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Abstract 

 

Road safety engineering studies in the past typically involved regression-based crash prediction 

models relating crash frequency to road design or operational configurations. In addition to this 

conventional approach there has been an ongoing interest in using microscopic simulation to 

predict the safety consequences of engineering decisions, similar to how microscopic models that 

are used to predict operational performances. Historically, a major obstacle to the development 

of such crash-inclusive simulation models has been a scarcity of data on driver behavior in crash 

and near-crash conditions. In the recent years however, with more advanced and sophisticated 

data collection techniques emerging, it has been possible to collect individual vehicle data under 

naturalistic driving conditions.  In this study we illustrate using vehicle based data to show how 

trajectory based modeling technique can be implemented to reconstruct crash related events, and 

in turn estimate  the posterior distribution of important event parameters such as braking 

accelerations, reaction time, and critical headways for  a given set of trajectory data. Our results 

suggest that for a rear ending event it is possible to obtain precise estimates of the interaction 

between the leading and the following vehicle and identify the critical driving conditions that 

cause the event. Given sufficiently large samples of crash and near-crash events, this method 

could be used to compile distributions for these inputs, which could in turn be used to include 

realistic crash features in a microscopic simulation model. 
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INTRODUCTION 

 

Rational planning involves selecting actions based on their expected consequences, and in road 

safety engineering this requires an ability to predict the frequency or severity of road crashes 

expected to result from engineering actions. The Highway Safety Manual (HSM) is expected to 

provide road safety professionals with tools for making at least some of the needed predictions. 

The dominant methodology in the first edition of the HSM is based on regression analysis of 

generalized linear models to relate the crash frequency to traffic flow at some given baseline 

conditions and then empirically determined accident modification factors (AMFs) are multiplied 

to the expected crash frequency to reflect the changes from the baseline conditions. Bonneson 

and Lord (2006) have pointed out an interesting similarity with development of the Highway 

Capacity Manual, where first- generation regression models of intersection delay which used 

naïve specifications of independent variables were subsequently replaced by regression models 

where the forms of the independent variables were based on theoretical arguments. These 

regression-based models were then later replaced by models, such as Webster’s delay model, 

whose functional forms were developed from theoretical considerations.  

 

In addition to regression-based approaches there has been an ongoing interest in using 

microscopic simulation to predict how roadway changes affect safety. These include efforts to 

identify safety-related surrogates from the output of simulation models (Gatteman and Head, 

2003), the Roadside Safety Analysis Program (RSAP) (Mak and Sickling, 2003), and recent 

efforts to allow for crash occurrence in microscopic car-following models (Xin et al., 2008;   

Hamdar and Mahmassani, 2008). Historically, a major obstacle to the development of crash-

inclusive simulation models has been a scarcity of data on driver behavior in crash and near-

crash conditions, especially since events involving more than one vehicle can arise out of the 

interaction between the behaviors of the individual drivers. In particular, although there has been 

considerable recent interest in aggressive driving and driver inattention as crash risk factors, it is 

unclear how prevalent these factors are or how to include such considerations in a simulation 

model. During the past several years however an improved capability for collecting data in 

naturalistic conditions promises to at least partially fill this need. The most prominent of these 

efforts is the naturalistic driving component of the SHRP 2 safety program, but notable past 

efforts include Virginia Tech Transportation Institute’s 100-Car Study (Dingus, et al., 2006) and 

the Automotive Collision Avoidance System field test conducted by the University of Michigan 

Transportation Institute. In these studies volunteers drive instrumented vehicles which 

continuously collect and record measurements such as vehicle position, speed, direction, 

acceleration, as well as radar-based range and range-rate measurements for other vehicles. An 

important and as yet unresolved question concerns the degree to which naturalistic driving data 

can support the development of realistic crash simulation models. 

 

In this paper we will describe how Bayesian analysis can be used in combination with data from 

naturalistic driving studies to identify and validate tractable yet plausible models of driver 

behavior in car-following situations. 
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Review of Structural Modeling for Crash Related Events  
 

 To illustrate our approach let us take a simple example of a car-following interaction, where a 

leading vehicle and following vehicle successively brake to stops.  Suppose the initial speed and 

braking deceleration of the leading vehicle are denoted by v1 and a1 respectively, v2 and a2 

denote the initial speed and braking deceleration of the following vehicle, and h2 and r2 denote 

the following driver’s headway and reaction time. As pointed out by Brill (1972), a collision 

occurs when the stopping distance available to the following driver is less than that needed to 

stop without colliding with the lead vehicle. Brill’s collision condition can be expressed formally 

as 
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Alternatively, the position of a vehicle initially traveling at a constant speed and then braking to 

a stop with a constant deceleration can be expressed  
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where yk(t) denotes the (one-dimensional) position of vehicle k at time t, vk denotes the initial 

speed of driver k, ak denotes his or her braking acceleration and t0k denotes the time at which 

braking began. This model can be connected to the rear-end collision model described above by 

noting that the reaction time of driver k is simply  

 

 rk = t0k – t0k-1        (3) 

 

while, the initial following headway between vehicles k and k-1 when driver k-1 began braking is 

 

 hk = (yk(t0k-1) – yk-1(t0k-1))/vk      (4) 

 

A collision would then occur when  

 

            yk(t)-y k-1(t) < 0                                                                                          (5) 

 

The main point we wish to emphasize is that a structural model consists of a set of input 

variables and one or more equations which give predicted outputs as functions of the input 

variables. Certain values for those inputs can be indicators of more qualitative driving states. For 

example, particularly for vehicles closely following each other, atypically long reaction times 

can indicate driver inattention while atypically short following headways or atypically high 

speeds can indicate aggressive driving. The question then is how estimates of a model’s inputs 

can be obtained from observations of its output.   
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METHODOLOGY 

 

The simple brake to stop model discussed in the previous section allowed only for a constant 

speed followed by a single deceleration phase. One of the objectives of this research is to 

develop a more robust model that can capture more complicated scenarios such as mult-staged 

acceleration. One basic assumption we will make is that a driver’s behavior can be modeled as a 

piecewise-constant series of accelerations, which are then treated as inputs into a dynamic 

trajectory model. The vehicle state at a given time is its location and speed, and the trajectory 

model then takes the acceleration input sequence and numerically integrates the associated 

differential or difference equations to produce time histories of vehicle locations and speeds. For 

discrete-time data, the trajectory model can be conveniently represented using the generic linear 

state-space form 

 

Cx(t)y(t)

Ba(t)Ax(t)1)x(t

=

+=+
       (6) 

 

where, x(t) is vector of state variables (position and speed), a(t) is a vector input variables 

(accelerations), and y(t) is the vector of observed variables (following vehicle’s speed, range and 

range rate). A, B, and C in equation (1.6) stand for matrices of coefficients.  

 

The nature of A, B, C, x(t) and y(t) will vary  depending on the class of events being modeled 

and the sort of data that is available. For two vehicles following on a straight road, the simplest 

trajectory model would consist of two state variables for each vehicle, its location and speed, 

with linear acceleration values as inputs. That is, if ∆ denotes the basic time interval of the data, 

then the deterministic progression for a leading and following vehicle can be captured by the 

linear equation 
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For naturalistic driving scenarios where forward radar produces range and a range rate 

measurement for a leading vehicle, the observation equation takes the form 
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Here x1(t) and x2(t) give the locations of the leading and following vehicles at time t, 

v1(t), v2(t) are the corresponding speeds, and a1(t), a2(t) are accelerations. For motion in two 

directions a similar structure can be used but with state and input variables for each direction. 
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Given initial values for the state variables and the time history for the inputs, the trajectories of 

both vehicles can be replicated. The above relationship between position, speed and acceleration 

which are all function of time can be expressed in the form a set of ordinary differential 

equations as shown below. This is typically referred as initial value problem in the ordinary 

differential equation solution which describes the evolution of a state over time for a given initial 

condition.    

 

                              

                                 dz/dt = v(t) 

                                 dv/dt = accl                                                                                (9) 

 

where z(t) defines the position of the  vehicle at any time t, v(t) represents speed of the vehicle at 

time t and  accl states the acceleration of the vehicle which was treated as a piecewise function 

over different time intervals  depending on the diver’s behavior.  

  

Given estimates of a driver’s initial speed, the times at which he or she changed acceleration and 

the corresponding accelerations, the differential equations can be solved to give predicted time 

histories of that vehicle’s position and speed and predicted values for the observations. Fitting a 

trajectory model then involves searching plausible combinations of values for these input 

quantities to find those that best account for the data.  

 

Major Parameters of Interest:    

 

• Piecewise constant acceleration 

• Change points (where the driver changed from one acceleration mode to another) 

• Reaction time ( time elapsed between the leading vehicle decelerating and the 

following vehicle taking the evasive action as its reaction to the preceding 

vehicle’s behavior) 

• Critical headway (distance between the two vehicles as the following vehicle 

begin to take the evasive action)  

 

Bayesian analysis using Markov Chain Monte Carlo (MCMC) simulation was used to estimate 

the parameters. (Robert and Casella, 1999) The differential equations were numerically solved 

using WinBUGS differential equation interface (Lunn et al. 2000). This provided compiled 

procedures that can be included in a WinBUGS model specification which numerically solve 

ordinary differential equations using Runge-Kutta methods. Solutions from the differential 

equations were then fitted into our model as predicted values for instantaneous position and 

speed. As is our standard practice in working the MCMC estimation, we first conducted 

exploratory analyses using frequentist methods, in this case nonlinear least-squares, implemented 

using  MATLAB (2002). This was done in order to understand the complexity of the acceleration 

model suggested by a given data set and to get reasonable starting values for the MCMC 

simulation. Bayes estimates for model parameters were then computed using WinBUGS.  

 

Brief Model Description from Bayesian Perspective 

 

The basic data model used in our reconstruction as follows: 
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where, Vobs, Range and RangeRate are the observations obtained from instruments every 0.1 secs 

interval and tau1,tau2 and tau3 are the precisions (inverse of variance) 

 

RRRV ˆ and,ˆ,ˆ are the predicted speed, range and range rate values obtained by solving the 

differential equations governing the relationship between location, speed and acceleration of the 

vehicle (refer to Equation 9). As mentioned one of our assumptions in the model is the driver 

behavior as piecewise constant accelerations, which means that driver’s acceleration changes 

over discrete time interval. These acceleration and change points are also treated as random 

variables which are used as initial conditions for each stage of the driver’s behavior into the 

WinBUGS differential equation solver. Vague normal priors were assumed for acceleration 

inputs; however more informative priors were used for change points based on the frequentist’s 

approach of nonlinear least square estimates from MATLAB.    

 

Data Acquisition and Reduction 

 
In order to develop and test our estimation methods we requested a set of example data originally 

collected by Virginia Tech Transportation Institute (VTTI) during the 100-Car Study (Dingus et 

al., 2006). The original data mainly consist of time series of measurements from the in-vehicle 

sensors, along with the videos from the forward camera, for about 30 seconds (secs) preceding 

and including the crash or near-crash event. For the instrumented vehicle which is the following 

vehicle, the data available consist of speedometer output, lateral and longitudinal accelerations, 

yaw, heading, and indications of the status of the turn signal, the brake, and the accelerator, 

recorded at 10 Hz. For the lead vehicle, the available data consist of range, range-rate, and 

azimuth obtained from the forward-viewing radar, also recorded at 10 Hz.  The most critical 

information that was used for analysis was speedometer readings from the following vehicle, 

range and range rate data.  

 

Case Studies 

 
Case 1 

 
In this case the instrumented vehicle (i.e., the following vehicle) at the start of the video took a 

right turn and continued to follow the leading vehicle. But then the leading vehicle decelerated 

and came to a complete stop. This forced the following vehicle also to decelerate, resulting in a 

conflict. However, the following driver’s deceleration was sufficient to enable the vehicle to 

come to a complete stop without a collision. Although the total length of the video was 19 

seconds, the event actually happened within first 8 seconds. For the remaining period of time, 

both the vehicles were in stopped condition. 
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The speed of the following vehicle was obtained directly from the speedometer of the 

instrumented car. For exploratory purposes an approximate speed of the leading vehicle was 

calculated by adding the speed of the following vehicle and the range-rate data obtained from 

radar. Final estimation however was done using the original data, i.e., follower speed and leader 

range and rangerate. Figure 1 shows the range and range-rate data obtained for this event. 
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Figure 1 Range and range-rate data for case 1 

For the following (instrumented) vehicle, a three-stage model was (see Figure 2), where a period 

of initial acceleration lasting about 2.5 seconds was followed by a period of strong deceleration, 

which was followed by a short period of another deceleration over a period of 2 seconds until the 

vehicle stopped completely. 
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Figure 2 Proposed 3-block model for the following vehicle 

 
Similarly, for the leading vehicle a 3-stage model was proposed (see Figure 2), where first two 

mild deceleration periods that lasted for 2.5 secs was followed by stronger deceleration until the 

vehicle came to a complete stop.  

 

After initial estimates of the change points and accelerations were obtained from MATLAB, the 

trajectory model was in WinBUGS for final estimates. Table 1 gives the final MCMC simulation 

estimates of the parameters. 

 

At the time the radar acquired the leading vehicle the initial speeds of the following and leading 

vehicle were 25.66 feet/sec and 26.07 feet/sec respectively. The leading vehicle decelerated in 

three different stages. The first two deceleration stages were characterized by mild deceleration 

followed by a very steep negative acceleration (-24.29 feet/sec
2
) bringing the leading vehicle to a 

complete stop. Subsequently, the following vehicle initially was accelerating for 2.626 seconds, 

and then it accelerated at -21.76 feet/sec/sec followed by a third negative acceleration of  

-2.87feet/sec
2
. The predicted piece-wise acceleration model was compared by fitting the 

observed data. The MCMC estimates of the parameters from Table 1 were then provided as 

inputs to the differential equation solver to obtain predicted positions, range and speed of the 

vehicles. The range and speed of the following vehicle was fitted as shown Figures 3 and 4.  
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Table 1 WinBUGS Estimates for the Model Parameters 
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Figure 3 Comparing observed and predicted range data 

 

  Mean 

Stand. 

Dev1 2.50% Median 97.50% 

Following Vehicle 

Initial Speed (feet/sec) 25.66 0.3869 24.92 25.66 26.45 

First Acceleration 

(feet/sec2) 1.567 0.2429 1.072 1.566 2.027 

Second 

Acceleration(feet/sec2) -21.76 0.7101 -23.06 -21.79 -20.3 

Third Acceleration 
(feet/sec2) -2.876 0.3197 -3.461 -2.891 -2.212 

First Change (sec) 2.626 0.02057 2.572 2.629 2.657 

Second Change (sec) 3.811 0.03753 3.755 3.806 3.891 

Reaction time  (sec) 1.059 0.04373 0.9932 1.052 1.161 

Leading Vehicle 

Critical headway (feet) 14.7 0.6635 14.04 14.23 15.57 

Critical Speed (feet/sec) 26.87 1.052 25.51 26.39 28.75 

Initial Speed (feet/sec) 26.07 0.4079 25.27 26.07 26.88 

First Acceleration 

(feet/sec2) -2.973 0.2788 -3.54 -2.971 -2.434 

Second 

Acceleration(feet/sec2) -6.172 0.4611 -7.155 -6.153 -5.319 

Third Acceleration 

(feet/sec2) -24.29 0.7389 -25.61 -24.34 -22.71 

First Change (sec) 2.752 0.02641 2.674 2.755 2.793 

Second Change (sec) 3.362 0.01218 3.339 3.361 3.387 
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Figure 4 Predicted and observed instrumented speed 

 

For this event the leader and follower were initially traveling at similar speeds, and the estimated 

reaction time of the follower (about 1.06 seconds) is typical of what has been observed in 

surprise braking experiments (Fambro et al., 1997). The follower’s headway at time of his 

reaction was only 14.7 feet, suggesting the aggressive car following behavior. 

 

 Case 2 

 

In this event the two vehicles were closely following each other. The leading vehicle accelerated 

and then traveled at uniform speed before it decelerated to almost zero speed, which resulted in 

almost a rear-end crash. The following vehicle follows the same pattern as the leading vehicle, 

shown in Figure 5. 

 

Figure 5 Speed trajectory of the leading and following vehicle for case 2 
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Range and range data obtained from the radar is shown in Figure 6. 
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Figure 6 range and range-rate data for case 2 

Exploratory analysis in MATLAB suggested a four stage model for the following vehicle’s 

speed trajectory. For the first two stages the following vehicle had two different acceleration 

values, the second being the weakest, which was then followed by two deceleration stages. 

Similarly for the leading vehicle another four stage acceleration model was proposed. First stage 

was characterized by a strong acceleration over a period of six seconds and then the vehicle 

traveled with almost constant speed for little more than 2 seconds, followed by two deceleration 

stages where the last one being the strongest. Table 2 shows the WinBUGS estimates.  

 

Initially the following vehicle was traveling at 11.21 feet/sec and then accelerated at 

3.15feet/sec/sec
 
for 5.36 seconds. Then it traveled at almost constant speed for another 5 seconds 

before decelerating at -2.419 feet/sec
2
 for 4.3 seconds followed by a strong negative acceleration 

of -10.74 feet/sec
2 

and finally came to a stop at 16.47 seconds. A similar pattern was observed 

for the leading vehicle, which had an initial acceleration stage of 8.16feet/sec
2 

for 1.764 seconds, 

followed by a period of 8.277 seconds of  almost constant speed and then two deceleration stage 

with the final negative acceleration rate as high as -9.502 feet/sec
2
. The similar speed profile of 

the two vehicles seems reasonable as they were following closely each other in this case.    

 

Predicted versus observed speed plotted (see Figure 7) indicates reasonable fit for the model. 
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Table 1.2 WinBUGS Estimates for Case 2 

 

  Mean 

Stand. 

Dev1 2.50% Median 97.50% 

Following Vehicle 

Initial Speed (feet/sec) 11.21 0.2399 10.74 11.21 11.67 

First Acceleration 

(feet/sec/sec) 3.149 0.06246 3.034 3.146 3.275 

Second 

Acceleration(feet/sec/sec) 0.7217 0.03928 0.6431 0.7219 0.7981 

Third Acceleration 

(feet/sec/sec) -2.419 0.1075 -2.635 -2.415 -2.22 

Fourth Acceleration 

(feet/sec/sec) -10.74 0.3316 -11.38 -10.74 -10.07 

First Change (second) 5.364 0.06755 5.236 5.362 5.495 

Second Change (second) 10.71 0.05586 10.61 10.71 10.83 

Third Change (second) 14.3 0.03184 14.23 14.3 14.36 

Time when stopped 
(second) 16.47 0.05112 16.37 16.47 16.57 

Reaction time (second) 0.4847 0.04604 0.3996 0.4829 0.5788 

Leading Vehicle 

Critical Range (feet) 12.79 0.3077 12.11 12.86 13.47 

Critical Speed (feet/sec) 24.43 0.226 23.96 24.43 24.84 

Initial Speed (feet/sec) 14.07 0.3193 13.46 14.07 14.71 

First Acceleration 
(feet/sec/sec) 8.16 0.2434 7.679 8.164 8.631 

Second 

Acceleration(feet/sec/sec) -0.00214 0.04673 

-

0.09826 -0.00121 0.08024 

Third Acceleration 

(feet/sec/sec) -1.45 0.07088 -1.591 -1.448 -1.312 

Fourth Acceleration 

(feet/sec/sec) -9.502 0.3231 -10.12 -9.506 -8.857 

First Change (second) 1.764 0.03767 1.69 1.763 1.841 

Second Change (second) 8.277 0.1001 8.073 8.28 8.461 

Third Change (second) 13.81 0.03837 13.74 13.81 13.88 

 
Note: 1 Standard deviation 

 

 

Again, leader and follower were traveling at similar initial speeds, and the follower’s estimated 

reaction time (about 0.5 seconds) definitely does not suggest driver inattention. However, the 

follower’s estimated critical headway, as less as 12.79 feet, at the beginning of his evasive action 

suggests strong aggressive following behavior and which almost resulted in a rear-end collision 

in this case. Such an event can be qualified as a useful crash surrogate. 
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Figure 7 Predicted and observed instrumented speed for Case 2 

 

Case 3 

 

 In this case the instrumented vehicle was traveling in the right-most lane of an arterial and 

continued to travel until it was forced to a complete stop to avoid a rear-end collision with the 

leading vehicle, which was waiting for a gap to change lanes at a merging section of the arterial. 

The total duration of the video was 35 seconds and the event occurred at about 23 seconds. 

Respective speed trajectories for the leading and following vehicles were plotted in Figure 8. The 

radar could only mange to capture the leading vehicle’s information for about 5 seconds.   
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Figure 8 Speed trajectories for the leading and the following vehicles for Case 3 
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A two-stage model was proposed for both the leading and the following vehicles. Table 3 shows 

the WinBUGS estimates. Initial speed of the following vehicle was 60 feet/sec compared to the 

initial speed of 30.93 feet/sec for the leading vehicle. This speed is the estimated speed of the 

leading vehicle when for the first time the radar captured information about the leading vehicle. 

A two-stage model was proposed for the following vehicle where in the first stage the vehicle 

accelerated at -7.57 feet/sec
2
 until 3.92 seconds then it shifted to a stronger negative acceleration 

of -16.16 feet/sec
2
. The leading vehicle’s trajectory was also fitted with a two-stage model with -

10 feet/sec
2
 of acceleration in the first stage, for 1.714 seconds, and -4.332 feet/sec

2 
acceleration 

in the second stage. 

                           

Table 3 WinBUGS Estimates for Case 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The above estimates from Table 3 suggests that longer reaction time of 2.207 secs may not be 

attributed to the driver’s inattention as the critical headway (94.81 feet) in this case is much 

higher than the other cases probably giving the following driver more time to react to the 

situation and eventually avoid the collision. 

            

The piece-wise model seems to be plausible as shown Figure 9, comparing the observed with the 

predicted speed for the instrumented vehicle. 

 

 

 

 

 

 

  Mean Stand. Dev1 2.50% Median 97.50% 

Following Vehicle 

Initial Speed (feet/sec) 60.12 0.3074 59.54 60.12 60.74 

First Acceleration 

(feet/sec/sec) -7.574 0.1257 -7.821 -7.573 -7.333 

Second 

Acceleration(feet/sec/sec) -16.16 0.372 -16.86 -16.17 -15.41 

First Change (seconds) 3.922 0.04541 3.823 3.929 3.991 

Time when stop 

(seconds) 5.805 0.027 5.754 5.804 5.861 

Reaction time (seconds) 2.207 0.0607 2.083 2.209 2.322 

Leading Vehicle 

Critical Headway (feet)  94.81 2.269 91.36 94.95 98.57 

Critical Speed (feet) 47.23 0.5369 46.28 47.26 48.21 

Initial Speed (feet/sec) 30.93 0.437 30.12 30.91 31.81 

First Acceleration 

(feet/sec/sec) -10.86 0.3323 -11.57 -10.84 -10.26 

Second 

Acceleration(feet/sec/sec) -4.332 0.1572 -4.648 -4.331 -4.03 

First Change (seconds) 1.714 0.05528 1.602 1.716 1.816 

Time when stop 

(seconds) 4.559 0.07132 4.424 4.557 4.704 
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Figure 9 Predicted and observed instrumented speed for Case 3 

 

CONCLUSION 
 

In this study we have used a microscopic modeling approach to investigate crash event where 

driver actions together with initial speeds and vehicle locations are treated as inputs to a physical 

model describing vehicle motion.  One of the main objectives of this study is to demonstrate how 

in-in vehicle base trajectory data can be used to understand the interaction between individual 

vehicles and if possible to identify the underlying mechanism for any crash or near crash event.  

We have illustrated how at least for situations where direction of travel is roughly constant, 

trajectory-based reconstruction of crash-related events, where trajectory data are used to fit 

parsimonious models of driver behavior, is feasible using vehicle-based data. The product of 

such a reconstruction is a set of estimates of when and to what extent drivers changed their 

acceleration, and the background conditions associated with these changes. This approach is 

especially helpful in studying crash-related events involving two or more vehicles. And our 

methods can be used to produce estimates of driver reaction times and following behavior. These 

estimates can in turn be used to characterize events as to the degree to which driver inattention or 

aggressive driving may have been present, where information on the behavior of drivers in non-

instrumented vehicles is required  

   

Given sufficiently large samples of crash and near-crash events, this method could be used to 

compile distributions for these inputs, which could in turn be used in traffic simulation models. 

Such a strategy could advance the use of realistic crash features in a microscopic simulation 

model. One potential real time application can be possible identification of traffic conditions 

prior to any event and thus enabling traffic engineers to take necessary action to alert drivers.   

  

In some cases there are strong possibilities that the residuals obtained after fitting a trajectory 

model showed serial correlation. When serial correlation is present but unaccounted for, the 
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standard errors and confidence intervals associated with parameter estimates can be biased,  that 

is,  although the trajectory model fitting may appear reasonable  there will be greater uncertainty 

associated with the parameter estimates than being acknowledged. For further investigation, 

time-series models, such as first order autoregressive models, should be used.  
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