional probability of a crash given an event identified as a surrogate event. 
The conditional crash probability is interpreted as the proportion of surrogate events would end 
up with crashes; this is, in fact the “π” of equation 1. A test of the event-based model is described 
in a companion paper (Wu and Jovanis, 2011). The lower branch (Y1 = 0) represents events 
deemed not of interest; these may be re-examine to be sure there are no further events of interest 
(Y2 = 1) although this is not conducted in this paper. This branch is intended to capture the 
analysis of events that lead to crashes but do not have large kinematic signatures; these events 
were observed in the VTTI data, so this outcome is specifically mentioned as an area in need of 
specific analysis.  
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The Analytic Procedure 
 
Figure 2 is an overview of the proposed framework. Each step in the procedure is described in 
the following section. Statistical approaches are offered at each step but these are examples; 
other approaches are certainly possible. The idea is to undergo a sequence of statistical tests with 
the overall goal of identifying crashes and a set of similar near crashes for later analyses. 
Because the description of the framework is central to the paper, we provide rather detailed 
descriptions of each step and the methods applied to our data set. 
 
First Screening 
 
First Screening seeks to detect possible events of interest using information collected in the 
DAS. One way to think about the screening of crash and near crash events is in parallel with 
medical diagnosis. The result of a diagnostic test can be classified as a true positive (TP), a true 
negative (TN), a false positive (FP), or a false negative (FN). As the names suggest, a true 
positive result occurs when a diseased subject is correctly classified with a positive test; a true 
negative is a situation where the subject does not have the disease and the test says so. Both of 
these outcomes are desirable. A false negative result occurs when a diseased subject tests 
negative; similarly, a false positive occurs when a non-diseased subject has positive result. At 
this stage we want to have true positives in diagnosing crash and near crash events and true 
negatives in identifying events that are not safety-related or not of interest. The test threshold 
determines the number of true positives, true negatives, false positives and false negatives.  
 
Receiver Operating Characteristic (ROC) Curve 
 
One way to examine tradeoffs with the 4 outcomes is with the Receiver Operating Characteristic 
(ROC) Curve, which can be conceptualized as determining the optimal diagnostic point (Peat 
and Barton, 2005). The ROC technique is commonly used in medical science to handle this 
problem (e.g. Swets, 1988; Centor, 1991; Obuchowski, 2003; Pepe, 2003). We first define a 
threshold c for a marker Z as positive if Z > c, or as negative if Z < c. A marker in the medical 
field indicates a diagnostic test score for a variable used to discriminate between a diseased and 
non-diseased subject. In our safety analysis, the marker is the variable used to identify the event 
of interest in First Screening. A marker could be a kinematic variable or a combination of 
kinematic variables, context variable, and event attributes. Let the corresponding true and false 
positive rate at the threshold c be TPR(c) and FPR(c), respectively. 

�	�
�� � �
�� 	������� ����
�� � 	
� � �|� � 1� (2) 

�	�
�� � ����� 	������� ����
�� � 	
� � �|� � 0� (3) 
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Figure 2. Analytical Procedure for Analysis and Validation of Surrogate Events  
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As the threshold c increases, both the false positive and true positive rate decreases. Generally, 
the thresholds of the criteria should be set to include a high proportion of events of interest (i.e. 
high sensitivity). The desired goal is to achieve an acceptable sensitivity (correctly detect event 
of interest), say at least 90 percent, at the maximum specificity (minimum false alarm rate).  
 
Receiver Operating Characteristic (ROC) Regression 
 
Conveniently for safety studies, some medical researchers (Janes and Pepe, 2008) have found 
that some covariates, M, that are associated with disease can also impact the marker Z, and hence 
impact the inherent discriminatory accuracy of the marker (i.e. the ROC curve). For example, if 
male drivers tend to depress brake pedal harder than female drivers (i.e., decelerate faster), then 
gender is associated with the marker deceleration. Therefore, threshold of the marker may better 
discriminate events of interest for female drivers than for male drivers because female drivers 
will have severe decelerations less often. ROC regression methods can be used to test and handle 
this situation, where covariates affect the screening of events of interest (Pepe 2000; Alonzon 
and Pepe, 2002). Implementation proceeds in two steps: (1) model the distribution of the marker 
among controls as a function of covariates, and calculate the case percentile values; and (2) 
model the cumulative density function of the ROC curve as a function of covariates. The ROC 
curves can therefore be modeled parametrically by using 
   

����
�� � Φ!"� # "�Φ��
�� # "�$% (4) 

 
where Φ is the standard normal, f is a discrete set of FPR points, and "�, "� and "� are estimated 
parameters. If "� is positive then an increase of M enhances the accuracy of the marker.  
 
Classification 
 
Once initial events are identified, there is a need to statistically distinguish different event types. 
Here we seek crashes with similar contributing factors and etiologies. A counterpart to the Chow 
test as suggested by Greene (2003), is proposed to undertake this step. The procedure tests 
whether the log-likelihood for a pooled-dataset model is significantly different from the sum of 
log-likelihoods for reduced dataset models. The result of the classification is the division of 
events into groups with similar etiologies; many different groups can be identified but it is 
expected that most studies, at least initially, will use two different crash types. There is a need to 
conduct a second, more refined, screening of the events to identify even more similar and 
consistent crash and near crash events by answering: What is a good marker? What is a good 
threshold? 
 
Second Screening 
 
To provide readers a better sense of the data at this step, vehicle lateral acceleration and yaw rate 
difference measured using a three second time window are presented in Figure 3. The lateral 
acceleration rate difference is the difference between the minimum and maximum lateral 
deceleration within the window (3 seconds in this case). Each individual trace is a separate event.  
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Figure 3 Illustrative Example for Data at Second Screening  

 
One can see that the vehicle kinematics for crash events (left side of figure) tend to be more 
volatile than that for near crashes. Therefore, one can expect that a well-defined trigger should be 
able to identify the crashes. Notice in particular the figure in the lower right corner of Figure 3. 
The near crash events have vehicle traces that are higher than those for the crash events in the 
lower left corner. In concept, these are the events we are seeking to identify: events that are 
similar enough to crash events, but did not result in a crash outcome. Because the focus now is 
time-varying variables, and the crash risk over time during the events is also of interest, survival 
analysis is well-suited for detecting influential factors during the event. It is not only the duration 
of the event, per se, that is interesting, but also the likelihood that the event will end in "the next 
period" given that it has lasted as long as it has (Greene, 2003).  
 
Different types of events would essentially be triggered by different vehicle movement-related 
variables and event attributes. As an example, lateral acceleration rate may play a more 
important role in run-off-road than in rear-end events. The challenge in identifying an effective 
vehicle movement-related measure is that it is time-dependent and interacts with other event 
attributes during the event. The response variable can be translated into time-to-failure, where 
crash occurrence and the effects of time-varying covariates are of interest. Survival models have 
been used in several transportation studies (e.g. Jovanis and Chang, 1989; Hensher and 
Mannering, 1994) and they fit well in this analysis paradigm.  
 
At this step, the original trigger criteria should be refined, since the initial criteria are simply like 
an entry threshold to sort events of interest. The refined thresholds should be determined 
differently for each type of event. The ROC curve can be applied to identify a threshold that has 
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the best ability to correctly classify crashes and near crashes. Although there is no definitive 
formula for determining the most suitable cut-off point, the general guidance at this step is that 
one needs an ability to effectively filter out true negatives in order to "diagnose" similar 
surrogate events, though at the expense of not losing true crashes. However, those true crash 
events lost here can possible indicate crash events that are not similar to the near crash events 
defined. Finally, one may have more than one surrogate measure with specific thresholds. With a 
large sample, a surrogate event can be identified based on more than one surrogate measure. The 
use of multiple screening criteria is suggested by the feedback loop in Figure 2. It is suggested 
that criteria be tested one at a time, with specific threshold levels and that the validity of the 
near-crash to crash relationship be tested. The feedback returning to the first screening may be 
used to change the kinematic trigger, the time window used to compute variable values or some 
combination. With our small sample, we provide only on pass through the data.  
 
Validation 
 
General Discussion of Validation 
 
To validate whether an event of interest is a surrogate event, it is best to start with the definition 
of a surrogate event. Generally, a surrogate event represents a circumstance in which a driver 
needs to recover to normal driving by either adopting evasive maneuvers (Amundsen and Heden, 
1977) or other appropriate response, otherwise a crash is likely (e.g. Shankar et al., 2008). 
Ideally, a set of conditions (Y1=1) that define a perfect surrogate event can be written as: 
  

Pr
�� � 1|�� � 1, )� * 1 (5) 

 
where crashes would definitely occur as the event satisfies the conditions of Y1 in terms of event 
attributes and context variables. Moreover, Equation (5) implies that the association/correlation 
between Y1 and Y2 is positive one. 
  

Cov
��, ��|)�, )�� * 1 (6) 

 
where X1 and X2 represents factors that affect Y1 and Y2 respectively.  
 
Equation (5) and (6) provide guidelines for defining a valid surrogate event. First, though it is not 
necessary to have every such event ending up with a crash, the conditional crash probability for a 
valid but weak surrogate event should still be significantly greater than zero, as shown in 
Equation ((7). 
 

Pr
�� � 1|�� � 1, )� . 0 (7) 

 
And there should be a significantly positive association/correlation between crash and surrogate 
event, as shown in Equation (8). 
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Cov
��, ��|)�, )�� . 0 (8) 

 
In this study, a bivariate Probit model is applied to test the Equation (8) using the Tetrachoric 
correlation; a correlation measure for a pair of binary variables Y1 and Y2. To test Equation (7), a 
Probit model is first applied to model the relationship Pr
�� � 1|�� � 1, )�; endpoint 
transformation is then applied to construct confidence intervals for the conditional crash 
probability for each event, please refer to Xu and Long (2005) for more details. Only events 
satisfying Equation (7) and (8) will be referred to as surrogate events, and will be carried into the 
next step. It should be noted that a well-defined surrogate event should not only satisfy Equation 
(7) and (8), but also five general criteria: consistency with the basic definitions of a surrogate 
(Tarko, 2005; Sevensson, 1998); correlated with the clinical meaningful outcome (Tarko et al., 
2009; Davis and Swenson, 2006; Davis et al., 2008; Shankar et al., 2008; Jovanis et al., 2010; 
McGehee et al., 2010; Guo et al., 2010; Hauer, 1999); have a statistical and causal relationship to 
crashes (Sevensson, 1998; Guo et al., 2010); fully capture the effect of the treatment in a way 
similar to how the treatment would affect crashes (Hauer, 1999; Shankar et al., 2008; Tarko et 
al., 2009).; and, be useful as a "marker" indicating a time scale underpinning (Shankar et al., 
2008; see Wu and Jovanis, 2011 for additional discussion).   
  
Bivariate Probit Model 
 
To test Equation (8), let whether an event will be deemed as a surrogate event (Y1) and whether 
the surrogate event ends up in a crash (Y2) be two latent processes; the Tetrachoric correlation is 
appropriate for analyzing multivariate relationships between the dichotomous variables. The 
Tetrachoric correlation for binary variables estimates the Pearson correlation of the latent 
continuous variables. Since the occurrence of surrogate events affects crash risk, a bivariate 
Probit model is suitable in terms of this situation (Greene, 2003). Formally, Y1 = 1 indicates an 
event passing all specific conditions through first screening, classification, and second screening 
(Y1=0, otherwise), and Y2=1 indicates a crash occurrence (Y2=0, near crash). The surrogate event 
and crash generating processes can be written as: 
 

��� � )�
	 /� # 0�,  �� � 1 �� ��� 1 0, 0 ��2�
3��� (9) 

��� � )�
	 /� # 0�,  �� � 1 �� ��� 1 0, 0 ��2�
3��� (10) 

4
0�|)�, )�� � 4
0�|)�, )�� � 0 (11) 

5�

0�|)�, )�� � 5�

0�|)�, )�� � 1 (12) 

Cov
��, ��|)�, )�� � Cov
0�, 0�|)�, )�� � ρ (13) 

 
And the bivariate normal cumulative density function is  
 

	
��
7� 8 9�, 7� 8 9�� � : : ;�
<�, <�, =

�

��
�><�


�

��
<� (14) 
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<�, <�, =� � �����
�
�
��
�����
�
��/������

2�
1 @ =���/�  (15) 

 
Estimating the Conditional Crash Probability Using Valid Surrogate Events 
 
At this step, one simply uses valid surrogate events to estimate the conditional crash probability 
Pr
�� � 1|�� � 1, )� in terms of a variety of event scenarios. A generalized formulation to 
specify the conditional crash probability is developed in Wu and Jovanis (2011).  
 
THE DATA 
 
A subset of the Virginia Tech Transportation Institute (VTTI) 100-Car Naturalistic Driving 
Study dataset is applied to test the framework (Dingus et al., 2005). In the 100-car study 241 
primary and secondary drivers drove for 12 to 13 months following the naturalistic driving 
protocols described in section 1. Based upon the event criteria in Table 1, VTTI researchers 
identified 69 crashes, 761 near crashes and 8295 critical events during the entire study. A focus 
on road departure events led to a  sample size of 21 single-vehicle-conflict crashes and 42 near 
crashes. Various aspects of the driving environment were recorded at the moment of the event, 
specifically at the onset of the precipitating factor, through the use of video and radar. Table 2 is 
a list of variable names, definitions, types, and data sources. All covariates available in the VTTI 
data set were tested in the analysis. The predictors shown in Table 2 are those which extensive 
modeling indicated were most consistently associated with event outcomes. Literally hundreds of 
models were explored to produce the reduced set of predictors in Table 2. 
 

Table 2 Variable Definitions 
 

Group Variable Measurement 
Variable 

Type 

Kinematic 
Variable 

Vehicle lateral acceleration rate (Lat) Measured every tenth of a second Time Varying 

• LATD 
Maximum lateral acceleration rate difference 
within 3-second window 

Time Varying 

• LATM 
Instantaneous maximum lateral acceleration 
rate within 3-second window 

Time Varying 

Vehicle longitudinal deceleration rate Measured every tenth of a second Time Varying 

Vehicle yaw rate (Yaw) Measured every tenth of a second Time Varying 

• YAWD 
Maximum change of yaw rate within 3-second 
window 

Time Varying 

Vehicle speed Measured every 3 to 10 tenth of a second Time Varying 

Event  
Attributes 

Presence of driver fatigue  Fatigue (1); otherwise (0) Time Independent 

Context 
Variable 

Event occurred on a horizontal curve Curve (1); otherwise (0) Time Independent 

The presence of daylight Daylight (1); otherwise (0) Time Independent 
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DATA ANALYSIS 
 
This section demonstrates how the whole procedure for screening, identifying, and validating 
surrogate events is implemented as shown in Figure 2. We conduct the analysis of the data as we 
would with an actual data set, but in this application, we can assess the accuracy of our 
framework because we have verified surrogate event etiologies as shown in the Appendix. 
 
First Screening 
 
Given the raw naturalistic driving data, the first task is to screen events of interest. We use all 
information in the 63 "trips" obtained from VTTI 100-car study to examine how the selection of 
first screening criteria would affect the accuracy of detecting event of interest. As shown in the 
left panel in Figure 4, since the data for each trip consists of 30 seconds before the event, during 
the event, and 10 seconds after the event, data from periods A and C are seen as event not of 
interest and data from period B for both crash and near crash events are considered as 
observations with events of interest. As long as the pre-specified first screening criteria can "hit" 
at least one of the observations in data chunk B, the event of interest would be detected. In other 
words, the threshold would be more effective if it could pick out the one extreme lateral 
acceleration in Figure 4, without detecting the “false alarm” shown in the right panel of the 
figure. 
 
Maximum lateral acceleration difference greater than 0.4g (LATD), maximum lateral 
acceleration (LATM) and maximum change of yaw rate (YAWD) within 3-second window were 
selected as the marker (the first screening criterion) for examining their accuracy for detecting 
event of interest (period B in Figure 4). The application of the ROC analysis is summarized in 
Figure 5. The 45 degree line (the solid line) indicates the reference line; the greater the area 
between the ROC curve and the reference line, the better the accuracy of the marker. If the ROC 
area for a marker is not significantly greater than 0.5, then the discriminating ability for the 
marker is no better than random guess. It was found that lateral deceleration difference performs 
significantly better than maximum lateral acceleration.  These test results suggest that the use of 
maximum difference within a time window can enhance the marker's accuracy. Meanwhile, 
lateral deceleration performs significantly better than yaw rate difference. 
 

 
Figure 4 (Left) Event of Interest vs. (Right) Event Not of Interest: The Impact of The Selection 

of the Threshold. 
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• Ho: area(LATD) = area(LATM)  
chi2(1) = 5.25, p-value = 0.02 

 
• Ho: area(LATD) = area(YAWD) 

chi2(1) = 9.72, p-value = 0.002 

Figure 5 ROC Curves for LATD, LATM, and YAWD 
 
Note that at this step, the goal is to detect as many as true events of interest without including too 
many false alarms. As an example, one of the trigger criteria used by VTTI researchers is 
maximum lateral acceleration greater than or equal to 0.7g; Table 3 indicates that this criteria can 
achieve 90 percent specificity (only 10 percent false alarms), but at the expense of only 27 
percent sensitivity (only 27 percent true events of interest detected). VTTI did not lose the other 
73 percent of events of interest; they used other trigger criteria (as shown in Table 1) to enhance 
the overall sensitivity. Similarly, if one uses lateral acceleration rate difference greater than 0.7g, 
the sensitivity is almost doubled, though at the expense of 10 percentage points less specificity. 
This confirms that lateral acceleration rate difference can perform better than maximum lateral 
acceleration.  
 
In this study, we will carry events with LATD greater than 0.4g during the entire events into the 
next step as a demonstration of this procedure. Using LATD greater than 0.4g, there are total 99 
events detected from the 63 trips. The longest event lasted for 6.3 seconds, the shortest one lasted 
for 0.2 second, and the average event duration is 2.6 seconds. These 99 events will be carried to 
classification stage to test the need of further classification. 
    

Table 3 ROC Curves Analysis for LATM and LATD 
 

LATM LATD 

Cut-off point Sensitivity Specificity Sensitivity Specificity 

>= 0.0g 100.00% 0.00% 100.00% 0.00% 

>= 0.1g 100.00% 4.80% 100.00% 2.40% 

>= 0.2g 98.41% 22.40% 100.00% 13.60% 

>= 0.3g 92.06% 33.60% 96.83% 28.00% 

>= 0.4g 71.43% 60.80% 93.65% 41.60% 

>= 0.5g 46.03% 77.60% 84.13% 56.80% 

>= 0.6g 38.10% 84.00% 63.49% 72.80% 

>= 0.7g 26.98% 89.60% 49.21% 80.00% 

>= 0.8g 12.70% 95.20% 41.27% 83.20% 

>= 0.9g 7.94% 96.80% 36.51% 84.80% 

>= 1.0g 4.76% 98.40% 25.40% 90.40% 

>1.0g 0.00% 100.00% 0.00% 100.00% 

 

0.
00

0.
25

0.
50

0.
75

1.
00

S
en

si
tiv

ity

0.00 0.25 0.50 0.75 1.00
1-Specificity

LATD ROC area: 0.7512 LATM ROC area: 0.7096
YAWD ROC area: 0.6549 Reference



15 

 

Classification 
 
One of the characteristics of valid surrogate events is the similarity among them, no matter 
whether they end up with crashes or near crashes. This suggests that similar surrogate events 
should have similar crash probabilities in terms of context. Figure 6 shows that the crash 
probabilities for VTTI single-vehicle conflict events are quite different depending on whether the 
events occurred at intersections or non-intersection segments. This suggests that some of or all 
the regression coefficients are different for the two subsets of the data. 
  

 
Figure 6. Structural Difference on Crash Probabilities between Events with Different Context  

 
In order to test whether the crash generating process for intersection-related and non-
intersection-related events are the same, the equivalent of a Chow test for structural change was 
applied (see Figure 6). Due to the small sample size (63 total events), only lateral acceleration 
rate difference was included to model the crash probabilities. The log-likelihood for the pooled 
model is -43.97, as shown in Table 4. The log-likelihoods for the model based on single vehicle 
run-of-road and intersection related events are -7.15 and -33.07, respectively. The log-likelihood 
for the unrestricted model with separate coefficient is thus the sum, -40.22. The chi-square 
statistic for testing the two restrictions of the pooled model is twice the difference, LR = 2*[-
40.22-(-43.97)] = 7.5. The 95 percent critical value for the chi-square distribution with two 
degrees of freedom is 5.99 (the p-value of this chi-square test is 0.02). Therefore, at this 
significant level, the hypothesis that the constant term and LATD are the same for both types of 
event-based model is rejected. That is, there is significant structural change between the event-
based models for intersection-related and non-intersection-related events, and hence the model 
including both types of events would be inconsistent. An interesting finding is also revealed in 
Table 4, it is that the same LATD would cause higher crash probability at intersections than non-
intersections. As a result, 81 non-intersection-related single vehicle conflict events will be 
carried into second screening stage.  
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Table 4 Chow Test for Intersection v.s. Non-intersection Related Events   
Dependent Variable: crash occurrence Pooled Model Non-Intersection Intersection 
LATD 0.475 0.376 0.883 

(S.E.) (0.116) (0.132) (0.371) 
p-value 0.000 0.004 0.017 

Constant -4.355 -4.002 -5.963 
(S.E.) (0.867) (0.979) (2.513) 

p-value 0.000 0.000 0.018 
Observations 99 81 18 
Pseudo R-squared 0.181 0.113 0.427 
Log likelihood -43.97 -33.07 -7.150 

 
Second Screening 
 
At this step, to identify non-crash events that are similar to crashes, we are not only looking for a 
threshold that is best predicting crash occurrence, but also a marker that is influential to crash 
risk during the event. Even with a refined sample that has gone through the previous two steps, 
the results from the survival analysis still suggests that in terms of the magnitude of the estimated 
coefficient, LATD is more influential as a time-varying covariate than LATM and YAWD. The 
coefficient of 0.12 is interpreted to mean that those events with higher LATD once entering a 
situation where LATD greater than or equal to 0.4g have a higher risk of having a crash, as 
shown in Table 5. The greater ROC area for LATD than for YAWD also points to the same 
result (Ho: area (LATD) = area (YAWD), chi2 (1) = 12.06, p-value = 0.0005), as shown in 
Figure 7. Note that, if one solely relies on ROC techniques at this step, the time-varying effects 
of either kinematic variables, event attributes, or geometric alignment cannot be captured. 
  

Table 5 Survival Analysis in Second Screening 

 
Coef. Std. Err. z P>z 95% CI 

LATD 0.12 0.24 0.50 0.62 -0.35 0.59 

LATM 0.03 0.24 0.12 0.90 -0.44 0.50 

YAWD 0.07 0.33 0.21 0.83 -0.58 0.72 

 

 
Figure 7 ROC Curve for LATD and YAWD at Second Screening  
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Table 7 summarizes threshold testing for LATD greater than 0.7g, which was selected at the 
second screening for two reasons: (1) with over 90 percent specificity, the cut-off point is high 
enough to leave almost no crash events; and (2) the marginal increase of specificities for LATD 
from greater than or equal to 0.7g to greater than or equal to 0.8g is only 2.5 percent, but the 
sensitivity decreased by 17 percent, suggesting LATD greater than or equal to 0.7g can both 
provide decent sample size and specificity.    
 

Table 6 ROC Curves Analysis for LATD at Second Screening 
Cut-off point Sensitivity Specificity Near Crashes Crashes 

>= 0.4g 100.00% 0.00% 24 3 

>= 0.5g 82.61% 35.53% 21 2 

>= 0.6g 73.91% 67.11% 8 0 

>= 0.7g 73.91% 80.26% 2 2 

>= 0.8g 56.52% 82.89% 2 0 

>= 0.9g 56.52% 86.84% 5 1 

>= 1.0g 47.83% 93.42% 5 4 

>1.0g 0.00% 100.00% 0 2 

 
Validation 
 
Use of the bivariate Probit model to test the tetrachoric correlation with LATD greater than or 
equal to 0.7g, indicates that the correlation is significantly greater than zero. In other words, 
Equation (8) holds (Likelihood-ratio test of ρ = 0: chi2 (1) = 7.55, p-value = 0.006). The results in 
Table 7 also indicate that higher speed will increase the probability of exceeding an LATD of 
0.7g during an event. This is a useful connection between driver behavior (i.e. speed choice) and 
event outcome. Conversely, reducing speed during an event would reflect higher deceleration 
rate, which would reduce the probability of exceeding LATD greater than 0.7g during an event, 
and hence reduce probability of crash occurrence. Daylight condition would reduce the 
probability of crash, though not significant. 
 

Table 7 Bivariate Probit Model for Crash Occurrence and Events with LATD Greater Than or 
Equal to 0.7g 

  Coef. Std. Err. z P>z 95% CI 
LATD >= 0.7g Equation 
Deceleration Rate (g) -1.09 0.81 -1.35 0.18 -2.68 0.50 
Speed (mph) 0.01 0.01 1.33 0.18 -0.01 0.03 
Constant -1.10 0.36 -3.03 0.00 -1.81 -0.39 
Crash Occurrence Equation 
Daytime Condition -0.36 0.31 -1.15 0.25 -0.97 0.25 
Constant -0.80 0.23 -3.53 0.00 -1.25 -0.36 
ρ 0.65 0.18     0.15 0.88 

 
This study considers the lower bound of the confidence intervals less than 0.1 as not satisfying 
Equation (7). It suggests that events with LATD greater than 0.7g but less than 0.8g, and events 
with LATD greater than 0.8g but less than 0.9g at daytime condition are invalid surrogate events. 
Hence, in this study, the specific conditions for defining surrogate events are events that are: (1) 
with LATD greater than or equal to 0.4g during the entire events, (2) non-intersection related, 
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and (3) with LATD greater or equal to 0.9g and events with LATD between 0.8g to 0.9g at 
nighttime condition. A review of narratives accompanying the VTTI data revealed that the 
identified grouping of crashes and near crashes appear to be qualitatively quite similar (see 
Appendix). The narratives indicate that a common kinematic maneuver by the driver is that the 
drivers undertook an abrupt evasive maneuver to avoid hitting a roadside object no matter 
whether the event ended up with a crash or near crash.   
  
Conditional Crash Probabilities 
 
The event-based model was constructed to model the conditional crash probabilities using valid 
surrogate events and instrumental variable Probit model to handle potential endogeneity 
(Cameron and Trivedi, 2005). The goodness of fit (Wald chi2(2) = 5.01; Prob > chi2 = 0.08) of 
the event-based model in Table 8 shows the appropriateness of this model specification. 
Although the suspected endogeneity is not statistically significant (Wald test of exogeneity: 
chi2(1) = 1.28, Prob > chi2 = 0.26), this model is still a more generalized form of regular Probit 
model. Based on this event-based model, the conditional crash probabilities in terms of a variety 
of combinations of LATD and daytime condition are estimated and shown in Table 9.  
 

Table 8 The Event-based Model Using Valid Surrogate Events 
  Coef. Std. Err. z P>z 95% CI  
Stage 2- Dependent Variable: Crash occurrence  
LATD 2.85 1.32 2.15 0.03 0.25 5.45 
Daytime Condition -0.37 0.82 -0.45 0.66 -1.98 1.24 
Constant -3.43 1.85 -1.85 0.06 -7.06 0.20 
Stage 1- Dependent Variable: LATD 
Daytime Condition 0.40 0.21 1.87 0.06 -0.02 0.82 
Speed (mph) -0.01 0.01 -1.03 0.30 -0.03 0.01 
Deceleration Rate (g) -0.63 0.22 -2.79 0.01 -1.07 -0.19 
Constant 1.24 0.45 2.73 0.01 0.35 2.12 

 
The predicted conditional crash probabilities are based on all predictors in Table 8, including 
LATD, daytime condition, vehicle average speed, and maximum deceleration rate during the 
event, hence the predicted probability for the same scenario will be somewhat different due to 
different vehicle average speed and maximum deceleration rate during the event. The lower and 
upper bound conditional crash probabilities for each scenario can be therefore constructed. As an 
example, for event scenario one, the average conditional crash probability is predicted as 0.08, 
meaning that for every 100 events satisfying this conditions, 8 crashes is expected. The lower 
and upper bound conditional crash probabilities were constructed based the two surrogate events 
falling into this scenario. Given two such surrogate events observed, we expect to see 0.16 
crashes, and there is actually no crash satisfying this condition observed. The ranges of the 
conditional crash probability for scenario four and five are large, partly because of small sample 
size and some crash events containing extreme vehicle kinematics. As comparing scenario two to 
three, and four to five, it was found that given the same LATD, events occurred during daytime 
condition have lower crash probability than during nighttime. 
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Table 9 Conditional Crash Probabilities Using Valid Surrogate Events 

Scenario 
Daytime/ 
Nighttime 

LATD 

Average 
Conditional  

Crash 
Probability 

Lower 
Bound 

Upper 
Bound 

Surrogate 
Event 

Observed 

Crashes 
Expected 

Crashes 
Observed 

1 Night >= 0.8g 0.08 0.07 0.08 2 0.16 0 

2 Night >= 0.9g 0.13 0.13 0.13 1 0.13 0 

3 Day >= 0.9g 0.09 0.07 0.12 5 0.45 1 

4 Night >= 1.0g 0.57 0.26 0.86 3 1.71 2 

5 Day >= 1.0g 0.56 0.13 1.00 8 4.48 4 

 
CONCLUSION AND DISCUSSION 
 
Conclusion 
 
Naturalistic driving studies provide an excellent opportunity to better understand crash causality 
and to supplement crash observations with a much larger number of near crash events. The goal 
of this research is the development of a rigorous set of diagnostic procedures to identify and 
validate useful crash and near crash events that can be used in enhanced safety analyses. As such, 
the research seeks to apply statistical methods as part of the methodology. A way to better 
understand crash occurrence and identify potential countermeasures to improve safety is to learn 
from and use near-crash events, particularly those near-crashes that have a common etiology to 
crash outcomes. This paper demonstrates that a multi-stage modeling framework can make the 
analysis of naturalistic driving data tractable, without substantial use of video screening. 
 
The paper begins by defining a crash surrogate as a crash or near crash event, consistent with the 
stream of work published since the 1980’s concerning the traffic conflicts technique. A 
standardized definition is a beginning, but more is needed to fully utilize the analysis potential of 
both naturalistic driving studies and near crash events. A standard procedure is developed that is 
applicable to virtually any naturalistic driving data that contains a stream of vehicle kinematic 
and context data. The procedure seeks to identify valid near crash events by:  

1. The initial screening of possible events of interest, including crashes and near crashes. 
The input to this part of the process is expected to be an entire set of vehicle kinematic 
data for all vehicles in a study. Knowledge of crashes within the data steam is required, 
but this seems a reasonable expectation given past studies and the current experience in 
the U.S. Strategic Highway Research Program 2 (SHRP 2) Safety Program. As long as 
the kinematic signatures of the crashes are known, along with GPS-based location 
information, the proposed procedure should be able to extract an initial set of candidate 
near crashes for subsequent processing. In this study, First Screening was conducted 
using Receiver Operating Characteristic (ROC) methods.   

2. Once the initial screening is complete, the procedure calls for a classification of events to 
group those with similar etiology. The classification should be applicable to different 
road or driver crash types. The result of the classification is a reduced set of crashes and 
near crashes that are closer in etiology than those identified at the end of the First 
Screening.  
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3. The events remaining after initial screening and classification undergo a second screening 
and a series of tests to identify the most effective screening kinematic and context 
variables. A test is conducted of different triggering levels for individual variables or 
combinations of variables. The procedure ends with a validation test comparing crashes 
and near crashes in a common statistical model and then the estimation of crash and near 
crash probabilities and expected values so that modeled estimates can be compared to 
those from the data themselves. A number of statistical methods may be used in these 
steps including ROC regression and survival theory, especially due to the time-
dependencies in the markers for events. 

 
The framework is applied data from the VTTI 100-car study for road departure events. A total of 
63 events are included in the study: 51 non-intersections and 12 intersection-related. While the 
sample sizes are limited in the empirical study, the authors believe the procedure is ready for 
testing in other applications. While the team has implemented specific statistical approaches in 
each of the steps of the procedure (See Figure 2), we believe the process is flexible enough to 
accommodate a range of methods. 
 
With the appropriate caveats concerning the analysis of a single data set, the empirical findings 
include:  

• Introducing the use of maximum difference within a time window on crash and near-
crash markers offers advantages as to improvements in sensitivity (correctly detecting 
event of interest), with good specificity (minimum false alarm rate). In this case, the 
marker maximum difference in lateral acceleration (in a 3-second window) achieved the 
highest level of sensitivity and best specificity. This testing used the ROC method of 
analysis. 

• Using ROC regression, the presence of driver fatigue was found to increase a marker's 
accuracy, but was found not to be statistically significant. Given the small sample sizes in 
this study, lack of statistical significance is not surprising; this example indicates that 
kinematic markers along with driver attributes may yield superior performance compared 
to kinematics alone.  

• For single vehicle conflict events, there is a need to separate events occuring at 
intersections and non-intersections. 

• In this study, the specific conditions for defining surrogate events are events that are: (1) 
detected using a maximum lateral acceleration difference of greater than or equal to 0.4g 
during entire event duration; (2) non-intersection related; and, (3) have a maximum 
lateral acceleration difference of greater than or equal to 0.9g/events with a maximum 
lateral acceleration difference between 0.8g to 0.9g during nighttime conditions. 

• For valid surrogate events, the same maximum lateral acceleration difference, during 
daytime has a lower crash probability than during nighttime.    

 
Discussion 
 
One can think of the accomplishment of the study goal by comparison with medical testing and 
diagnosis. Physicians and other medical professionals conduct standardized tests using accepted 
diagnostic procedures to identify the presence of disease in patients. In road safety analysis, 
particularly with surrogates, the challenge is to develop valid consistent diagnostic procedures 
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that can be used to assess safety problems for locations in the network or drivers in the 
population. The key is the standardization of diagnoses so that findings may be applied across 
studies through the accumulation of a firm knowledge base.   
  
A recent study found that the contribution of treating near-crash events as crash observations can 
reduce the standard errors for the estimation of the effects of crash contributing factors because 
of the increase of the sample size (Guo et al., 2010). The team’s review of the diverse traffic 
conflicts literature (e.g. Williams, 1981; Hauer, 1982; Grayson and Hakkert, 1987; Hauer, 1999) 
suggests there are additional potential benefits including:  

• given well-defined surrogate events (the output of the Validation step), it should be 
possible to use the models to assess what factors influence the conditional probability of a 
crash outcome and then, what countermeasure would be helpful in reducing crash 
probability. It was not possible to conduct this assessment due to limitations in sample 
size, but data from the SHRP Naturalistic Driving Field Study should provide ample data 
for such a test. 

• Given the difference between crash and near-crash event outcomes, it would be 
interesting to conduct additional diagnosis of the factors that stop a surrogate event from 
becoming a crash given that both events share similar generating processes (this is similar 
in concept to some of the work conducted by Gary Davis of University of Minnesota for 
SHRP 2 and others).  

• Given the surrogate-to-crash evolution process, it would be useful to determine the 
triggering of near-crash events during normal driving. We can thus better understand 
what we can do to reduce the probability of near-crash event occurrence, and hence crash 
occurrence.  

 
It is hoped that this paper has offered some useful suggestions on the use of crash and near-crash 
data from naturalistic driving studies that will be useful in improving our knowledge of road 
safety. 
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Appendix 
• Surrogate Event 1: crash event. Subject driver loses control of vehicle in the snow.  The vehicle 

spins 180 degrees counter clockwise while moving longitudinally and laterally and the passenger 
side of the vehicle hits a snow bank off the opposite side of the road.   

• Surrogate Event 2: crash event. Subject driver is asleep and hits the median. 
• Surrogate Event 3: near crash. Subject driver is going too fast, and nearly hits the median on the 

other side. 
• Surrogate Event 4: crash. Subject driver is adjusting the radio while driving.  At the last minute 

he moves into a left turn lane. The left turn lane is separated from his initial lane by a median. 
When he moves into the turn lane he hits the median. 

• Surrogate Event 5: near crash. Subject driver has just inserted a cd into cd player and is closing 
the cd case as he veers off the road to the right. 

• Surrogate Event 6: crash. Subject driver is singing and appears to be driving too fast on wet roads 
while making a right turn. She loses control of the vehicle and ends up on the median to the left 
of the road she turns on to. 

• Surrogate Event 7: near crash. Subject driver looks out his left window (no other traffic is present 
and he appears to be looking at the scenery). The road curves and the vehicle runs off the right 
side of the road. 

• Surrogate Event 8: near crash. Subject driver is dialing phone and crossing over double yellow 
line. Then, the road curves and the vehicle runs off the road on the right. 

• Surrogate Event 9: near crash. Subject driver is looking at a piece of paper as he drives under an 
overpass. The road curves to the left and the vehicle veers left and nearly hits the left median. 

• Surrogate Event 10: near crash. Subject driver appears fatigued and is negotiating a curve to the 
right while on an exit/entrance ramp. He is driving too fast and goes off the road on the left side. 

• Surrogate Event 11: crash. Subject driver hits patch of ice on the roadway and vehicle slides over 
double lane line on the left.  Subject driver overcorrects and vehicle swerves across right lane and 
off onto right shoulder hitting the guardrail.   

• Surrogate Event 12: crash. Subject driver appears drowsy and possibly under the influence of 
drugs or alcohol. He falls asleep and the vehicle drifts off the right side of the road, nearly hitting 
a parked vehicle. Then the vehicle goes up onto the curb.  The vehicle travels on the curb hitting a 
mailbox before returning to the roadway and nearly hitting another parked vehicle. 

• Surrogate Event 13: near crash. Subject driver is driving in the left lane. The median to his left 
has snow plowed against it in places. It appears that the vehicle hits either the median on the left 
or snow covering it.  Video data is missing for the forward view. Changed the "Traffic Flow" 
variable after reviewing on satellite map. 

• Surrogate Event 14: near crash. Subject vehicle is traveling on snowy roadway and appears to get 
tire caught in snow on right side of roadway which causes him to hit the right median. 

• Surrogate Event 15: near crash. Subject driver is drowsy and falling asleep while driving. The 
vehicle runs off the road on the right. 

• Surrogate Event 16: crash. Subject driver appears drowsy. He obtains some aerosol air freshener 
from his glove box, sprays it, and begins to put it back in the glove box when the vehicle runs off 
the road on the right, hitting the curb. 

• Surrogate Event 17: near crash. Subject driver appears drowsy and is looking at a book he has 
placed near the steering wheel while driving in a construction zone. The road curves to the right 
and the vehicle runs off the right side of the path created by the  construction barrels. 

• Surrogate Event 18: near crash. Subject driver falls asleep while driving and the vehicle runs off 
the road on the right. 

• Surrogate Event 19: near crash. Subject driver appears drowsy and the vehicle runs off the road 
on the right side and almost hits a telephone pole. 


