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ABSTRACT 

 

Posting advisory speed signs at sharp horizontal curve sites is a practice well established in 

the United States. The purpose of these signs is to provide the driving public with a safe 

speed to negotiate such curves; however, the link between these signs and safety performance 

has not yet been clearly established. A number of research projects have investigated the 

operational effectiveness of these signs by focusing on the direct response of drivers to the 

signs in terms of speed selection and reduction. This paper presents a recent Oregon effort to 

model the safety performance as it relates to these curve advisory speed signs. The authors 

developed a Generalized Linear Model that parameterizes the crash frequency at 2-lane rural 

highways in the state of Oregon in terms of curve advisory speed signs and other factors. 

Though ultimately the paper presents an analysis based on the Poisson model as this model 

provided the most appropriate fit to the data, the authors also tested an alternative Negative 

Binomial (NB) model. Because the data for this analysis was not over-dispersed, the model 

interpretation is valid for both the Poisson and NB model specifications. This research found 

that a bi-linear interpolant polynomial, contained in the selected statistical model, 

convincingly establishes a link between the presence of advisory speed signs and the 

expected numbers of crashes at these sites. Such a link also proved meaningful from the 

engineering and human factors perspectives. The authors anticipate that the alluded bivariate 

function should find applications in safety assessment and future speed posting practices. By 

using the developed sub-model, the authors estimated the safety effectiveness of advisory 

speeds. This research estimates that, for the state of Oregon, these signs are linked to an 

approximate reduction of 27% in the expected number of crashes. In general, this research 

found that advisory speed signs tend to enhance safety. However, the authors also determined 

that, under certain conditions, advisory speed signs may not be displaying the value that offer 

the greatest potential for safety enhancement. Furthermore, some advisory speeds can 

actually be negatively associated with safety performance. Based on the findings of this 

research, this negative relation can occur at sites with either excessively prohibitive or 

excessively permissive advisory speeds. 
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INTRODUCTION 

 

Curve advisory speed signs are companions to curve warning signs. Their purpose is to 

recommend a safe speed for vehicles to negotiate horizontal curves. Although the practice of 

posting these signs is well established, a convincing linkage between these signs and their 

hypothesised long term safety benefit has not been clearly established. Current literature 

includes repeated documentation of poor adherence to these signs, but the authors of this 

paper believe that such lack of operational compliance may not directly translate into similar 

safety expectations. This paper presents a statistical analysis in pursuit of quantifying a 

potential safety benefit of advisory speed signs.  

 

The research effort as summarized in this paper includes six general sections: (1) past and 

current advisory speed posting practices, (2) data characteristics and filtering, (3) statistical 

analysis, (4) the effects of advisory speed signs, (5) an evaluation of the resulting model 

adequacy, and (6) conclusions and recommendations. 

 

PAST AND CURRENT ADVISORY SPEED POSTED PRACTICES 

 

Advisory speed signs in the United States have been in use since the 1930s. The standardized 

practice of posting these signs dates back to the 1948 Manual on Uniform Traffic Control 

Devices (MUTCD), where the use of the ball bank indicator is recommended to determine 

safe speeds for horizontal curves. In its latest edition, the 2009 MUTCD recognizes the 

potential use of alternative methods to establish advisory speeds. According to this document, 

advisory speeds shall be determined by an “engineering study that follows established 

engineering practices” (FHWA, 2009, p. Section 2C.08). This version of the MUTCD 

indicates that using the ball bank indicator, the geometric design equation, or an 

accelerometer are examples of such advisory speed engineering assessment practices. The 

most widely implemented assessment technique is the ball bank indicator. The thresholds for 

this method have been continually updated through subsequent editions of the MUTCD 

(FHWA, 2009). 

 

Available literature consistently indicates that advisory speed values, developed using the 

standardized ball bank indicator procedure, have a large variation in recommended values 

(Chowdhury, et al., 1998; Courage, et al., 1978). Furthermore, a recent study by Dixon and 

Rohani (2008) found that a large proportion of curve sites in the state of Oregon do not 

comply with the state policy. Various authors argue that such lack of consistency results in 

poor adherence to advisory speeds (Lyles, 1983; Bonneson, et al, 2009). 

 

Surprisingly, there does not appear to be any available literature that quantifies if advisory 

speed signs actually play a role in enhancing safety performance at horizontal curve 

locations. This paper investigates the possibility that these signs, despite potentially poor 

operational compliance, are conveying additional and meaningful information to the public 

about the severity of downstream horizontal alignments. Accordingly, drivers may respond 

by adjusting, in some way, their driving behaviour at posted horizontal curves, and this 

heightened awareness at these locations may result in fewer crashes. 

 

DATA CHARACTERISTICS AND FILTERING 

 

This research is based upon the data from a probability sample of 105 curve sites located at 2-

lane rural highways in Oregon. The sites were selected from the road inventory database of 
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state maintained highways in Oregon. Dixon and Rohani (2008) collected geometric data at 

these sites to assess the consistency of posting practice in the state. The researchers used 

probability sampling to ensure representativeness of their results to the state of Oregon. A 

detailed quantification of the underlying probability structure of a subset of these sites is 

documented in detail in further work by Avelar (2010). The data collected on site include: 

curve length, number of lanes, lane and shoulder width, superelevation, vertical grade and 

vertical signage. Dixon and Rohani determined the corresponding horizontal radii by 

analyzing aerial images. Additionally, they also collected the Average Annual Daly Traffic, 

available from the Oregon Department of Transportation (ODOT). 

 

Subsequently, the authors of the current paper compiled the crash records for the sampled 

sites using ODOT’s State-wide Crash Data System. This research used crashes from the 

period of 2000 to 2004, which closely preceded the site data collection so as to ensure the 

crash records were appropriately linked to the physical site characteristics at the time of the 

crash.  

 

Before performing the statistical analysis, the authors filtered the crash data to exclude those 

crashes that were likely associated with intersections, driveways, and other features not 

typical to segment locations where the horizontal curve-related crashes could be located. In 

order to draw meaningful comparisons, the authors of this paper compiled all the crashes that 

occurred along the 2-mile study corridors and linked them to curve locations, where present. 

Isolated crash records where mile point locations were recorded to a whole number were 

suspicious due to potential rounding errors, and therefore were noted and then excluded from 

further analysis. More detail regarding the data characteristics, sites selected, distribution of 

crashes, and data filtering is available in Dixon and Avelar (2011).  

 

 

STATISTICAL ANALYSIS 

 

In an effort to assess the associated safety effects of advisory speed signs, the authors 

determined that a univariate statistical test with a simplified direct comparison between 

crashes at sites with and without advisory speed signs would not suffice due to the large 

number of potential factors associated with horizontal curve locations at the rural two-lane 

study sites. For instance, the associated horizontal radius is a natural choice to compare the 

crashes that occurred within horizontal curves with and without advisory speeds posted, but 

the wide range of candidate horizontal curve radii within the study sample prohibited a 

meaningful comparison. The analysis should simultaneously incorporate the effect of radii 

and other relevant factors, and any associated assumptions should be verifiable. The 

following sections of this paper review the types of statistical models available, the model 

selection process, and the results of the modelling procedures. 

 

Overview of Statistical Models 

 

Traditionally, Poisson regression models have been used for regressing count responses to a 

vector of potential explanatory variables; however, overdispersion with respect to the Poisson 

distribution is commonly encountered in crash data. The use of negative binomial regression 

models (NB) is an attractive alternative to cope with this issue as such models represent 

Poisson-overdispersion using an additional parameter in the conditional variance of the 

Poisson model, while still preserving the conditional expectation of the mean as the regressed 
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parameter. In fact, when the dispersion parameter is equal to one, the Poisson model emerges 

as a particular case of the NB model. 

 

The two simpler forms of NB models are known as NB1 and NB2. The difference between 

these two specifications is represented by the conditional variance function, particularly with 

relation to how the dispersion parameter is specified. The conditional variance for the NB1 

model is a simple linear function of the conditional mean, while the conditional variance for 

the NB2 model is a quadratic function of the conditional mean. Naturally, NB models with 

more complex parameterizations are also available, but were not incorporated as part of this 

analysis. 

 

The authors of this paper, therefore, explored the use of Poisson and NB2 models only. It is 

the NB2 model and not the NB1 that may be formulated as a Generalized Linear Model 

(GLM), and thus, model evaluation metrics are easily obtainable. A quick and more direct 

comparison with the significance and fit of Poisson models is therefore easily attained. As 

previously indicated, as long as the data is not over-dispersed, the Poisson model results are 

equally valid to the NB2 model results. 

 

Although the Poisson and NB2 regression models have a relatively simple structure, some 

complexity arises in this case because the authors chose to explicitly account for interactions 

among the explanatory variables. Explicitly modelling variable interactions creates departures 

from both simple linearity of the mathematical form and an independent-like covariance 

structure among predictors (both typical assumptions of non-interacting linear regression 

models). The authors paid special attention to the fact that using interrelated variables as 

predictors increases the risk of encountering multicollinearity and its derived issues. These 

issues, however, when assessed and well accounted for, do not invalidate the procedure; they 

simply require additional computational efforts and further interpretation of the results. 

 

 

Model Selection 

 

Crash occurrences may be understood as a Poisson process.  This Poisson process may be 

homogeneous, in which case a Poisson regression model would be appropriate, or 

heterogeneous, in which case the NB2 specification would be a more appropriate choice to 

develop the corresponding GLM (assuming a Gamma distribution as the mix-function for the 

Poisson parameter). 

 

It is important to mention that since over-dispersion issues were not present in the data, both 

the Poisson and NB model specifications could be used interchangeably in this case. The 

magnitudes and p-values are essentially the same for the resulting parameterization. The 

authors selected the Poisson model for this analysis, in spite of the availability of a dual but 

comparably well fitted NB model, for the following reasons: (1) the principle of parsimony, 

and (2) the straightforward implications that derive from the simpler structure and well 

known statistical properties of the Poisson Model. These properties enabled testing the model 

goodness of fit beyond the statistical software output, by performing a Convoluted Poisson 

Distribution test. The authors performed an extended assessment of the selected model to 

dispel any doubts regarding the adequacy of the Poisson GLM. This assessment is presented 

following the model results and interpretation. Beyond the preferred statistical distribution, 

the authors deem one contribution of this paper lies upon the parameterization of the mean 
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itself, as the interpretation of selected Poisson specifications are equivalent to the more 

general NB model for this particular case. 

 

The authors performed the statistical procedures summarized in this paper with the statistical 

computing language R (The R Development Core Team, 2009).  

 

Model Results 

 

The resulting safety effects model is depicted in Table 1. The functional form of the expected 

number of crashes is provided by Equation 1.  

 

Table 1  Selected Poisson Regression Model for Crash Data 

Term Estimate Standard 

Error 

z-value p-value Significance1 

(Intercept) -1.862 2.259 -0.824 0.410  

LnAADT 0.931 0.108 8.635 < 2e-16 *** 

LnCurveLength -0.956 0.246 -3.886 1.02E-04 *** 

LaneWidth -0.282 0.129 -2.182 0.029 * 

Radius 0.001 0.000 1.868 0.062 º 

Angle 0.892 0.686 1.299 0.194  

Radius:Angle 0.002 0.001 2.791 0.005 ** 

Radius:Adv.SpdPresent -0.004 0.001 -4.439 9.03E-06 *** 

Adv.SpdPresent:Angle -1.211 0.538 -2.250 0.024 * 

Adv.SpdPresent 4.026 0.724 5.563 2.65E-08 *** 

ASD 0.024 0.023 1.048 0.295  

SFD 5.799 2.275 2.549 0.011 * 

ASD:SFD -0.553 0.151 -3.668 2.44E-04 *** 
1Significance values are as follows: 

º  p<0.1; * p <  0.05; ** p <  0.01; and *** p < 0.001 

 

 

Equation 1:  Functional Form of Selected Model 

 
     

 

Where: 

AADT = Annual Average Daily Traffic (vpd); 

CurveLength = Length of the Curve (ft); 

LaneWidth=Width of travl lane (ft) 

Radius = Horizontal Radius (ft); 

Angle=Horizontal Curve Central Angle (Radians) 

SFD = Side Friction Demand at Advisory Speed (no units); 

ASD = Advisory Speed Differential, defined as speed limit minus posted advisory speed 

(mph); and 

AdvSpdPresent = Indicator variable equals to one when advisory speed signs are present, 

otherwise the value is zero. 

 

#𝐶𝑟𝑎𝑠ℎ𝑒𝑠 = 𝑒𝑥𝑝[−1.862 + 0.931𝐿𝑛(𝐴𝐴𝐷𝑇) − 0.931𝐿𝑛(𝐶𝑢𝑟𝑣𝑒𝐿𝑒𝑛𝑔𝑡ℎ) − 0.282(𝐿𝑎𝑛𝑒𝑊𝑖𝑑𝑡ℎ)
+ 0.892(𝐴𝑛𝑔𝑙𝑒) + 0.001(𝑅𝑎𝑑𝑖𝑢𝑠) + 0.002(𝐴𝑛𝑔𝑙𝑒 × 𝑅𝑎𝑑𝑖𝑢𝑠)
− 0.004(𝐴𝑑𝑣𝑆𝑝𝑑𝑃𝑟𝑒𝑠𝑒𝑛𝑡 × 𝑅𝑎𝑑𝑖𝑢𝑠) − 1.211(𝐴𝑑𝑣𝑆𝑝𝑑𝑃𝑟𝑒𝑠𝑒𝑛𝑡 × 𝐴𝑛𝑔𝑙𝑒)
+ 4.026(𝐴𝑑𝑣𝑆𝑝𝑑𝑃𝑟𝑒𝑠𝑒𝑛𝑡) + {5.799(𝑆𝐹𝐷) + 0.024(𝐴𝑆𝐷) − 0.553(𝐴𝑆𝐷 × 𝑆𝐹𝐷) } ] 
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The authors assessed the option of removing the Angle and ASD constituent terms from the 

model since they appear statistically insignificant as shown in Table 1; however, each 

variable is associated with significant interactions and so their effects cannot be considered 

independent of these associated interacting variables. As a result, the coefficients of the 

constituent terms should be interpreted in conjunction with these identified interactions. This 

model includes three variables associated with advisory speeds:  ASD (the difference 

between the speed limit and the posted advisory speed), SFD (the Side Friction Demand that 

a vehicle would experience if it navigates the curve at the advisory speed), and 

AdvSpdPresent (a binary variable indicating the presence of posted advisory speeds). Based 

on the statistic AIC used for model selection, these variables, although interrelated, improved 

the information quality of the model. The authors also tested and discarded other relevant 

variables based on the model selection algorithm that ultimately converged and stabilized to 

the model shown. The authors monitored this algorithm to avoid simultaneity of variables 

that could destabilize the convergence of the algorithm to attain maximum likelihood of 

estimates, or extreme increments in the Variance Inflation Factors (VIFs) as these are clear 

indicators of extreme multicollinearity. For instance, once the working model had 

significantly increased the AIC value by including the ASD variable with an interaction term, 

the inclusion of variables for the advisory speed and the speed limit created convergence 

issues to the fitting algorithm. For these cases, the authors explored two separate branches of 

the step-wise model selection and chose the model with a better AIC value. 

 

THE EFFECT OF ADVISORY SPEED SIGNS 

 

It is important to evaluate the influence of relevant geometric design and posting practice 

concepts as they relate to the rather complex vector of predictors generated as a result of the 

structure of the model.  Due to the presence of interaction terms in the regression model, it is 

not possible to gather from the model a simple “independent” effect for some of the variables. 

Instead, the effect of a set of interacting variables is interpreted jointly as a composite 

multivariate entity affecting the number of crashes. Before presenting a formal multivariate 

assessment, however, the authors deem appropriate to present an interpretation of the model 

variables and their perceived influence on safety performance. 

 

Model Interpretation 

 

Figure 1 represents conceptually how relevant variables fall into the three influential 

categories of geometric design, signage, and operations. This diagram only includes the 

significant variables indicated as a result of the statistical analysis. As the figure shows, many 

of the variables do not perform independently and some overlap can be expected as a result. 

For instance, the SFD can be understood as both an operational and a geometric variable, 

since this variable is a function of speed, radius, and superelevation. 
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Figure 1  Model Variables Schematic 

 

In addition to the variables shown in the diagram, the step-wise model selection procedure 

included additional interaction terms as indicated by the two-headed arrows in Figure 1. The 

researchers did not find these interactions surprising, given that the established geometric 

design methods and MUTCD posting procedures ensure the interrelation between the three 

depicted categories of variables.  

 

It is important to note that an interaction term between two variables may be seen as the 

conditioning of the marginal effect of one variable to a particular value of the other. 

Additional information regarding the statistical interpretation of this type of model can be 

found in Brambor et al. (2006). Since a purely statistical interpretation may tend to disregard 

known engineering relationships, however, the authors felt that it would be helpful to further 

articulate an interpretation of the model interactions based on a transportation engineering 

perspective.  

 

Based on the three categories of variables depicted in Figure 1, the authors hypothesize that 

safety performance emerges from the model in the following way: geometry and signage 

impact safety by changing road operations, which will result in higher or lower crash 

frequencies over an extended period of time. According to this premise, interactions in the 

model should translate into a shift in the short-term operations, ultimately impacting the long-

term likelihood of crashes. As an example, the authors believe that the mere presence of the 

speed plaques (located at warranted curve locations) and the information the drivers may 

gather from the displayed values may trigger a change in behaviour, which would translate 

into a shift in operations.  A mix of pre-existing road geometry factors, such as radius and 

cross-slope, in combination with the expected operations upstream (roughly captured by the 

speed limit) ultimately dictate the advisory speed plaque message which then can influence 

the likelihood of a crash. 

 

Based on this interpretation, if a variable capturing an aspect related to advisory speeds was 

part of an interaction with another model variable, regardless of the direct link one may draw 

from the mathematical form, it may make more sense to think of the signage variable shifting 

the effect of the other, more influential variable. This is a relevant observation, since the 
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model contains two such interactions: the presence of advisory speeds interacting with a 

geometric characteristic (Radius and Angle). A shift towards fewer crashes in the effects of 

these geometric variables is indicated by corresponding negative coefficients of the 

interaction terms. However, to quantify the total joint effect and draw meaningful 

conclusions, each advisory speed variable and the corresponding interactions should be 

explored in order to draw a holistic interpretation of the effect of advisory speeds in safety 

performance. 

 

The Marginal Effects of Advisory Speed Model Variables 

 

Although the presence of advisory speed plaques seems to affect the likelihood of crashes by 

shifting the effects of geometric variables, the two other advisory speed variables appear to 

directly contribute to the overall safety of the studied sites. These variables are the SFD and 

the ASD (previously defined in Equation 1). The SFD can be computed using Equation 2, an 

equation available from any highway design book. 

 

𝑆𝐹𝐷  
  

   
−     𝑒          (2) 

 

Where: 

SFD = Side Friction Demand; 

V = Advisory Speed (mph); 

R = Horizontal Radius (ft); and 

e = Superelevation (%). 

 

The SFD variable emerges from the known associations of the geometric and operations 

categories as depicted in Figure 1. Since this value is a function of vehicle dynamics as well 

as road geometrics, it plays an important role in establishing the appropriate advisory speed at 

curve locations. The authors hypothesize that the SFD variable implicitly captures the drivers' 

expected discomfort associated with negotiating the curve safely. Although the actual SFD 

would vary among drivers (e.g. varying vehicle capabilities, driving aggressiveness, etc.), 

research shows that ultimately drivers would tend to respond similarly to a higher degree of 

discomfort [(Bonneson, Pratt, & Miles, 2009), (Chowdhury, Warren, Bissell, & Taori, 1998), 

(Avelar, 2010)]. On the other hand, the drivers may judge the severity of the approaching 

curve based on how small the posted advisory speed is, or relative to the speed limit, how 

large they perceive the Advisory Speed Differential (defined as the speed limit minus the 

advisory speed value). This value would provide information supplemental to their individual 

visual assessment (based on perceiving the curvature and length of the curve as the driver 

approaches the curve). For this reason, the ASD spans the signage category as well as the 

operations and geometric categories in Figure 1.  

 

As previously indicated, the resulting statistical model included an interaction between the 

SFD and ASD. A simple description of this effect may prove challenging; however, the 

authors speculate that the underlying relationship captured by this bivariate function is as 

follows: The long-term safety benefit of advisory speeds would emerge as drivers adjusting 

their behaviour after combining the information these variables carry jointly (how much 

slower should they be taking the curve as suggested by the ASD, and how severe the 

associated discomfort can be expected as represented by the SFD variable).  
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From a mathematical stand point, this bivariate function may be seen marginally for each of 

the involved variables. This perspective implies, however, that both the marginal effect and 

the statistical significance of one variable will depend on the particular values of the other 

variable.  The authors judge that a brief review of both marginal effects may prove helpful. 

 Marginal Effect of ASD and SFD 

A simplified approach to understanding the effect derived from the interaction of the ASD 

and SFD is to look at the marginal effect of the involved variables. Figure 2 displays the 

marginal Effect of ASD. 

 

 
Figure 2  Marginal Effect of ASD at Different SFD Levels 

 

Three items are worth noting regarding the marginal effect of the ASD: (1) all factors are 

smaller than one, which means that this effect is beneficial; (2) as the SFD increases the 

marginal effect improves; and (3) the model does not exhibit a statistical significance for the 

marginal effect at SFD values smaller than 0.14.  Complementary, Figure 3 shows the 

marginal effect of Side Friction Demand at different levels of the ASD. 

 

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35

M
ar

gi
n

al
 E

ff
e

ct
 o

f 
A

d
vi

so
ry

 S
p

e
e

d
 D

if
fe

re
n

ti
al

Advisory Speed Differential (mph)

ASD=0.07*

SFD=0.14

SFD=0.21

SFD=0.28

SFD=0.35

SFD=0.42

SFD=0.49

SFD=0.56

*Dashed lines are 
not statistically 
different than a 

flat line at 1.0



10 

 

 
Figure 3  Marginal Effect of SFD at Different ASD Values 

 

There are two features worth noting in the case of the marginal effect of the SFD. First, this 

marginal effect appears severely adverse for an ASD of 5 mph, and mildly adverse for ASDs 

of 10 mph. It is worth noting that these marginal effects are not statistically significant, given 

the data set available. An ASD value of 5 mph means that the advisory speed is 5 mph below 

the speed limit. However, this marginal effect should be interpreted in a different way. In 

Oregon the standard posting procedures do not require an advisory speed sign if the 

recommended advisory speed is only 5 mph below the speed limit. Since the drivers are not 

presented with an advisory speed plaque, it would be expected that the effect is null. This is 

suggested by the lack of statistical significance. Similarly, the marginal effect of SFD is not 

significant for ASD values of 10 and 15 mph. That is not surprising for the case of 

ASD=10mph, since this value falls very close to a flat line of 1.0. In general, the authors 

speculate that these two marginal effects may have actually proven to be statistically 

significant for a larger data set with more observations in these boundary regions. 

 

By examining the marginal effects for both the SFD and ASD, the authors emphasize the 

following points: (1) advisory speeds tend to be beneficial (both marginal effects are smaller 

than one when advisory speed signs are present); (2) advisory speed signs provide more 

safety benefits as their values tend to differ from the regulatory speed limit (larger SFD 

marginal effect for larger ASDs); and (3) advisory speed signs are more beneficial when 

greater driver discomfort results from driving at the suggested speeds (larger ASD marginal 

effect for larger SFDs).  

 

The use of marginal effect trends, as those shown in Figures 2 and 3, is most useful when the 

purpose is to isolate the effect of a single variable and its interaction with a less critical 

variable in the model. However, the authors recognize that a disjoint interpretation of the 

marginal effects in this particular case may appear contradictory from the traffic engineering 

stand point: to reap the safety benefit of posting advisory speeds, one needs to increase both 

the ASD and the SFD, but to increase the ASD one needs to post low advisory speeds, which 

in turn have small SFD associated. These marginal effects are closely intertwined, and their 
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isolated view, as discussed here, is merely informative. Both the SFD and the ASD should be 

considered jointly. Thus, the authors recognize that the global effect of advisory speeds may 

be more informative by interpreting the complete bi-linear interpolant polynomial of ASD 

and SFD as a single entity. 

 

 

The Advisory Speed Crash Factor 

 

In a Poisson regression model, the effect of a non-interacting variable is a multiplicative 

factor to the average expectancy of the response variable. The corresponding multiplicative 

factor emerging from the unconditional bi-linear interpolant polynomial may be computed by 

disregarding the marginal effects and evaluating directly the ASD and SFD values in the 

polynomial. An additional benefit of this procedure is that the mathematical form is simple 

and clear enough to provide a direct interpretation in the scale of the response.  

 

This section focuses on deriving and describing the corresponding multiplicative factor of the 

bi-linear interpolant polynomial of ASD and SFD. This newly developed multiplicative factor 

is denoted as the Advisory Speed Crash Factor (ASCF) from this point forward. Equation 3 

depicts the mathematical form of the ASCF. Notice that this value is derived directly from 

Equation 1. As a result, the ASCF functions as a sub-model contained in the full Poisson 

regression model. 

 
𝐴𝑆𝐶𝐹  𝑒𝑥𝑝       𝑆𝐹𝐷 −        𝐴𝑆𝐷  𝑆𝐹𝐷         𝐴𝑆𝐷       (3) 

 

The authors explored the mathematical properties of the ASCF to determine if this sub-model 

is meaningful in describing the safety effect of advisory speeds. Table 2 shows the numeric 

values of the ASCF for an extended range of ASD and SFD. These values vary from 

extremely detrimental to safety (9.421 for ASD of 5 mph and SFD of 0.70) to extremely 

beneficial (1.75x10
-4 

for ASD of 35 mph and SFD of 0.70). The matrix of values presented in 

Table 2 extends beyond the typical range of combined values. For example, current posting 

procedures would prevent any advisory speeds from being associated with SFD values larger 

than 0.3, so both the above examples do not correspond to any expected physical site. The 

values shown in this table, however, are useful as they proved a clearer exploration of the 

properties of the ASCF as it relates to the ASD and SFD variables. 

 

Table 2  Advisory Speed Crash Factor Values 

 ASD (mph) 

5 10 15 20 25 30 35 

S
F

D
 

0.07 1.392 1.292 1.199 1.113 1.032 0.958 0.889 

0.14 1.722 1.317 1.007 0.770 0.589 0.450 0.344 

0.21 2.130 1.342 0.846 0.533 0.336 0.212 0.133 

0.28 2.634 1.368 0.710 0.369 0.192 0.099 0.052 

0.35 3.257 1.394 0.597 0.255 0.109 0.047 0.020 

0.42 4.028 1.421 0.501 0.177 0.062 0.022 0.008 

0.49 4.981 1.448 0.421 0.122 0.036 0.010 0.003 

0.56 6.160 1.475 0.353 0.085 0.020 0.005 0.001 

0.63 7.618 1.504 0.297 0.059 0.012 0.002 4.51E-04 

0.70 9.421 1.532 0.249 0.041 0.007 0.001 1.75E-04 
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Table 2 demonstrates that the ASCF values are beneficial as both ASD and SFD increase. 

This observation corresponds to the interpretation of the marginal effects previously 

provided. Because the ASCF is the ordinate of two explanatory variables, it can be 

represented as response surface or by a contour map. Figure 4 is the contour map 

representation of the ASCF. The dotted line corresponds to a multiplicative crash factor equal 

to 1.0. This is the level at which there is no effect on the expected number of crashes. The 

region to the left and below this dotted line corresponds to ASCF values larger than one, 

indicating more crashes. Finally, the region to the right and above the dotted line corresponds 

to ASCF values less than one, suggesting fewer expected crashes. This mathematical 

representation of the ASCF corresponds with the marginal view of its two components, the 

ASD and the SFD.  

 

 

  

Figure 4  Contour Map Representation of the ASCF 
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Effectiveness of Advisory Speeds in Oregon 

 

Given the complexities of the model structure, it is not simple to draw a generalized 

conclusion about the effectiveness of advisory speeds. According to the model, such 

effectiveness depends jointly on how much the advisory speed differs from the speed limit 

and on the degree of discomfort associated with navigating the curve at such an advisory 

speed.  Furthermore, it appears from the model that advisory speeds may have a detrimental 

effect if they are either too low for the associated SFD or too high in general. 

 

In order to preliminarily assess the effectiveness of current posting practices, the authors used 

the available probability sample of advisory speeds from the state of Oregon. This assessment 

consists of a theoretical exercise of “virtually removing” advisory speed signs and observing 

the expected safety effect, as predicted by the model. The actual effect for this hypothetical 

scenario would likely be very different: informational campaigns about the change would 

result in an immediate rise in familiar drivers’ awareness of the altered signage and would 

initially reduce the likelihood of crashes. Eventually, drivers would reach a new generalized 

perception of the driving environment, at which point the ASCF surface would be completely 

unrepresentative of the new operations and associated safety. However, the authors consider 

this exercise of some use, in order to extract the extent of the safety benefit of advisory speed 

plaques. 

 

The computed measure of effectiveness is the ratio of ASCF before the hypothetical removal 

of advisory speed plaques to the ASCF after the removal. This quantity is referred to as 

absolute ASCF, or AASCF.   Figure 5 shows a graphical display of AASCF versus ASD. 

This trend has an AASCF overall average of 0.728. This value suggests that advisory speed 

plaques may reduce crash frequency, on average, by 27.2% in the state of Oregon. It is 

reasonable to consider, however, that the AASCF values ranging from 0.951 to 1.05 

correspond to sites with virtually no benefit associated with advisory speeds. Interestingly, 99 

out of 210 sites exhibit AACSF values within this range.  Additionally, there are 3 sites in the 

sample for which the model predicts an adverse effect of advisory speeds (i.e. AASCF larger 

than 1.0).  
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Figure 5  AASCF vs. Advisory Speed Differential 
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beneficial for most of the remaining sites (i.e. AASCFs smaller than 1); (3) the AASCF 

diminishes systematically as the ASD increases, which in general indicates a good balance of 

ASD and SFD values underlying current posting practices in Oregon; (4) the range of 

AASCF values roughly remains the same as the ASD increases; and (5) despite the observed 

general benefits of advisory speed signs, there is one site in the sample with AASCF slightly 

larger than 1.0 (suggesting an advisory speed value that mislead rather than guide drivers). 

This preliminary evaluation suggests that cost-effective measures, such as changing the 

advisory speed displayed at such sites or even removing the plaque, have a potential to 

improve safety.  

 

 Table 3 demonstrates the impact of modifying advisory speeds at 5 of the sites with different 

advisory speed values. 
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Table 3 Effect of Modifying Advisory Speeds at Selected Sites 

Site Speed 

Limit 

(mph) 

Radius 

(ft) 

Superelevation 

(%) 

Current 

Advisory 

Speed (mph) 

Current 

AASCF 

Modified 

Advisory 

Speed (mph) 

Modified 

AASCF 

1 55 1770 11 NA 1.000 NA 1.000 

2 55 900 11 NA 1.000 45 0.906 

3 55 575 14.5 45 0.743 40 0.738 

4 55 700 12.5 35 1.058 45 0.814 

5 55 520 11 35 0.588 40 0.528 

6 55 300 14 25 0.519 35 0.202 

 

Except for site 3, it is expected that all of the sites already displaying advisory speed plaques 

would benefit by increasing their posted advisory speed (sites 4, 5 and 6). Incidentally, these 

three sites display 25 and 35 mph advisory speeds. This observation is not surprising, given 

that previous research indicates that the posting policy in Oregon is among the most 

conservative in the United States (Dixon & Avelar, 2011). An extreme case is site 4, which 

would require an increment of 10 mph. This site is also abnormal in that it has the only 

AASCF larger than one in the whole sample. Site 3, though, would benefit from lowering its 

advisory speed, which suggests that the plaque may be too permissive. Finally, while site 1 

would still not require an advisory speed plaque, site 2 would improve its safety performance 

by displaying a new one.  Conditions at all sites except site 1 are such that an AASCF value 

smaller than 1.0 is achievable. According to this research, therefore, current advisory speeds 

in Oregon may not be exploiting all of their potential safety benefit. Though this simplistic 

example demonstrates how the AASCF can be used as an indicator of expected safety 

performance, it is clear that the use of this AASCF method (similar to the common crash 

modification factor) can help engineers assess the potential for safety improvements as one 

consideration in advisory speed selection. 

 

EVALUATION OF MODEL ADEQUACY 

 

Prior to developing concluding comments, this section addresses concerns that may arise 

regarding the adequacy of the selected model. Specifically, this section explores the 

following three associated issues: structural correlation in the response data, multicollinearity 

for both potentially correlated covariates and the statistical structure of interactive models, 

and general goodness of fit to the data. 

 

Assessing the Structural Correlation in the Response Variable 

 

For the rural 2-lane 2-way study corridors used for this analysis, every "curve site" in the 

study comprises two directions of travel, and each pair contains relevant common factors 

(e.g. driving population, traffic volume, and horizontal radius). As a result, the authors expect 

a high correlation between the numbers of crashes from each pair of directions of travel. It 

would be problematic to use both directions of travel in fitting the regression if such a 

correlation is substantial and beyond the explanatory power of the statistical model. Doing so 

would be equivalent to artificially duplicating the number of data points; however, assessing 

both directions of travel as one site is also problematic since issues such as direction of curve 

and relative cross slope would differ (be exactly opposite for most locations).  
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It is reasonable to expect that many similarities exist for the pairs of directions of travel and 

that these characteristics are, to some extent, explicitly accounted for by the corresponding 

regression variables. The horizontal radius, AADT and curve length, for instance, are the 

same for the two directions of travel at each location. Rather than simply eliminating 50% of 

the candidate sites and given this potential correlation, the authors then assessed how the 

correlation in the paired data compared to the predicted (based on regression) correlation 

from pairs of independent Poisson variables stemming from the fitted univariate model. 

 

The authors paired the data by site and computed the correlation for the total sample of 105 

pairs of crash counts and found a correlation value of 0.698. The authors compared the 

correlation in the sample to the distribution of correlations that arise from repeated 

realizations of the theoretically independent Poisson distributions. 

 

The authors developed a synthetic sample of the paired-sites correlation distribution by using 

the technique of static simulation of paired but independent Poisson distributions, so that the 

observed distribution of correlations emerges only from the pairing of similar independent, 

univariate realizations such as from the regression model. The synthetic sample consisted of 

200 replications of the overall correlation.  

 

Simulation results suggest that a normal curve could approximate this distribution (simulated 

data have very small 3
rd

 and 4
th

 moments; a -0.10 skewness indicating rough symmetry and a 

normalized kurtosis of -0.623 indicating a peakness that is close to the normal distribution). 

The authors used the mean and the standard deviation of the simulated data to assess the 

statistical significance of the correlation from the crash data. The actual correlation of 0.698 

compares very closely to the mean simulated correlation (0.581). Using the simulated 

standard deviation (0.088), a 0.184 two-sided p-value may be obtained from the standard 

normal distribution. Comparably, an empirical one-sided p-value of 0.09 may be computed 

from the raw synthetic sample as the proportion of simulated correlations that resulted in 

values larger than 0.698, the sample statistic. 

 

From the results, the authors conclude that the correlation observed between the pairs of 

directions of travel in the sample is not atypical, and that it is reasonable to expect such a 

degree of correlation from pairs of truly independent Poisson variables with similar 

parameters such as those associated with the regression model. 

 

Discussion on Multicollinearity among Regressors 

 

It is worthwhile to notice that a certain degree of multicollinearity was unavoidable in the 

model, despite the variable selection procedure that included strategies to minimize 

multicollinearity. One such strategy, for instance, was to avoid including two highly 

correlated variables simultaneously as predictors. However, the authors included interaction 

terms to contribute to improving the quality of information in the model (i.e. significant drops 

in AIC), but also included these terms because the joint interpretation with their constituent 

terms explain reasonably expected transportation engineering safety behaviour. The 

mathematical structure of the ASCF, the main sub-model developed in this paper, similarly 

rests upon a bi-linear interpolant polynomial emerging from two interacting variables. The 

only drawback of choosing an interacting model, as of this paper, is the requirement of 

slightly more complex procedures for joint interpretation of the co-dependent terms. 

 



17 

 

It is recognized that the degree of multicollinearity increases when the covariates are no 

longer independent. If the severity and the effects of multicollinearity among predictors are 

properly treated in the modelling process (mainly monitoring VIFs and algorithm 

convergence issues) and with adequate interpretation of the results, the authors advocate for 

the use of interactive models, especially because of their ability to represent complex 

interrelationships. Furthermore, the explicit account of multicollinear predictors may become 

attractive because of the need to account for factors that are not entirely independent. Such 

interdependency may transcend into explaining the response variable, and if that is so, 

interactions between variables are a useful tool to explicitly model such joint effects. 

However, a model structure that includes interactions implies a potential source of 

multicollinearity due to the model structure itself in addition to that resulting from the use of 

co-dependent covariates. 

 

Multicollinearity manifests itself as an inflation of the standard errors from the regression. 

This circumstance, in turn, results in convergence issues in the fitting algorithm. The authors 

observed convergence issues in the early and intermediate stages of the step-wise procedure, 

for both the NB and Poisson models. Some judicious decisions were necessary in order to 

manually exclude some of the correlated variables as a requirement of the step-wise 

procedure. One such decision was to exclude advisory speed related variables in favour of 

keeping horizontal geometry covariates in the early models. Later the model selection 

procedure allowed advisory speed and synthesized variables, such as the ASD and SFD. 

Ultimately, some of these variables were included in the model because of their significant 

contribution to the quality of the information in the model (i.e. significant drops in AIC). 

 

After the adjustments described in this section, the fitting algorithm did not indicate 

convergence issues, nor did the VIFs exhibit extreme values. Additionally, almost all of the 

coefficients in the model present small enough standard errors to indicate statistically 

significant results. Only two terms are not statistically significant, but each of them is of 

prime importance to derive statistically significant marginal or joint effects, as shown in 

previous sections of this paper. After this assessment, the authors believe that no serious 

multicollinearity issues required further attention. 

 

Goodness of Fit 

 

It is important that a representative statistical model have an overall good fit to the data.  To 

establish the appropriateness of the Poisson model in describing the data, the authors tested 

the goodness-of-fit at three different conceptual levels: residual deviance, dispersion, and 

Poisson distribution suitability. 

 

Approximate Chi-Squared Test on Model Residual Deviance 

 

The authors used an approximate chi-squared test to assess the residual deviance. This 

quantity, obtained from the Maximum Likelihood Estimation (MLE) algorithm, is expected 

to converge in distribution to the chi-squared function as the sample size increases (i.e. by 

virtue of the Central Limit Theorem). This test resulted in a p-value of 0.6413 from a 184.35 

chi-squared statistic (i.e. the residual deviance) for 197 degrees of freedom suggesting a lack 

of evidence against the appropriateness of the model fit to the data. 

 

Approximate Dispersion Parameter 
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A good fit to the Poisson distribution can be evaluated when the ratio of the variance to the 

mean of the response variable is approximately equal to one. This expected mean-variance 

relationship can be estimated using the ratio of the residual deviance to its degrees of freedom 

from the regression algorithm. This ratio is referred to as the dispersion parameter in some 

literature. In this case, a value of 0.961 indicates that there is no significant over-dispersion 

present in the data. Since the expected value of a chi-squared distribution is its associated 

degrees of freedom, a corresponding p-value for this statistic assumes a null hypothesis that 

the expected ratio parameter was 1.0. This value corresponds to the p-value of the residual 

deviance statistic of 0.6413 as previously shown. This result also suggests that if a NB 

regression were used instead, the magnitude and statistical significance of the coefficients 

would have been virtually the same.  

 

Convoluted Poisson Distribution Test on Total Number of Crashes 

 

The discrete convolution theorem applied to Poisson distributions (Samaniego, 1976) states 

that the distribution of a sum of independent Poisson variables is also a Poisson variable with 

a scale parameter equal to the sum of the scale parameters for each data point. This 

evaluation is depicted by Equation 3.  
 

𝑃        𝑒       
     

 

  
        (3) 

Where: 

     = Observed number of crashes at site i;  

  z = Arbitrary value from the domain of Y; and 

   = Predicted number of crashes at site i per the regression model. 

 

The test statistic is the total number of crashes and the associated p-value is obtained from the 

convoluted Poisson distribution. Since the statistic percentile is rather large (one tailed p-

value of 0.4914 from a convoluted Poisson random variable of 180 with an expected value of 

180.67), the test clearly failed to reject the hypothesis that the sample is a realization of the 

convoluted distribution emerging from the model fitted values. 

 

Given the results of these tests, the researchers are confident that the Poisson model is 

appropriate to describe the available crash data. Since the Poisson is a particular case of the 

NB2 distribution, these tests also mean that an NB2 model with dispersion parameter 

approximately equal to 1.0 also describes the data satisfactorily. 

 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

The authors of this paper developed a mathematical model to describe the safety impact of 

advisory speed signs. The purpose of this paper is to quantifiably link the displayed value of 

advisory speeds to the safety performance of the sites.  

 

The basis of this mathematical model is a statistical analysis involving 105 randomly selected 

two-directional sites located in the state of Oregon. The functional form of the model 

included a bi-linear interpolant polynomial of two quantities linked to advisory speeds: the 

advisory speed differential (ASD) and the side friction demand (SFD). This effect was named 

the advisory speed crash factor (ASCF). Because the Poisson regression model did not suffer 

from overdispersion when fitting the data, either the Poisson or the NB2 specifications can be 
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used interchangeably when accounting for the ASCF. This is convenient, as the NB2 

specification is the naturally assumed posterior distribution (i.e. Safety Performance 

Function) for widely accepted Empirical Bayes and Full Bayes analyses for before-after 

studies. 

 

The ASCF consists of a multiplicative value that directly affects the expected number of 

crashes for a curve rural 2-lane road location. The concept of the ASCF is analogous to the 

crash modification factor (CMF). Currently, the most closely associated reference work 

(Elvik & Vaa, 2004) proposed the use of a CMF that suggests a single value that ranges from 

0.71 to 0.87 depending on crash severity. The ASCF resulting from the work outline in this 

paper, however, is more suitably referred to as a crash modification function as it varies 

based on the specific advisory speed value and site conditions. 

 

This paper introduced a new element referred to as the absolute ASCF (AASCF) that helps to 

assess the notional impact of advisory speed signs as opposed to a theoretical scenario where 

the plaques are not displayed. The values proposed by Elvik and Vaa (2004) are aligned with 

the derived AASCF average value of 0.728 which functions as a measure of the overall 

effectiveness of advisory speeds in Oregon. 

 

Although most of the sites included in this study appeared to benefit from the practice of 

posting advisory speeds, there was one instance in which the posted advisory speed seemed 

detrimental to safety. The ASCF further provides a computational tool to assess the safety 

effect of particular values of advisory speeds. Therefore, the authors expect that the concept 

developed in this paper is a useful function to evaluate safety performance.  

 

Additionally, the authors recognize that the AASCF is a detailed functional form that results 

in a value comparable to the crash modification factor for advisory speeds similar to that 

recommended by Elvik and Vaa (2004). As such, the authors anticipate that the AASCF may 

be used as a crash modification function to improve the accuracy of current HSM procedures.  

 

The authors believe that the ASCF may also be used as the criterion for an improved safety-

based posting procedure. Recent work by Dixon and Avelar (2011) proposed such a 

procedure as a computational alternative to the currently wide-spread ball-bank indicator 

method. The authors recognize that such a method allows for further improvement, 

particularly with the potential combination of instrumentation based procedures, such as 

those developed by Pratt, Bonneson and Miles (2011). To enhance this method for 

transferable posting procedures, the authors recommend further research in order to field 

validate the concept of ASCF in Oregon and other states. 

 

Finally, the authors also recommend future work to explore and strengthen the link of the 

ASCF to field operational data, since this type of data would closely contribute to the overall 

validation of the ASCF concept. Specifically future research should explore how the 

operating speed relates to the components of the ASCF bivariate function. 
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