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ABSTRACT 
 
Transportation professionals have long recognized the importance of accounting for accident and 
incident impacts when designing and constructing transportation networks. Studies have used 
statistical models of accidents to explore associations of traffic injuries/harm with driver, vehicle, 
roadway and environmental factors.  A critical characteristic of most studies is their reliance on 
traditional models (referred to as global models) that assume the efficacy of a single set of 
estimated parameters to forecast crash impacts — an approach characterized as “one size fits 
all.”   However, in spatially diverse metropolitan regions, accident impacts and their associations 
with variables can vary across space, resulting in unobserved spatial heterogeneity.  Overcoming 
this weakness has led to the use of various spatial analysis techniques.  Using collision data from 
the Hampton Roads region of southeastern Virginia and the estimated economic costs of 
accidents, this paper explores spatial relationships and provides comparisons of results obtained 
from global models and those obtained using the technique of Geographically Weighted 
Regression (GWR).  Estimation of collision harm (assumed to be related to the approximate 
monetary costs of accidents) indicates that GWR methods yield significantly more accurate 
results. The results provide valuable information on high-risk factors associated with collision 
harm and the spatial variations in these associations and suggest improved data application in 
dynamic traffic simulations. 

Keywords: crash harm, GWR, global model, local model, spatial 



Zheng, Robinson, Khattak, and Wang 

	
   2 

INTRODUCTION 
 
Vehicle accidents may cause property damage, traffic congestion delays, and personal injuries or 
death.  The importance of accounting for the impacts of accidents in transportation planning and 
road design has long been recognized and considered in network design and operational 
planning. A critical characteristic of most planning studies is their reliance on traditional models 
(referred to as global models) that assume the efficacy of a single set of estimated parameters to 
forecast crash impacts throughout the modeled area — an approach characterized as “one size 
fits all.”  Severity is measured using the costs of accidents and the product of frequencies times 
cost is referred to as crash harm.  Crash harm is generally associated with driver, vehicle, 
roadway, and environmental factors.  Traditional Ordinary Least Square (OLS) regression 
(Council et al., 2003; Khattak and Targa, 2004) is usually used to model these relationships.  
However, in spatially diverse metropolitan regions, accident impacts and their associations with 
variables vary across space, causing a problem known as unobserved spatial heterogeneity.  
Geographically Weighted Regression (GWR) methods overcomes this deficiency and yield more 
accurate results.   
 
Using collision data from the Hampton Roads region of southeastern Virginia, this paper 
explores spatial relationships and provides comparisons of results obtained from global and 
GWR models.  The relative impacts of accidents are assessed by comparing the frequency and 
the severity of collisions at various locations throughout the region. The results provide valuable 
information on high-risk factors associated with collision harm and the spatial variations in these 
associations and suggest improved data application in dynamic traffic simulations.  

 
LITERATURE REVIEW 
 
Overcoming the weaknesses of “one size fits all” estimates such as global regression and 
ordinary least squares analysis has led researchers to use varying types of spatial analysis to 
provide insights on accidents impacts that might otherwise be overlooked.  Such insights have 
provided value in better understanding the factors that contribute to accident frequencies and 
severities.  For example Levine et al. (1995) used spatial analysis to assess vehicle crashes in 
Honolulu and showed the dynamic variations of crash densities with the traffic volumes and 
patterns associated with days of the week and time of day.  Loo (2009) used spatial 
characteristics of road crashes to identify hot zones for crashes in Hong Kong, comparing these 
results with “blacksite methodology” for identifying hazardous areas.   

 
Geographically weighted regression is a particular technique for spatially varying relationships.  
In essence, it uses regression parameters for each location assessed and allows evaluations of 
how parameter changes vary from one location to another.  GWR uses the attributes considered 
in OLS analysis, but adds consideration of the geographic location of data points. When using 
GWR, users assume that points physically nearer one another, on the same road type (for this 
project, on Interstate highways), and sharing the same physical characteristics (such as number 
of lanes, pavement condition, etc.) are more alike than those further apart.  It provides local 
parameter estimates for variables in a spatial context.  
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GWR is often interpreted as a smoothing function.  Because variable values are weighted by the 
values of nearest neighbors, discontinuities and sudden changes in magnitude are minimized and 
GWR can create a highly accurate observed variable surface.  This makes the technique 
attractive for various aspects of urban analysis, a benefit demonstrated by Paez and Scott (2005).   
Although widely used in other fields, research with an emphasis on GWR applications in 
transportation is a fairly recent phenomenon (Zhao and Park, 2004; Chow et al., 2006; Du and 
Mulley, 2003; Wang and Khattak, 2011).  Relatively few studies exist using GWR in 
transportation safety analyses. Hadayeghi et al. (2009) utilized geographically weighted Poisson 
regression (GWPR) to model zonal collision counts and concluded that the local model 
estimation technique of GWPR can improve analysis of transportation networks.  Park et al. 
(2010) used GWR to identify hazardous locations based on severity scores of highway crashes. 

 
The current study differs from previous works by its use of economic impacts to assign and 
assess the severity of accidents.  It employs GWR as described by Fotheringham et al. (2002) 
and makes use of the GWR analysis software provided by these authors. 

 

METHODOLOGY 
 
Crash Harm 

Crash harm includes the estimated costs from personal and property damage.  Information for 
accidents occurring on Interstate highways in the Hampton Roads region of Virginia in 2006, 
recorded by the Virginia State Police and provided by the Virginia Department of Transportation 
(VDOT), was used for all analyses.  The severity of injuries was included in the data and was 
categorized as follows: 

1) Dead before report; 

2) Visible signs of injury requiring assistance (bleeding wounds, individual required 
transport from the scene): 

3) Other visible injury (bruises, abrasions, swelling, etc.); 

4) No visible injury, but complaint of pain or momentary loss of consciousness. 

Total crash harm is crash harm multiplied by the frequency of accidents at a particular site and is 
expressed in units of dollars/time. This study uses estimated costs suggested by the Secretary of 
Transportation to the Federal Highway Administration (FHWA) which updated 1994 estimates 
with information from a year 2000 study of crash costs conducted by Blincoe for the National 
Highway Traffic Safety Administration (NHTSA) (Blincoe, 2002).  The estimated costs (per 
occurrence) used in this study were: 

• Collisions with no injury:  $2250; 
• Collisions with nonfatal injury:  $63,000; and  
• Collisions with fatal injury:  $3,000,000. 
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Geographically Weighted Regression 
GWR explores the spatial deviations of associations between dependent and explanatory 
variables by relaxing the assumption that estimated parameters hold globally.  In this context it is 
useful in identifying whether the association of between harm and a particular explanatory 
variable is relatively stable over space or it varies substantially. This can in turn help with 
spatially targeted countermeasure development. In GWR, the regression model is calibrated 
based on data geographically proximate to a specific location.  In other words, GWR assesses 
parameters within specified distances (called bandwidths) of one another and weights these 
parameters from an identified regression reference point (Fotheringhan, 2002).  The basic GWR 
equation can be written as: 

 yi = !i0 + !ik xikk=1

p
! +"i  where 

yi is the dependent variable at location i, βi0 is the constant at point i, βik is the coefficient at point 
i for variable xik, xik is the independent variable of the kth parameter at location i, εI is the error 
term at location i, and p is the number of parameters being estimated.  The critical difference 
between global and GWR analysis is that the global estimation uses one model for all 
observations while the GWR estimates a particular local model for each location in space. Monte 
Carlo significance tests for the parameter estimates can determine if estimated parameters have 
significant spatial variability. 
 
DATA USED 
 
Three datasets for the Hampton Roads region of Virginia were used in the study.  Information for 
accidents occurring on Interstate highways in Hampton Roads in 2006, recorded by the Virginia 
State Police and provided by VDOT, was used for all analyses. The database contained 4517 
crashes, each one with 67 variables, including crash vehicle, driver information, personal and 
equipment/facility damage, and environmental and roadway factors. Crash locations were 
recorded using Interstate milepost values.  These locations were geocoded to latitude and 
longitude coordinates and matched with the VDOT route system. Key factors and their 
descriptive statistics used in the study are provided in Table 1. 
 
VDOT, the Hampton Roads Planning District Commission (HRPDC), and the Hampton Roads 
Transportation Planning Organization (HRTPO) provided basic information about roadway 
segments in Hampton Roads. Data included segment lengths, annual average daily traffic 
(AADT), annual average weekday daily traffic (AAWDT), and truck contributions to total traffic 
(as a percentage) for each segment.  HRPDC and HRTPO also provided Traffic Analysis Zone 
(TAZ) data, including spatial, population, and employment information for each TAZ.  GIS tools 
were used to merge crash data, roadway data and traffic analysis zone data and to assist with 
identifying the key factors associated with crash harm. 
 
Kernel density analysis can help examine accident hotspots. Here, Kernel density is used to 
examine the spatial distributions of secondary and non-secondary incidents. This method 
calculates the density of a variable in a search radius, and shows where incidents are 
concentrated. A kernel function K determines the shape of the bumps while the parameter 
h determines their width. By calculating the incident density, a surface can be created showing  
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Table 1 Descriptive Statistics for Variables (4,517 observations)	
  

Variable Mean Std. Dev. Min Max 
Total harm 37854 196136 100 3100000 

Ln harm (log-transformed of total harm) 9.17 1.53 4.61 14.95 
Percentage of truck traffic 0.770 0.422 0 2 

Peak hour (6:00-9:00, 16:00-19:00) 0.302 0.459 0 1 
Road Width 35.090 11.45 0 72 
Bridge or not 0.079 0.27 0 1 

Variable Freq. % 
Function class Urban Area 4,371 96.77 

Rural Area 146 3.23 
Facility Two way uncontrolled 20 0.44 

Two way full control 4,300 95.20 
One way 173 3.830 

Not stated (facility) 24 0.531 
Intersection T-leg intersection 8 0.177 

Interchange 870 19.261 
Not Intersection 3,639 80.562 

Crash type Rear End 2,481 54.93 
Angle 6 0.13 

Head on 6 0.13 
Sideswipe-same direction 602 13.33 

Sideswipe-opposite direction 5 0.11 
Fixed object- in road 13 0.29 

No collision 125 2.77 
Fix object-off road 1,211 26.81 

Deer 30 0.66 
Pedestrian 4 0.09 

Backed into 3 0.07 
Other 31 0.69 

 

the spatial distribution of secondary and non-secondary incidents throughout the network. The 
kernel density function is described in flowing equations.  
                                                                                                           
      
 
        Where:   n = sample size 
                       h = bandwidth parameter (kernel radius) 
                       Xi = Observed frequency of incidents on the segment i 
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The function K(x) will be a symmetric probability density function, the normal density, for 
instance, or Gaussian function (shown in the following equation) with mean zero and variance 
one. 
                                                                               
 
                                         
Kernel density is a relative value that can improve one’s understanding of the hotspot location. 
Figure 1 shows the kernel density for crash frequency.  Green coloring indicates areas of low 
density, yellow moderate density, and red high density.  Figure 2 represents the same data and 
geographic area, but the coloring indicates relative densities of crash harm as measured in 
estimated dollar costs. Category descriptors are further explained in the following section.   
 
Comparison of the two figures shows how high density locations for crash frequency may differ 
from areas of high crash harm; differences between spatial distribution of crash frequency 
density and crash harm density are clearly seen in the differing color patterns.  In particular, 
readers should take note of the two bridge-tunnel complexes included in the graphic.  Although 
high crash frequencies are noted for both the Hampton Roads Bridge Tunnel (HRBT) and the 
Monitor-Merrimac Memorial Bridge Tunnel (MMMBT), crash harm drops in both locations. 
Along I-64 at the bottom-center of the maps, the opposite situation exists with an area of more 
moderate crash frequency producing high values for crash harm.  The variation of crash harm is 
substantially different over space, points to unobserved spatial heterogeneity.  
 
Descriptive statistics identified in Table 1 show that the maximum total harm of these crashes is 
3.1 million dollars, which represents a fatal crash with 100,000 dollars property damage and the 
minimum total harm is 100 dollars, which represents no one injured in that crash with property 
damage of 100 dollars.  

The maximum percentage of truck traffic is 2 percent and minimum percentage of truck traffic is 
0, as trucks are restricted from going on certain routes. Less than half of the crashes (30.2%) 
happened during peak hour, 6 to 9 in the morning and 4 to 7 in the afternoon.  

And considering Hampton Roads area is on the East coast and has bridges and tunnels, 7.9% 
crashes happened in bridge or tunnel. 4,731 crashes (96%) happened in urban area and only 146 
crashes(less than 4%) happened in rural area. And 4,300 crashes (95%) were involved in two-
way roadway facility. Further, 217 crashes (5%) are in other kinds of facilities, including two-
way uncontrolled facilities, and one way facilities. 

The most common crash type is rear end crashes, which accounts for 54.93% of total crashes. 
Following are Fixed object (off road) crashes and sideswipe (same direction) crashes are also 
very common, which account for 26.81% and 13.33% of the total crashes, respectively. Other 
type of crash may not as common as these three, but still might be very harmful, for example, 
head on crashes. 
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Figure 1 Crash Frequency density 

 
 

 

Figure 2 Crash harm density 
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MODELING CRASHES 
 
The global model for the log-transformed cost of harm (ln harm) and their tests for non-
stationarity are provided in Table 2. Variables with positive coefficient values contribute to 
higher crash harm; negative values indicate a contribution to lower crash harm.  Both models are 
statistically significant overall. The test for bandwidth is significant, which means that the GWR 
model is statistically better than the global OLS model.  From the global model, the factors found 
to be significantly associated with higher crash harm include:  

• collision type, including the striking angle and direction; 
• another object involved, e.g., another vehicle, a pedestrian, animals, fixed objects; 
• truck involvement; 
• road characteristics, especially the number of lanes and lane width; 
• spatial location (on a bridge, urban or rural area, intersection, etc.); and 
• time of day (peak traffic period). 

 

Table 2 Global Model for Log Transformed Cost of Harm and Test for Non-Stationarity 
Global OLS (sample size: 4,517) 

Variable Coef. P>|t| Test for non-
stationary 

Collision Type 

Rear End -1.144 0.000 0.140 
Angle -1.229 0.050 0.040 

Head on 1.943 0.002 0.340 
Sideswipe-same direction -1.233 0.000 0.200 
Sideswipe-opp. Direction -0.691 0.313 0.250 

Fixed object- in road -0.843 0.054 0.130 
Fix object-off road -1.009 0.000 0.030  

Deer or other animal -2.148 0.000 0.430 
Pedestrian 0.725 0.342 0.100 

Backed into -2.675 0.002 0.100 
Other -1.122 0.000 0.570 

Roadway & 
Spatial variables 

Bridge or not 0.091 0.316 0.420 
Road Width 0.006 0.008 0.090 
Urban Area -0.187 0.054 0.960 

Two way uncontrolled 0.172 0.611 0.540 
One-way -0.003 0.984 0.640 

Not stated (facility) -0.25 0.432 0.998 
T-leg intersection 0.703 0.187 0.290 

Interchange -0.08 0.197 0.730 

Other variables 

Percentage of truck traffic 0.15 0.008 0.000 
Peak hour 

(6:00-9:00, 16:00-19:00) -0.179 0.000 0.140 

Constant 10.175 0.000 0.810 

Model Info. Number of obs. =4,517, Prob > F  0.0000  R-squared   0.0357 
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Among independent variables that are significantly associated with crash harm, the test for non-
stationarity shows that collision angle, fixed-object-off road collision, road width and percentage 
of truck traffic are statistically significant. The null hypothesis of stationarity for these variables 
can be rejected statistically. That is, their associations with crash harm vary significantly over 
space. Therefore, using a fixed global model (such as OLS) will cause misspecification and hide 
the detailed information on spatial distribution of the association.  
 
 

	
  

Figure 3 Local parameter estimates associated with the variable road width 

 
Table 3 Information on Road Width for Validation of Five OLS Models 

Road Width Parameter Information Validation Model 
Coef. p>t # of obs Prob > F 

Sub-groups 
OLS models 

1  (dropped) na 160 0.0028 
2  (dropped) na 453 0.0000 
3  -.0031417 0.561 833 0.0012 
4  .0071805 0.129 1,185 0.0000 
5  .0092065 0.013 1,886 0.0000 

Global OLS Model 0.006 0.008 4,517 0.0000 
(Note: In local GWR result, the range of each estimator subgroup for road width is: 1 :  -0.000215- 0.002074;   
2 : 0.002075- 0.003773;  3 : 0.003774- 0.005137;  4 : 0.005138- 0.006152, 5 : 0.006153- 0.007313) 
 

Spatial variation of local parameter estimations using results of geographically weighted 
regression models are mapped for road width and percentage of truck traffic as shown in Figures 
3 and 4. Tables 3 and 4 show the estimation results.  Parameter estimations are classified into 
five groups by the “natural break” method and mapped by point symbols with different colors. 
Natural break is the default classification method available in ArcGIS.  It identifies natural 
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groupings in the data and break points, picking the breaks that best group similar values and 
maximize the differences between classes.   
 
To explore the validity of GWR method, tests of the variables are provided. Several un-pooled 
regression models are estimated as opposed to a pooled global model. For each variable, all 
collisions are categorized in to five sub-groups according to quantity of the estimator and color 
of the crash point shown in Figures 3 and 4. The validation OLS regressions with the same 
dependent and independent variables are given for each crash sub-group. If the unspooled model 
results from different spatial areas are consistent with ones obtained from the GWR model, then 
that will confirm the validity of GWR.  
 
 

	
  

Figure 4  Local parameter estimates associated with the variable truck percentage 

 

Table 4 Information on Truck Percentages for Validation of Five OLS Models  

Truck Percentage Parameter Information Validation Model 
Coef. p>t # of obs Prob > F 

Sub-groups of 
OLS models 
(unspooled) 

1  (dropped) na 142 0.0058 
2  (dropped) na 302 0.0003 
3  -.2986355 0.278 479 0.020 
4  -1.475976 0.074 876 0.0004 
5  .252419 0.000 2,718 0.000 

Global OLS Model (pooled) 0.150 0.008 4,517 0.0000 
(Note: In the local GWR model, the range of each estimator subgroup for Truck Percentage is:   
1 :  -0.471272- -0.244662;  2 : -0.244661- -0.070872;  3 : -0.070871- 0.058960;  4 : 0.058961- 0.160073;   
5 : 0.160074- 0.22688) 
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An interesting finding is that the road width is significantly and positively associated with higher 
crash harm. One unit increase in surface width is associated with 0.6% higher harm on average. 
The cause of this relationship cannot be identified, given the cross-sectional nature of the dataset. 
The authors conjecture that the greater width may be associated with greater differences in 
relative speeds of vehicles and the opportunity for impacts.  This finding shows the importance 
of specifying the criteria used to assess an area as worse in terms of accident impacts.  The 
relationship is counter to what one would intuitively expect if the analysis used traffic delay 
instead of economic cost, when narrower road widths and fewer lanes contribute to significantly 
worse conditions as shown in Robinson (2007) and Robinson et al. (2009). 
 
From the local model and the map of road width coefficients, one can see that the relationship 
between surface width and crash harm changes over space. The magnitude of road width 
associated with harm is larger in the eastern, more densely populated sections of the region than 
in the western portions of the Hampton Roads region. Similarly, the association between crash 
harm and percent of trucks in traffic flow also changes over space. Higher percentage of truck 
traffic south of HRBT and MMMBT is associated with higher collision harm compared to areas 
that are north of these two bridge tunnels. 

 
CONCLUSION 
 
While researchers have focused on understanding factors associated with crash harm, few studies 
have explored spatial variations in associations.  This paper fills a critical gap by investigating if 
relationships observed in transportation safety vary across space. A critical finding is that, spatial 
heterogeneity exists in crash harm, as crashes on highways are often clustered. This leads to the 
conclusion that associations of roadway, traffic, driver and socio-demographical factors with 
crash harm are not identical across the space. Thus, the basic independence assumption of OLS 
does not hold in the situation explored. Instead, GWR, which is a local model, provides a better 
statistical fit than a traditional OLS model by capturing spatial heterogeneity. Although the 
spatial relationships uncovered through GWR in this paper are only valid for this region, due to 
the fact that the model itself—the weights used in the model are based on spatial locations, 
which are unique to the area, the methodology used in this paper can be transferred to other 
regions. The map of coefficients can provide a detailed picture of where (in space) certain factors 
are associated with higher crash harm. This can provide valuable information to help safety 
agencies pay more attention to critical factors in certain locations where they have the largest 
associations. Studies on countermeasures that might be more effective in specific locations can 
be facilitated by the analysis conducted.  Subsequently, more efficient resource assignment, 
improvement and countermeasure implementation will be achieved.  
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