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Abstract 
This research effort aims to shed some light upon the behaviors that drivers show during and 

immediately before safety critical events.  The 100-car Naturalistic Driving Study conducted by the 
Virginia Tech Transportation Institute (VTTI) collected very useful data in this regard.  By 
instrumenting automobiles and allowing them to be used in normal daily routines, the data collected 
included normal driving as well as safety critical events.  This allows the two to be compared in order to 
find any differences.  A discriminant analysis was used for this task which resulted in interesting results 
when analyzing the data immediately before safety critical events for two drivers.  The discriminant 
analysis resulted in a way to “predict” events as the discriminant scores of the data immediately before a 
safety critical event show a deviation from normal car following behavior. 
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INTRODUCTION 
Many efforts have been put forward in order to increase traffic safety [1-4].  The focus of the past has 
been on analyzing vehicle crashes through crash testing[5].  The key to improving safety is to 
understand the behavior of drivers.  The 100-car Naturalistic Driving Data [6] offers a new way to view 
and analyze driver behavior.  The 100-Car Naturalistic Driving Study data includes data that was 
collected during crashes and near crashes.  Near crashes are very similar to crashes except that a 
successful evasive maneuver or action is taken in order to avoid a collision.  Whissell and Bigelow 
created seven driving attitude scales to represent driver behavior and beliefs.  The scales were analyzed 
using discriminant analyses in order to find out that the Speeding Attitude Scale was sufficient in 
explaining the cause of speeding tickets [7].  Mayer and Treat conducted a study to find the contributing 
factors to high accident drivers.  The study used a discriminant analysis to find the the major 
contributing factors were that the high accident group scored higher in personal maladjustment, social 
maladjustment[8]. 

I. METHODOLOGY 
 
For this research, data from the VTTI 100-car Naturalistic Driving Study was used. As opposed to 
traditional epidemiological and experimental / empirical approaches, this in situ process uses drivers 
who operate vehicles that have been equipped with specialized sensors along with processing and 
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 Specifically, car following periods were extracted automatically according to these conditions: 
• Radar Target ID>0 

This eliminates the points in time without a radar target detected 
• Radar Range<=120 meters 

This represents four seconds of headway at 70 mph 
• -1.9 meters<Range*Sin (Azimuth) <1.9 meters 

This restricts the data to only one lane in front of the lead vehicle 
• Speed>=20km/h 

This speed was used in order to minimize the effect of traffic jams, but still leave the 
influence of congestion in the data 

• Rho-inverse <=1/610 meters-1 

This limits the curvature of the roadway such that vehicles are not misidentified as being in 
the same lane as the subject vehicle when roadway curvature is present. 

• Length of car following period >= 30 seconds 

The automatic extraction process was verified from a sample of events through video analysis.  For the 
random sample of 50 periods, all 50 were valid car following periods.  
 

B.A. Identification and extraction of safety critical events 
The methodology employed in this research effort involves four different steps: the identification and 
extraction of car following periods, the identification and extraction of safety critical events, 
discriminant analysis of the previously identified data sets, and validation of the results.  The steps are 
described in detail, but the general idea is to use a discriminant analysis to find a method of classifying a 
car following behavior as safe or safety critical. 

The safety critical events were identified and analyzed in a previous work by VTTI[9].  The method 
used to identify the safety critical events were triggers or thresholds on individual variables that were 
collected.  For an event to be flagged, only one of the triggers has to be met.  Those triggers are as 
follows: 

• Longitudinal Acceleration greater than or equal to -0.2g 
• Forward Time-to-Collision of less than or equal to 2 seconds 
• Swerve greater than or equal to 2 rad/sec2 
• Lane Tracker Status equals abort (lane deviation) 
• Critical Incident Button 
• Analyst Identified 

These triggers resulted in a number of potential safety critical events that were analyzed by trained data 
analysts that verified all of the potential events.  This reduction resulted in the number of crashes and 
near crashes that are shown in Table 1.  The near crashes occurring directly in front of the vehicle 
involving multiple vehicles are the events that are the closest match to car following behavior.  Of the 
numerous near crashes that did not occur directly in front of the vehicle, most occurred to the sides of 
the vehicle which means no radar data is available for these events.  The only means of identifying that a 
vehicle is beside of the subject vehicle is through the use of the video recording. 
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Table 1: Enumeration of Crash and Near Crash Data 

Type of Event Crashes 
Near 

Crashes 
Animal 2 10 
Pedestrian 6 
1 Vehicle no objects 23 46 
1 Vehicle with objects 12 15 
Multiple Vehicles: 
Not Directly in front or behind 5 227 
Directly in front or behind 27 457 

 

C.B. Discriminant analysis 
For the discriminant analysis, thirty data points from different car following periods were used for 

each driver along with the event data for that driver.  Thirty car following or normal driving points, 
selected at random, were used in order to gain a fair representation of normal driving behavior while not 
overpowering the safety critical event data in the analysis.  Seven variables were used for the 
discriminant analysis which are as follows:  Longitudinal Acceleration, Lateral Acceleration, Vehicle 
Speed, Yaw Angle, Lane Offset, Range, and Range Rate.  A discriminant analysis is a statistical method 
that finds coefficients for the input variables that when summed creates a value that can be used to 
distinguish between datasets, in this case two datasets.  Equation 1 below describes the mathematical 
form of the resulting discriminant score and how it relates to the coefficients for each variable. 

݁ݎ݋ܿܵ	ݐ݊ܽ݊݅݉݅ݎܿݏ݅ܦ  ൌ ௜ߚ∑	 ∗ ௜ܺ      (1) 
 
Where: ߚ௜ is the coefficient for variable i ௜ܺ is variable i 
 
For this analysis, there are seven variable and thus seven corresponding coefficients.  When these 

seven variables and coefficients are combined to create the discriminant score, the score will serve as a 
way to classify the data points as normal car following behavior or safety critical behavior.  
Misclassification can occur and needs to be taken into consideration when choosing the best set of 
coefficients. 

III.II. RESULTS 
Table 2 presents the coefficient values resulting from a discriminant analysis at different time steps 
before the occurrence of safety critical events.  The safety critical events were verified as safety critical 
through video reduction and the time of the event was noted during the video reduction.  The time steps 
up to the event are simply the data points that occur when stepping back in time from the occurrence of 
the safety critical event.   The data used for Driver 103-A is nine near crash events and thirty data points 
from normal car following periods.  The table shows that consistency exists in some of the coefficients 
over time while the rest of the coefficients appear to be time dependent.  Figure 2 shows the percent of 
misclassification error at each time step with 0 being the time that the safety critical events occurred.  
The time step at 6 seconds is chosen because it is the highest amount of time that still maintains 
relatively low error as shown by Figure 2.  Figure 3 shows the results of applying the coefficients of the 
different time steps to the near crash data as well as the normal car following data.  The results show 
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Future recommendations for research are to expand upon this method by adding more drivers.  This 
paper shows that the discriminant analysis results in a driver specific set of parameters, but it would be 
beneficial to determine if these results apply to all drivers or if the drivers could be divided into groups 
based upon multiple variables that characterize the behavior of drivers. 
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