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ABSTRACT   
 
The modeling of relationships between motor vehicle crashes and underlying factors has been 
investigated for more than three decades. Recently, many highway safety studies have 
documented the use of Poisson regression models, negative binomial (NB) regression models or 
both. Pearson’s 2X  and the scaled deviance ( 2G ) are two common test statistics that have been 
proposed as measures of goodness-of-fit (GOF) for Poisson or NB models. Unfortunately, 
transportation safety analysts often deal with crash data that are characterized by low sample 
mean values. Under such conditions, the traditional test statistics may not perform very well.  
 
This study has two objectives. The first objective is to examine the accuracy and reliability of 
traditional test statistics for the GOF of accident models subjected to low sample means. The 
second objective intends to identify a superior test statistic for evaluating the GOF of accident 
prediction models. For Poisson models, this paper proposes a better yet easy to use test statistic 
(Power-Divergence) that can be applied for almost all sample mean values, except when the 
mean value is extremely low, for which no traditional test statistic can be accurate. For Poisson-
Gamma models, this study demonstrates that traditional test statistics are not accurate and robust. 
A more complex method (grouped 2G ) proposed in a previous study is recommended. Guidance 
on the use of the grouped 2G  methods is further provided. Examples using observed data are 
used to help illustrate the performance of different test statistics and support the findings of this 
study.  
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INTRODUCTION 
 
The modeling of relationships between motor vehicle crashes and underlying factors, such as 
traffic volume and highway geometric features has been investigated for more than three 
decades. The statistical models (sometimes referred to as crash prediction models) from which 
these relationships are developed can be used for various purposes, including predicting crashes 
on transportation facilities and determining which variables significantly influence crashes. 
Recently, many highway safety studies have documented the use of Poisson regression models 
(Joshua and Garber, 1990; Miaou et al., 1992; Ivan and Bernardo, 2000; Lord and Bonneson, 
2007), negative binomial (NB) regression models (Miaou and Lum, 1993; Poch and Mannering, 
1996; Miaou and Lord, 2003; Maycock and Hall, 1984; Lord et al., 2005) or both (Miaou, 1994; 
Maher and Summersgill, 1996). With the Poisson or Poisson-Gamma (or NB) models, the 
relationships between motor vehicle crashes and explanatory variables can then be developed by 
means of the Generalized Linear Model (GLM) framework. 
 
Pearson’s 2X  and the scaled deviance ( 2G ) are two common test statistics that have been 
proposed as measures of GOF for Poisson or NB models (Maher and Summersgill, 1996). 
Statistical software (e.g., SAS) also uses these two statistics for assessing the GOF of a GLM 
(SAS Institute Inc., 1999). Unfortunately, transportation safety analysts often deal with crash 
data that are subjected to low sample mean values. Under such conditions, the traditional test 
statistics may not perform very well. This has been referred to in the highway safety literature as 
the low mean problem (LMP). The study by Sukhatme (1938) concluded that, “for samples from 
a Poisson distribution with mean as low as one, Pearson’s 2X  test for goodness of fit is not 
good.”  In the field of traffic safety, this issue was first raised by Maycock and Hall (1984) and 
further discussed by Maher and Summersgill (1996), Fridstrom et al., (1995), and Agrawal and 
Lord (2006). Wood (2002) proposed a more complex technique, the grouped 2G  method, to 
solve this problem. The grouped G2 method is based on the knowledge that through grouping, 
the data become approximately normally distributed and the test statistics follow a 2χ  
distribution. Some issues regarding this method are discussed in the third section. It should be 
noted that the comparison of different models can be achieved by means of Akaike’s Information 
Criterion (AIC) (Akaike, 1974) or Bayesian Information Criterion (BIC) (Schwarz, 1978). 
However, similar to the previous studies (Maher and Summersgill, 1996; Wood, 2002; Agrawal 
and Lord, 2006), this research intends to study statistics for the GOF of a given model (either 
Poisson model or NB model); thus, we mainly focused on the study of the statistics of 2X , 2G  
and the proposed statistic (Power-Divergence). 
 
This study expands on the work of Wood (2002) and has two objectives. The first objective is to 
examine the accuracy and reliability of traditional test statistics for the GOF of GLMs subjected 
to low sample means. The second objective intends to identify a superior test statistic for 
evaluating the GOF of crash prediction models. The study is accomplished by first theoretically 
deriving the problems related with these traditional tests. Observed data are then used to 
demonstrate the problems noted in the first part of the paper.  
 
This paper is divided into five sections. The second section describes the characteristics of 
Poisson and NB models used in traffic crash modeling. The third section provides an analysis 
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and comparison of different GOF test statistics for the Poisson and NB models. Observed crash 
data are used for this analysis. In the fourth section, several important issues related to the GOF 
test statistics are discussed. The last section summarizes the key findings of this study.  

 
STATISTICAL MODELS 
 
GLMs represent a class of fixed-effect regression models for dependent variables (McCullagh 
and Nelder, 1989), such as crash counts in traffic accident models. Common GLMs include 
linear regression, logistic regression, and Poisson regression. Given the characteristics  of motor 
vehicle collisions (i.e., random, discrete, and non-negative independent events), stochastic 
modeling methods need to be used over deterministic methods. The two most common stochastic 
modeling methods utilized for analyzing motor vehicle crashes are the Poisson and the NB 
regression models. For these models, the relationship between traffic accidents and explanatory 
variables is established through a loglinear function (i.e., canonical link or linear predictor). For 
example, to establish the crash-flow relationship at intersections, the fitted model can follow the 
form 1 2

0 1 2F Fβ βµ β= × × , where µ  is the estimated number of crashes, 1F  and 2F  are the 
entering AADTs (Average Annual Daily Traffic) for major and minor approaches, and 

210 ,, βββ  are the estimated coefficients. This fitted model can thus be used for predicting 
crashes for different flow values. 
 
Poisson Regression Model 
 

The Poisson regression model aims at modeling a crash count variable Y , which follows a 
Poisson distribution with a parameter (or mean) µ . The probability that the number of crashes 

takes the value iy  on the ith entity is n1,2,...,i    ,
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Poisson distribution, the variance is equal to the mean. 
 
The systematic portion of the model involves the explanatory variables mxxx ,...,, 21 , such as 
traffic volumes, highway geometrics, v/c (volume/capacity) ratios and so on. The model is then 
established through a linear predictor η . This predictor is usually a linear function of the 

logarithm of the explanatory variables in traffic crash models: ∑
=

+=
k

i
ii x

1
0 ββη , where iβ  is the 

Poisson regression coefficient for the ith explanatory variable ix . The coefficients are estimated 
based on observed data. Finally, the model is estimated through a logarithm link function 

( ) log( )j j jgη µ µ= =  (Myers et al., 2002). 
 
Negative Binomial Regression Models 
 

Although Poisson regression models are rather simple, crash data often exhibit overdispersion, 
meaning that the variance is greater than the mean. The NB regression models are thus used for 
modeling such data. The NB regression models have the same forms of linear predictor and 
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logarithm link function as the Poisson regression models, except that the response variable Y  
follows a NB distribution, in which the probability mass function (pmf) is defined as follows: 
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where )(⋅Γ  is a Gamma function, and φ  is the inverse dispersion parameter. The relationship 
between the variance and the mean of NB distribution is presented as φµµ /)( 2

iiiYVar += . The 
inverse dispersion parameter is usually assumed to be fixed and can be estimated from observed 
data using the method of moments or the (Bootstrapped) maximum likelihood (Anscombe, 1949; 
Fisher, 1941; Zhang et al., 2007). However, recent research have shown that the inverse 
dispersion parameters may be related to the explanatory variables (Miaou and Lord, 2003; Mitra 
and Washington, 2007).  
 
GOODNESS-OF-FIT TEST STATISTICS 
 
GOF tests use the properties of a hypothesized distribution to assess whether or not observed 
data are generated from a given distribution (Read and Cressie, 1988). The most well-known 
GOF test statistics are Pearson’s 2X  and the scaled deviance ( 2G ). Pearson’s 2X  is generally 

calculated as follows: 
2
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, where iy  is the observed data, iµ  is the true mean 

from the model, and iσ  is the error and is usually represented by the standard deviation of iy . 
The scaled deviance is calculated as twice the difference between the log-likelihood under the 
maximum model and the log-likelihood under the reduced (or unsaturated) model: 

)log(log2 ..max
2

redLLG −=  (Wood, 2002).  
 
Previous research has shown that both the Pearson’s 2X  and 2G  statistics are not 2χ  distributed 
under low sample mean conditions (Maycock and Hall, 1984; Maher and Summersgill, 1996; 
Wood, 2002; Fridstrom et al., 1995; Agrawal and Lord, 2006). To solve this problem, Maher and 
Summersgill (1996) proposed a test statistic ( )(/ 22 GEG ) for GOF tests. Wood (2002) showed 
that this test still failed with low sample mean values. Wood (2002) then suggested a grouped 

2G  test statistic for solving this problem. The development of the grouped 2G  is based on the 
knowledge that by increasing the mean value, the data are approximately normally distributed 
and the statistics follow a 2χ  distribution. This method first determines an appropriate group 
size r , which is the minimum grouping size. The raw data are then grouped so that each 
observation is in a group of size at least as large as r . Additional details about the other steps 
can be found in Wood (2002). 
 
There are some issues with this method, however, that need to be addressed with the method 
proposed by Wood (2002). First, the grouping size may vary from group to group with a 
minimum grouping size, which is determined by the sample mean of a Poisson model or the 
critical mean values in a NB model, as defined in Wood (2002). Thus, it is possible that changing 
grouping sizes while maintaining the same minimum grouping size may lead to different testing 
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results. Second, through grouping, the sample size will be smaller, and that may become an issue 
especially when the grouping size is not small. Thus, as commented by Wood, a compromise has 
to be made between strong grouping (which ensures that the Chi-square assumption for the 
distribution of the test statistic holds) and weak grouping (which allows to test against a richer 
alternative hypothesis). Finally, the grouped 2G , which includes five steps, is not a simple 
procedure for practitioners or average transportation safety analysts who frequently analyze 
crash data.  
 
To summarize, several GOF test statistics have been proposed to evaluate the fit of models, but 
their performance and complexity vary greatly. Therefore, simple but accurate and reliable 
alternative test statistics are highly desirable to account for the LMP commonly observed in 
crash studies. 
 
In Wood’s study (2002), a simple criterion to assess whether or not a test statistic is appropriate 
for testing the GOF of regression models is to examine the test statistic’s performance for a 
single distribution (Poisson or NB) with known parameters. For this criterion, the grouped 2G  
method was developed to improve the normality of observations and allow the mean and 
variance of the 2G  statistic (for low mean µ  values) to be close to 1 and 2 ( 2

1χ  distributed), 
respectively. Similarly in this study, we examine the mean and variance of different statistics 
under a single distribution context to judge their appropriateness for the GOF of GLM. 

 
Test Statistics for Poisson Models 
 

Characteristics of Statistical Tests 
 
The most common test statistics are Pearson’s 2X  and the scaled deviance ( 2G ). For a Poisson 
model, the variance is equal to the mean and Pearson’s 2X  is presented below: 
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The scaled deviance for a Poisson model is (Maher and Summersgill, 1996) 
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In this paper, we investigate other test statistics for the GOF test of the Poisson model, especially 
when it is characterized by low sample mean values. This research draws from some other work 
in the statistical literature. 
 
Cressie and Read (1984 & 1988) incorporated the Pearson’s 2X  and 2G  statistics into a family 
of “Power-Divergence Statistics” ( λPD , R∈λ ). In this family, each member λPD  is the sum of 
deviance between the observed and expected counts:   
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where λa  denotes the distance function. Different values of λ  lead to different GOF statistics 
(Cressie and Read, 1984 & 1988; Baggerly, 1998), such as the Pearson’s 2X  statistic 

when 1=λ , the Freeman-Tukey statistic 2

1
2/1
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(Freeman and Tukey, 1950), and the Neyman-modified  2X  statistic 
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λ  when 2−=λ  (Neyman, 1949). The Power-Divergence statistic 

can be also written as (Cressie and Read, 1989) 
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Hence, when 0→λ , the power divergence leads to the 2G  statistic (Cressie and Read, 1989). 
 
Cressie and Read (1988) recommended 3/2=λ , with which the statistic 3/2=λPD  will be 
approximated by the 2χ  distribution in many situations and give the most reasonable power for 
GOFs. When 3/2=λ , the test statistic of Power-Divergence becomes 
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PD
µλ , as derived from Equation 4. 

 
GOF tests using different statistics rest on the assumption that the statistics follow an 
approximate 2χ  distribution  that has a mean of 1 and a variance of 2. Thus, to evaluate a test 
statistic for GOF tests, we can investigate how well its components follow a 2χ  distribution. 
With this criterion, different test statistics can be compared and evaluated. 
 
Pearson’s 2X , the 2G , Power-Divergence with 3/2=λ  ( 3/2=λPD ), and the Freeman-Tukey 

statistic 2

1

2 )(4 i

n

i
iyF µ∑

=

−=  (Freeman and Tukey, 1950) are used for the examination of the 

fit of 2χ  distributions. In the case that crash data have zero counts at some locations, the 
Neyman-modified 2X  goes to infinity and is therefore excluded from the comparison analysis. 
Figure 1 shows the mean and variance of the components of those four statistics, for the Poisson 
mean µ  less than 10. The following equations show the calculations of mean and variance of the 
Pearson’s 2X  statistic, given a known Poisson mean value ( µ ): 
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where ( ; )Yf k µ  is the pmf of Poisson distributions and k  is the number of occurrence of an 
event. The mean and variance of other statistics over different µ  values can be calculated in this 
way. 
 
The comparisons are first conducted for µ  values varying from 1 to 10. They are shown in 
Figure 1. From this figure, Pearson’s 2X  has a mean value (E(X2)) of 1 for all µ  values, but its 
variance (V(X2)) is greater than 2. With the decrease of µ , the variance increases. Thus, for low 
µ  conditions, Pearson’s 2X  is not reliable and as a result, tends to overestimate GOF values. In 
fact, V(X2) is equal to µ/12 +  and this has also been described in the study by Wood (2002). 
The mean of the scaled deviance (E(G2)) is slightly larger than 1 (when µ >1) and moves toward 
1 as µ  rises; the variance (V(G2)) increases from less than 1 to around 2.4 and then decreases 
toward 2. The Freeman-Tukey statistic does not have a good fit of 2χ  distributions even when 

10=µ . The mean and the variance of the 3/2=λPD  statistic, however, are rather close to 1 and 2 
respectively. The components of the 3/2=λPD  statistic fit 2χ  distributions almost perfectly as 
long as u >1. Therefore, the 3/2=λPD  is recommended for GOF tests for ]10 ,1[∈µ . 
 
Figure 2 shows the comparison of mean and variance of 2X , 2G , and 3/2=λPD , for 11.0 <≤ µ . 
It can be observed that E(G2) varies from 0.47 to 1.15, while E(PD) increases from 0.7 to 0.98. 
Overall, E(PD) is more stable based on the rate of increase and is much closer to 1.0 than E(G2). 
For 3.0≥µ , the difference between E(PD) and E(X2), which is exactly 1, is very small and 
negligible.  V(G2) is always less than 2 and even less than 1 given 7.0<µ ; V(PD) has the same 
tendency as V(X2), but is more stable and gets close to 2.0 even when µ  is as small as 0.3, while 
V(X2) stays above 3.0 at 1=µ . It can be also seen that V(PD) performs like a compromise 
between V(X2) and V(G2). From the above comparisons, for [0.3,  1]µ∈ , the components of 

3/2=λPD  are approximately 2χ  distributed and 3/2=λPD  performs better than the other statistics. 
For 3.0<µ , no statistic is reliable for GOF tests, and practitioners may consider turning to the 
more complicated grouped 2G  method. 
 
Based on Figures 1 and 2, 3/2=λPD  is better than the other statistics and its components generally 
fit 2χ  distributions well for 3.0>µ . Pearson’s 2X  is slightly better than 2G  for 3>µ , but 
even when 10=µ , Pearson’s 2X  and  the 2G  are not satisfactory, with means and variances of 
(E(X2)=1.00, V(X2)=2.10) and (E(G2)=1.02, V(G2)= 2.09), respectively. 
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Figure 1 Mean and variance of the components of different test statistics for 100 << u
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Figure 2 Mean and variance of components of different test statistics for 11.0 ≤≤ u  
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Example Applications with Observed Data 
 
To show how different GOF test statistics affect the fit of Poisson models, two examples using 
observed crash data are provided. It is worth noting that the core of the study is to statistically 
investigate the performance of different test statistics for GOF under low mean conditions. The 
following data are used as examples to help support the findings from statistical investigation, 
but not to serve as alternative approach to investigate their performance. 
 
For the first example, the data were collected at 59 four-legged unsignalized intersections in 
1991 in Toronto, Ontario (Lord, 2000). The dataset includes the number of crashes and entering 
AADT for the major and minor approaches at each site. Both Poisson and NB GLM were used 
for modeling this dataset, but the NB model converged to Poisson, with an inverse dispersion 
parameter that tended towards infinity (Lord and Bonneson, 2007). The mean of this dataset is 
0.97. The variance is roughly the same as the mean. Thus, a Poisson GLM could be used for 
modeling this dataset. The functional form 1 2

0 1 2F Fβ βµ β= × ×  is used for the prediction of the 
number of crashes. As stated by Lord (2006), it is the most common functional form used by 
transportation safety analysts for modeling crash data at intersections. The outputs of the fitted 
model are shown in Table 1. It can be seen that all coefficients are still significant even at the 
significance level of 0.01. 

 
Table 1 Modeling outputs of the Poisson model 

Coefficients Est. Value Std. Error z value Pr(>|z|) 

0β  2.3439E-06 4.2895 -3.022 0.0025 

1β  0.8175 0.3145 2.599 0.0093 

2β  0.6348 0.2349 2.7303 0.0069 

 
Pearson’s 2X , 2G , 3/2=λPD , and 2F  are used for the GOF test of this Poisson model. The 
results of the GOF tests are summarized in Table 2. The 3/2=λPD  statistic has a lower GOF value 
and correspondingly a higher p-value than the Pearson’s 2X  statistic. The GOF value of 2G  is 
higher than Pearson’s 2X . The 2F  statistic has the lowest p-value. To explain their differences, 
Table 2 also lists the mean and variance of those test statistics given the Poisson mean 97.0=µ . 
The mean and variance of the distribution of the test statistics can also be seen from Figure 1 or 
Figure 2. It is clear that the components of the 3/2=λPD  statistic are rather close to a 2χ  
distribution. For the Pearson’s 2X  statistic, 1)( 2 =XE  and 03.3)( 2 =XV . The variance V(X2) 
is larger than 2 and may have overestimated the GOF value given 1)( 2 =XE . For the 2G  
statistic, although 223.1)( 2 <=GV , the mean 14.1)( 2 =GE  is higher than 1 and can also result 
in overestimations of GOF values. Similarly, the 2F  statistic will also overestimate GOF values. 
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Table 2 Results of GOF tests for the Poisson model 
Statistics X2 PD G2 F2 

GOF value 52.71 51.76 59.85 93.41 
Degrees of Freedom 56 56 56 56 
p-value 0.60 0.64 0.34 0.00 
Expectation* 1.00 0.98 1.14 1.81 
Variance** 3.03 1.99 1.23 3.20 

         *: The means of test statistics when the Poisson mean is 0.97. 
         **: The variances of test statistics when the Poisson mean is 0.97. 

 
For the second example, the data were collected at 88 frontage road segments in the State of 
Texas (Lord and Bonneson, 2007). The dataset includes the number of serious injury crashes 
(KAB or K=Fatal, Injury Type A – incapacitated, and Injury Type B – non-incapacitated), 
segment length, and AADT. The mean of this dataset is 1.386 and the variance is 1.642. Both 
Poisson and NB GLM were used for modeling this dataset, but the NB model converged to 
Poisson, with an inverse dispersion parameter that tended towards infinity (Lord and Bonneson, 
2007). The functional form 1

0 * *L F βµ β=  was used for the prediction of the number of crashes, 
where L  represents the segment length and F  is the AADT. The modeling results are shown in 
Table 3. It can be seen that both coefficients are significant at the significance level of 0.01. 

 
Table 3 Modeling outputs of the Poisson model 

Coefficients Est. Value Std. Error z value Pr(>|z|) 

0β  0.01536 0.8374 -4.987 6.14e-07 

1β  0.5874 0.1195 4.916 8.82e-07 

 
Again, Pearson’s 2X , 2G , 3/2=λPD , and 2F  are used for the GOF test of this Poisson model. As 
can be seen from Table 4, the GOF testing results are consistent with those of the first example, 
which does not warrant further discussion. 
 

Table 4 Results of GOF tests for the Poisson model 
Statistics X2 PD G2 F2 

GOF value 104.84 103.01 116.08 168.87 
Degrees of Freedom 86 86 86 86 
p-value 0.08 0.10 0.02 0.00 
Expectation* 1.00 0.99 1.14 1.75 

Variance** 2.81 1.99 1.70 4.76 
        *: The means of test statistics when the Poisson mean is 1.386. 
       **: The variances of test statistics when the Poisson mean is 1.386. 
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Test Statistics for Negative Binomial Models 
 

Characteristics of Statistical Tests 
 
For NB distributions, the variance can be calculated as φµµ /)( 2

iiiYVar += . Thus, the 

Pearson’s 2X  statistic becomes 
2 2
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of the scaled deviance (Wood, 2002), the 2G  statistic for a NB model is calculated by 
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To show the accuracy and reliability of the Pearson’s 2X  and 2G  statistics for GOF tests, the 
components of these statistics are examined again, using the same kind of calculations shown in 
Equations 5 and 6, in which ( )Yf ⋅  is now the pmf of the NB distribution. Note that the Power-
Divergence statistics were not used as test statistics in this study for the NB distribution, since 
they do not exist in the statistical literature. The mean and variance of the Pearson’s 2X  and 2G  
statistics with different parameter settings are shown in Figure 3. The NB mean ( µ ) varies from 
0 to 10; the inverse dispersion parameters (φ ) are 1, 3 and 5, respectively. It can be observed that 
φ  has a great effect on the distributions of those two statistics. For the Pearson’s 2X  statistic, 
the smaller the inverse dispersion parameter, the larger the V(X2) value, given a known NB mean 
value. The components of the Pearson’s 2X  statistic do not fit 2χ  distributions, as V(X2) is 
generally much larger than 2 for low µ  values. V(X2) is still larger than 3 even when 10=µ  and 

5φ = . Therefore, the Pearson’s 2X  statistic will underestimate the degree of fit (p-value) and 
tend to reject fitted models more easily in practice. For the 2G  statistic, V(G2) may increase or 
decrease drastically for 1<µ , then gradually stabilizes depending on φ . When µ  is as high as 10 
and 1φ = , the variance V(G2) is still not quite stable.  
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Figure 3 Mean and variance of components of the 2X  and 2G  statistics
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With the increase of φ , the µ  value for V(G2) to become stable decreases. For example, when 
3φ = , V(G2) becomes stable when µ  is around 4, and when 5φ = , V(G2) will be relatively 

stable when µ  is around 3. E(G2) is generally greater than 1 for 1>µ and less than 1 
for 10 << µ . [Important note: the inverse dispersion parameter is assumed to be properly 
estimated. As discussed by Lord (2006), the inverse dispersion parameter can become 
misestimated as the sample mean values decrease and the sample size becomes small.] 
 
Overall, both Pearson’s 2X  and 2G statistics are not quite accurate and reliable for the GOF test 
of NB models with low sample means, especially when the crash data are highly overdispersed 
(φ  is small). As a result, the authors recommend the use of the grouped 2G  method for the GOF 
test of NB models. An example is given below to show the differences between GOF test 
statistics for NB models. 
 
Example Applications with Observed Data 
 
An annual crash-flow dataset was collected from 255 signalized 3-legged intersections in 
Toronto, Ontario (Lord, 2000). This dataset includes the number of serious injury crashes and 
entering AADTs for the major and minor approaches at each intersection. The crash counts are 
overdispersed with a mean of 1.43 and a variance of 3.49. A NB regression model was thus used 
for the modeling of this dataset. The functional form 1 2

0 1 2F Fβ βµ β= × ×  was again used for the 
prediction of the number of crashes. The results of the fitted model are summarized in Table 5. 
All the coefficients are significant at the significant level of 0.01. The inverse dispersion 
parameter was estimated to be 2.76. 
 

Table 5 Modeling outputs of the Negative Binomial model 
Coefficients Est. Value Std. Error z value Pr(>|z|) 

0β  7.988E-07 2.0122 -6.978 3.00E-12 

1β  1.0241 0.1951 5.249 1.53E-07 

2β  0.4868 0.0821 5.926 3.10E-09 

 
Pearson’s 2X , 2G  and the grouped 2G  were used for evaluating the GOF test of the NB model. 
According to the grouping rules in (Wood, 2002), the minimum grouping size for the dataset is 
equal to 2, and the expression for calculating the grouped 2G  is 

∑
= +

+
+

+
+
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i ii
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2 )]
)(
)(

log()log([2_
φµ
φµ

φ
φµ

φ , where ir  is the grouping size for the 

ith group. 
 
The results of GOF tests are summarized in Table 6. The degrees of freedom are 252 for 
Pearson’s 2X  and 2G , and 125 for the grouped 2G . All three test statistics accepted the fitted 
model at the significance level of 0.05. The grouped 2G  statistic and the Pearson’s 2X  statistic 
have the highest and lowest p-values, respectively. The table also shows the expectations and 
variances of the components of Pearson’s 2X  and 2G  statistics, given the known parameters 
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(µ and φ ). It can be seen that E(X2) is 1 and V(X2) is 4.63. V(X2) is much larger than 2 and this 
has caused the overestimation of GOF values. Thus, the p-value (0.09) of the 2X  is lower than 
the actual value. E(G2) and V(G2) with low NB mean ( µ ) values are shown in Figure 4 for 

2.76f = . When µ  is around 1.43, E(G2) is higher than 1, which may have resulted in the 
overestimation of GOF values and underestimation of the power of fit; V(G2) is very unstable for 
low µ  values. The p-value of the grouped 2G  statistic is slightly higher than that of 2G . This is 
expected since the 2G  statistic has underestimated the true p-value. Thus, this example shows 
that the grouped 2G , although more complicated than the traditional methods, provides better 
results for the GOF test of NB models. 

 
Table 6 Results of GOF tests for the Negative Binomial model 

Statistics X2 G2 Grouped_G2 

GOF value 282.20 269.80 136.46 

Degrees of Freedom 252 252 125 

p-value 0.09 0.21 0.23 

Expectation* 1 1.12 N/A 

Variance** 4.63 1.42 N/A 
   *: The means of test statistics when the NB mean is 1.43 and the inverse dispersion parameter is 2.756. 
   **: The variances of test statistics when the NB mean is 1.43 and the inverse dispersion parameter is 2.756. 
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Figure 4 E(G2) and V(G2)  versus NB mean with 756.2=φ  
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DISCUSSION  
 
The results of this study show that the Pearson’s 2X  statistic tends to overestimate GOF values 

for low µ  values, since V(X2) are larger than 2. This is because the components (i.e., 
i

iiy
µ
µ 2)( −

 

for Poisson models) will be inflated when the predicted values ( iµ ) are low. For instance, with 
the observed crash dataset in the first case, the Poisson model predicted 1.02 crashes per year for 
one of the intersections. However, 4 crashes were observed at that intersection. The contribution 
to 2X would be 2(4 1.02) /1.02 8.71− =  and larger than the nominal value. The phenomenon 
explains why V(X2)>2 for low µ  values. 
 
Undoubtedly, for Poisson regression models, the Power-Divergence statistic ( 3/2=λPD ) follows 
an approximate 2χ  distribution and is the best test statistic for measuring the GOF for these 
models. This statistic performs better than the other three statistics for almost all µ  values, 
except when µ  is very low. However, when µ  is very small, no test statistics can provide 
accurate and stable results of GOF tests. This statistic is preferred to the Pearson’s 2X  statistic 
for all cases. For 1<µ , the variance of 3/2=λPD  statistic (V(PD)) performs like a compromise 
between V(X2) and V(G2), and contributes to more accurate and stable GOF tests. 
 
From Figures 1 and 3, it is also observed that the performance of Pearson’s 2X  and 2G  becomes 
worse with the increase in overdispersion. The Poisson model is a special case of the NB model, 
in which the inverse dispersion parameter is infinite. Therefore, the estimation of the inverse 
dispersion parameter from observed data will affect the results of GOF tests. It should be noted 
that the traditional estimators of the inverse dispersion parameter do not have accurate and stable 
estimations under low mean conditions, as described above (Lord, 2006). For NB models, both 
Pearson’s 2X  and 2G  do not have accurate results of GOF tests, especially under low sample 
mean conditions. Under such conditions, the grouped 2G  method is recommended, as it will 
provide better results for GOF tests of NB models. 
 
The results of this study provide guidance on the use of the grouped 2G  method. Based on the 
curves of 2G  illustrated in Figure 1, it is found that the 2G  method or the grouped 2G  method is 
an appropriate test statistic only when the grouped mean is 1.5 or higher. Theoretically, the 
grouped 2G  method can be used for samples with extreme low means (e.g. less than 0.3). 
However, when grouping a sample with a low mean value to achieve a grouped mean of 1.5 or 
higher, the grouped sample size will be significantly reduced, which may lead to issues 
associated with small samples. For NB regression models, the problem becomes more complex 
as the minimum grouped mean is determined by the inverse dispersion parameter (φ ). The 
recommended minimum means (or group means) for different inverse dispersion parameters are 
shown in Figure 5. The minimum mean decreases when φ increases. For φ  less than 1, the 
minimum mean increases sharply with a decreasing φ . Thus, when using the grouped 2G  
method, the grouped mean is suggested to meet the requirements presented in this figure. With 
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the increase of the inverse dispersion parameter towards infinite (Poisson model), the 
recommended minimum mean decreases slowly to approximately 1.5. 
 

 
Figure 5 Recommended Minimum Means versus Inverse Dispersion Parameter of the NB model 
 
CONCLUSIONS AND FUTURE WORK 
 
The Poisson and NB regression models are the two most commonly used types of models for 
analyzing traffic crashes. These models help establish the relationship between traffic crashes 
(response variable) and traffic flow, highway geometrics, and other explanatory variables. To 
evaluate their statistical performance, GOF tests need to be used. Since crash data are often 
characterized by low sample mean values and it has been found that traditional GOF statistics do 
not perform very well under these conditions. Consequently, there was need to determine 
whether alternative GOF statistics could be used for data characterized by low sample mean 
values. 
 
The objectives of this paper were to examine the performance of test statistics for evaluating the 
GOF of crash models, propose better statistics, and provide useful recommendations for GOF 
tests for data characterized by low sample mean values. For Poisson models, this paper 
introduced a test statistic ( 3/2=λPD ) that is superior to the traditional statistics. The study showed 
that the 3/2=λPD  statistic has accurate GOF tests even when the sample mean is as low as 0.3. 
For NB distributions with low sample mean values, this paper found that the traditional statistics 
do not have accurate estimates of the power of fit. Under such conditions, the more complex 
grouping method is recommended as a remedy. For better illustrations, three examples using 
observed crash data were used to show the differences of test statistics in GOF tests for Poisson 
and NB models. Further work should be done to investigate and improve the GOF test of NB 
models, since this type of model is more often used for modeling crash data. 
 
In the statistical literature, some researchers (Gurtler and Henze, 2000; Spinelli and Stephens, 
1997; Baringhaus and Henze, 1992; Kim and Park, 1992; Kocherlakota and Kocherlakota, 1986; 
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Baglivo et al., 1992) have also examined the performance of GOF test statistics for the Poisson 
model. Examples include the Cramer-von Mises test statistic and the Kolmogorov-Simirnov test 
statistic, both well-known for testing the GOF for continuous distributions (Henze and Klar, 
1995). Future work can be also conducted to examine whether these test statistics for Poisson 
models developed using data characterized by low sample mean values perform well. Moreover, 
Carota (2007) extended the power-divergence to a Bayesian nonparametric context, under which 
the power-divergence may be an appropriate test statistic for testing NB regression models. 
Future work can also be conducted in this regard. However, the complexity of the power-
divergence with a Bayesian extension can be a barrier for transportation analysts even if it 
performs well for low mean conditions. 
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