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ABSTRACT 
 
This study simultaneously models crash severity of both parties in two-vehicle accidents at 
signalized intersections in Taipei City, Taiwan, using a novel bivariate generalized ordered 
probit (BGOP) model. Estimation results show that the BGOP model performs better than the 
conventional bivariate ordered probit (BOP) model in goodness-of-fit indices and prediction 
accuracy, and provides a better understanding of factors contributing to different severity 
levels. According to estimated parameters in latent propensity functions and elasticity effects, 
several key risk factors are identified—driver type (age >65), vehicle type (motorcycle), 
violation type (alcohol use), intersection type (three leg and multiple leg), collision type (rear 
ended), and lighting conditions (night and night without illumination). Corresponding 
countermeasures for these risk factors are proposed. 
 
Keywords: Two-vehicle accidents, bivariate ordered probit, bivariate generalized ordered 
probit, severity level. 
 
1. INTRODUCTION 
 
Two-vehicle accidents are likely the most common accidents on urban streets, especially at 
intersections. Without knowing the factors contributing to crash severity level, one cannot 
implement effective countermeasures. Numerous studies have identified potential factors and 
proposed countermeasures. However, the severity of two parties (drivers or riders) involved 
in the same two-vehicle accident may differ due to different driving behaviors, vehicle 
characteristics, traffic environments, and other risk factors. For instance, speeding drivers 
and/or impaired drivers may cause serious injury to other drivers when an accident occurs, 
but not to themselves. Thus, one must consider crash severity of both parties simultaneously 
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to identify associated factors. 
 
For crash severity modeling from an individual accident perspective, various methodological 
approaches have been applied, such as logistic regression (e.g., Sze and Wong, 2007; 
Al-Ghamdi, 2002), bivariate models (e.g., Yamamoto and Shankar, 2004; De Lapparent, 2008; 
Lee and Abdel-Aty, 2008), multinomial and nested logit structures to evaluate accident-injury 
severities (e.g., Shankar and Mannering, 1996; Chang and Mannering, 1999; Carson and 
Mannering, 2001; Lee and Mannering, 2002; Abdel-Aty, 2003; Ulfarsson and Mannering, 
2004; Holdridge et al., 2005; Savolainen and Mannering, 2007) and mixed logit models 
(Milton et al., 2008; Gkritza and Mannering, 2008; Pai et al., 2009). 
 
Notably, the discrete ordered probability model is one of the most common approaches used 
in recent accident severity studies (Shibata and Fukuda, 1994; O’Donnell and Connor, 1996; 
Duncan et al., 1998; Renski et al., 1999; Khattak, 2001; Kockelman and Kweon, 2002; 
Abdel-Aty, 2003; Zajac and Ivan, 2003; Abdel-Aty and Keller, 2005; Lee and Abdel-Aty, 
2005; Williams, 2006 ; Eluru and Bhat, 2007; Pai and Saleh, 2007; Eluru et al., 2008; Gray et 
al., 2008; Pai and Saleh, 2008; Wang and Abdel-Aty, 2008; Yamamoto et al., 2008). This 
approach has considerable appeal because severity outcomes are discrete and ordered from 
low severity to high severity (e.g., property damage only, possible injury, evident injury, and 
disabling injury and fatality). The injury-severity categories are ordered in categories that are 
in some cases closely related (e.g., levels of no injury and possible injury); additionally, 
injury levels may be closely related (Savolainen et al., 2010). These crash severity studies 
have applied ordered response modeling to accommodate the natural order of crash severity 
levels. In the same vein, most of these studies applied the univariate ordered probit model to 
analyze two-vehicle accidents (e.g., Shibata and Fukuda, 1994; Shankar et al., 1996; Chang 
and Mannering, 1999; Carson and Mannering, 2001; Khattak, 2001; Kockelman and Kweon, 
2002; Lee and Mannering, 2002; Abdel-Aty, 2003; Abdel-Aty and Keller, 2005; Pai and 
Saleh, 2008). However, due to a restriction on the number of dependent variables—only one 
variable is allowed—those studies simply determined the severity level of two-vehicle 
accidents by adopting the crash severity level of party injured most. 
 
As mentioned, the injury severity levels of the two parties involved in the same accident may 
differ markedly. Undoubtedly, considering the severity levels of two parties along with the 
corresponding factors is necessary to obtain insights from crash data and to propose effective 
safety strategies. Only considering the most-injured party may result in loss of valuable 
information. Moreover, the severity levels of the two parties along with contributing factors 
cannot be modeling separately, as these factors are typically closely related, resulting from 
the interrelationships among potential risk factors such as driver behavior, vehicle type, and 
collision type. The interaction between risk aversion behaviors of both drivers may also affect 
resulting severity levels. Thus, the severity levels of the two parties along with the 
corresponding contributing factors cannot be modeling separately, as observed or unobserved 
factors are usually correlated to some degree. Neglecting these potential correlations may 
lead to over- or under-estimation of parameters in crash severity modeling, thereby 
generating endogeneity problems (Winston et al., 2006; De Lapparent, 2008; Savolainen et 
al., 2010). Providing a relatively more efficient estimation by considering common 
unobserved factors for all involved parties, such as passengers (Hutchinson, 1986; Yamamoto 
and Shankar, 2004) and other involved drivers (Rana, 2009), in the same accident. This study 
applies the bivariate generalized ordered probit (BGOP) model to model simultaneously 
crash severity of both parties without losing the important crash information of both parties. 
The BGOP model, a flexible and comprehensive analytical approach, can regress two ordered 
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target variables simultaneously, i.e., crash severity levels of two parties, on contributing 
factors. Additionally, the threshold functions of the BGOP model can be calibrated during the 
model estimation process to condense model heterogeneity and to provide more insights for 
crash severity classification than the BOP model. 
 
The remainder of this paper is organized as follows. Section 2 briefly introduces the bivariate 
ordered probit (BOP) and BGOP models. Section 3 presents the descriptive statistics of data 
used to develop the models. Section 4 compares and discusses estimation results by the BOP 
and BGOP models. Finally, Section 5 gives conclusions and recommendations for future 
research. 
 
The BGOP model is an extension of the BOP model. A common assumption of ordered 
discrete outcome models is that parameter estimates are constant across severity levels. 
However, the BGOP model allows BOP model thresholds to vary based on both observed 
characteristics of two parties involved to minimize model heterogeneity and provide 
additional insights for crash severity classification. To facilitate estimation in a traditional 
closed log-likelihood function form, the BGOP model is derived based on previous studies of 
the BOP model (Yamamoto and Shankar, 2004) and generalized ordered response logit 
(GORL) models (Eluru et al., 2008); this differs from the previous derivation by De 
Lapparent (2008). 
 
2.1 Bivariate Ordered Probit 
 
A BOP model is a hierarchical system of two equations that can be used to model a 
simultaneous relationship of two response variables, and addresses possible endogeneity 
problems, such that the severity levels of injuries to two or more participants involved in the 
same accident are typically correlated. 
 
Let qn (n=1,2) be an index representing two drivers involved in the same accident q (q= 
1,2,…,Q). Suppose yqn is the observed injury severity representing the latent (unobserved) 
injury severity propensity of drivers. Moreover, uq1 and uq2  are thresholds or cut-off values 
used to determine observed injury severity levels of both drivers relative to their 
corresponding injury propensities in crash q. Additionally, k (k=1, 2,…, K) and l (l=1, 2,…, L) 
are the indices representing ordinal categories of injury severity sustained by each driver. 
Thus, the latent injury severity propensities of the two drivers match their actual injury 
severity, as in the following equations: 

 
k,nn,qk,nn,q yif;ky 11111 =

∗
=−==

∗ <<= μμ                                        (1) 
l,nn,ql,nn,q yif;ly 22122 =

∗
=−==

∗ <<= μμ                                         (2) 
 
Base on the above notations, the joint equation system from modeling injury severity of the 
two drivers involved in a two-vehicle accident is given by Eqs. (3) and (4), respectively: 

 
1111, qqnq Xy εβ +′==

∗                                                    (3) 
2222, qqnq Xy εβ +′==

∗
                                                    (4) 

 
where nβ′  is a parameter vector, and εqn represents the random components that capture all 
unobserved factors associated with all involved parties. Under the assumption of a bivariate 
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normal distribution of random components, the joint probability of the two drivers involved 
in the same accident can be expressed as follows: 
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where Φ2( ) is the standard bivariate normal cumulative distribution function. ρ is an 
estimated correlation parameter between εq1 and εq2. 
 
2.2 Bivariate Generalized Ordered Probit 
 
As mentioned, the BGOP model is based on the BOP (Yamamoto and Shankar, 2004) and the 
GORL models (Eluru et al., 2008). In Eqs. (1) and (2), thresholds uq1 and uq2 are now 
subscripted by index q to show that these cutoffs can vary across accidents involving 
different individuals to account for individual observed risk features. 
 

k,n,qn,qk,n,q
n,q

~y~if,ky
1111

1
=

∗
=−=

=
∗ <<= μμ                                       (6) 

l,n,qn,ql,n,q
n,q

~y~if,ly
2212

2
=

∗
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=

∗ <<= μμ                                       (7) 
 
In what follows, this study adopts a specific parametric function for each threshold to satisfy 
the following two ordering conditions: ( ∞<<<<<∞− −=== 1,1,2,1,1,1,

~...~~
Knqnqnq uuu ) and 

( <<<∞− == 2,2,1,2,
~~

nqnq uu  ∞<< −= 1,2,
~... Lnqu ) for crash q. Thus, this study specifies them as: 

 
).exp(~~

,1,1,,1, kqkkknqknq Zuu γα ′++= −==                                      (8) 
).exp(~~

,1,2,,2, lqlnqnq Zuu ςθ ′++= −== lll                                        (9) 
 
where Zq,k and Zq,l are two exogenous variable vectors. Each is linked to its associated 
thresholds 

k,n,q
u~

1=
and 

l,n,q
u~

2=
. Additionally, kq,γ ′  and 

l,qς ′  are coefficients associated with crash 
vectors. 
 
Parameters αq,k and θq,l are included in each party’s specific injury severity level k (k=1, 2,…, 
K-1) and l (l=1, 2,…, L-1). In consideration of model identification, this study employs 
normalization, such that 1,1,

~
== lnqu  and 1,2,

~
== lnqu  equal zero for all q. Since the BGOP model 

is an extension of the BOP model, which restricts all non-constant parameters in the threshold 
function to zero. One can evaluate the validity of restrictions imposed by the restrictive BOP 
model using the likelihood ratio index (ρ2), model information criteria: Akaike information 
criterion (AIC), Bayesian information criterion (BIC) and chi-squared test. 
 
2.3 Model Estimation and Validation 
 
The log-likelihood of the BGOP model while considering both parties is given by: 
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The corresponding parameters ),(~),,(~,, ,,,,21 kqkqqkkqkqqk αγμαγμββ ′′′′ and ρ are estimated 
simultaneously using the maximum likelihood method. The positive (negative) value of the 
coefficient estimate means that the probability of higher severity levels increase (decrease). 
 
The study utilizes GAUSS software (Aptech Systems, 1995) and estimates the BOP and 
BGOP models using the maximum likelihood method. Estimation results for the BOP model 
can identify important explanatory variables and provide initial values for BGOP model 
estimations. 
 
To ensure that the proposed model is applicable, this study applies mean absolute percentage 
error (MAPE) and root mean square error (RMSE) to compare different models. During this 
comparison, two datasets are used to estimate and validate the BOP and BGOP models. 
Additionally, MAPE is utilized as the decisive performance index because it is expressed as a 
generic percentage term with a straightforward and comprehensive meaning (Lewis, 1982). 
 
3. DATA 
 
In total, 2,661 two-vehicle accidents (5,332 drivers) that occurred at signalized intersections 
during 2006–2007 in Taipei City are collected. Each of accident data contains a variety of 
crash information, including the severity levels of the two parties as well as potential factors, 
including, driver type (for both parties), vehicle type (for both parties), violation type (for 
both parties), roadway type, collision type, intersection type, and lighting conditions factors 
(Table 1). Violation type in the dataset includes alcohol use, speeding, running a red light, 
and swerving into other lanes. To ensure that a sufficient number of samples are available for 
each violation type and to identify its effect on severity, this study categorizes violations into 
two types: alcohol use and others. Additionally, according to police practices, the first party 
in an accident is usually the party who had the most-serious driving violation, as determined 
by the police at the accident site. 
 
For model estimation and validation, this dataset is randomly divided into two sets: one set 
for model estimation (2,050 cases and 4,100 drivers) and the other for model validation (611 
cases and 1222 drivers). Most potential explanatory variables (Table 1) are binary coded to 
represent certain types of drivers, vehicles, violations, collisions, intersections, roadways, 
times and lighting conditions. However, the age variable is examined separately in model 
estimation in its continuous and discretized form. 
 
Three levels of severity in raw accident data are typically used—property damage only, injury, 
and fatality. However, under this classification system, sample distribution is generally 
uneven with too few fatal crash cases (<0.1%). Therefore, this study reclassifies cases using 
four severity levels—property damage only, possible injury, evident injury, and disabling 
injury and fatality. Table 2 gives a cross-tabulation of severity levels of the two parties. 
 
As shown in Table 2, injury severity levels of the first and second parties are strongly 
correlated in severity levels of property damage only and possible injury. Notably, the total 
number of cases without injury to the first party (property damage only) is much larger than 
that of the second party (1397 vs. 831), while the total number of serious-injury cases for the 
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first party is less than that of the second party (evident injury, 1006 vs. 553; disabling injury 
and fatality, 121 vs. 49), suggesting that the second party is more vulnerable to serious injury 
than the first party, and explaining the importance of simultaneously examining factors 
contributing to severity levels for different parties. 

 
Table 1  Sample distribution by explanatory variables 

Variable First party Second party 
Driver type  

Gender=Male 79.9% 76.0% 
Age ≤ 20 8.1% 11.4% 
20 < Age ≤ 40 44.0% 54.2% 
40 < Age ≤ 65 44.6% 32.4% 
Age > 65 3.4% 2.0% 

Age 

Average (Std.) 39.9 (14.1) 35.8 (13.6) 
Violation type  

Alcoholic use 3.7% 0.6% 
Others 99.9% 66.2% 

Vehicle type  
Bus 1.8% 1.1% 
Truck 4.3% 1.6% 
Car 41.1% 22.8% 
Taxi 16.7% 10.2% 
Motorcycle 36.1% 64.3% 

Collision type  
Head-on 0.5% 
Rear-end 2.1% 
Sideswipe 52.7% 
Angle 44.7% 

Intersection type  
Four-leg intersection 76.9% 
Three-leg intersection 15.6% 
Multiple-leg intersection 7.2% 
Roundabout 0.3% 

Roadway type  
Major arterial 2.2% 
Minor street 96.7% 
Alley 1.1% 

Time  
18:00~24:00 31.9% 
24:00~06:00 11.4% 
06:00~18:00 56.7% 

Lighting conditions  
Daylight 62.8% 
Night with illumination 20.1% 
Night without illumination 17.1% 
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Table 2  Cross-tabulation by the severity levels of two parties 
Second Party  

First Party Property 
damage only 

Possible 
injury 

Evident 
injury 

Disabling injury 
& fatality 

Total 

Property damage only 527(37.7%) 723(51.8%) 85(6.1%) 62(4.4%) 1397(100.0%)
Possible injury 249(45.0%) 253(45.8%) 28(5.1%) 23(4.2%) 553(100.0%)
Evident injury 24(49.0%) 17(34.7%) 5(10.2%) 3(6.1%) 49(100.0%)
Disabling injury & fatality 31(60.8%) 13(25.5%) 3(5.9%) 4(7.8%) 51(100.0%)
Total 831 1006 121 92 2050
 
4. RESULTS 
 
To identify the factors contributing to severity levels for both parties and to demonstrate the 
importance of incorporating generalized thresholds, both the BOP and BGOP models are 
estimated and compared. Policy implications are also developed based on estimation results. 
 
4.1 Model Estimation 
 
Tables 3 and 4 present estimation results for the BOP and BGOP models, respectively. 
 

Table 3  Estimation result of the BOP model 
Latent propensity 

First party Second party Types Variables 
Estimate t-stat Estimate t-stat 

Constant -0.563 -1.30 -1.088 -10.27 
u2 1.901 28.81 2.001 38.78 

 

u3 2.250 28.51 2.458 40.09 
1st -0.313 -3.57   Male 
2nd -0.134 -1.82 

Age > 65 1st 0.275 1.61   

Driver 

ln(Age) 2nd -0.218 -1.92   
1st 0.966 7.52 0.679 6.20 Alcoholic use 
2nd 0.586 2.72 

Violation 

Others 2nd -0.226 -3.73 
1st 0.504 3.20 Bus 
2nd 1.142 7.11   

Car 1st 0.255 4.12 
1st 2.569 29.21   

Vehicle 

Motorcycle 
2nd -0.494 -5.79 2.115 31.86 

Intersection Three-leg 0.173  2.27  
 Multiple-leg 0.281  2.87  
Roadway Major arterial -1.963  -3.35  
Collision Rear-end 0.574 2.58   

Timing (24:00~06:00) 0.236 2.33   Lighting 
conditions Lighting (Night without 

illumination) 0.264 3.19 

Number of observations (Number of parameters)               2050 (27) 
LL(C)                                                 -3261.17 
LL(β)                                                  -2375.98 
ρ (t-Stat.)                                                  0.29 (8.87) 
adj-ρ2                                                     0.27 
AIC                                                   4805.95 
BIC                                                   4957.85 

Note: Only the variables with significantly tested parameters at α=0.10 
are reported. 
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Table 4  Estimation results of the BGOP model 
Threshold function Latent propensity 

21 == k,nu~  
31 == k,nu~  

22 == l,nu~  
32 == l,nu~  1st 2nd Types Variables Party 

Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat 
 Constant  -0.568 -3.01 0.874 26.86 -0.417 -2.51 0.945 25.70 -0.636 -1.42 -1.217 -11.14 
Driver Male 1st         -0.326 -3.62   
  2nd       -0.068 -1.98 -0.165 -2.19 
 Age > 65 1st         0.287 1.65   
 ln(Age) 2nd         -0.217 -1.84   
Violation Alcoholic use 1st     0.132 2.62   0.932 6.19 0.699 5.84 
  2nd         0.587 2.64 
 Liability 2nd         -0.229 -3.62 
Vehicle Bus 1st         0.530 3.40 
  2nd         1.031 5.66   
 Car 1st         0.260 4.10 
 Motorcycle 1st 1.320 6.98       2.737 28.05   
  2nd     1.116 6.77   -0.498 -5.81 2.285 31.41 
Intersection Three-leg         0.172 2.18 
 Multiple-leg         0.287 2.74 
Roadway Major arterial         -1.975 -3.35 
Collision Rear-end        0.612 2.77   

Time (24:00~06:00)        0.256 2.29   Lighting 
conditions Lighting (Night without 

illumination)     0.296 4.95 0.218 3.86 0.640 4.77 

Number of observations (Number of parameters)                                                                                      2050 (33) 
LL(C)                                                                                                                        -3261.17 
LL(β)                                                                                                                        -2265.29 
ρ (t-Stat.)                                                                                                                         0.247 (6.26) 
adj-ρ2                                                                                                                                             0.31 
AIC                                                                                                                          4596.57 
BIC                                                                                                                          4782.22 
Likelihood ratio test with BOP model                                                                          –2[LL(βBGOP) – LL(βBOP)]=221.38  
Note: Only the variables with significantly tested parameters at α=0.10 are reported. 
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The goodness-of-fit indices of the BOP and BGOP models are good (Tables 3 and 4). 
Correlation parameters (ρ) in both models are significant, demonstrating the need to model 
injury severity levels for both parties simultaneously. Moreover, the goodness-of-fit indices 
of adj-ρ2 , AIC, BIC, and the BGOP model perform better than that of the BOP model, 
demonstrating the importance of using generalized thresholds. Moreover, the likelihood ratio 
test result shows that the chi-squared value is 221.38, which exceeds the 5% significance 
level (χ2

(5,0.95)=11.07), suggesting the BGOP model performs significantly better than the 
BOP model. Accordingly, implications, the discussion and conclusions are interpreted based 
on BGOP model results. 
 
To classify latent propensity into four severity levels, three thresholds are required for each 
party— ( ) )3,2,1(,2,1

~
== llnnu . By setting two thresholds of ( ) 1,2,1

~
=nnu  as the reference, four threshold 

functions of ( ) )3,2(,2,1
~

== llnnu  are estimated. Several explanatory factors, including vehicle type 
(motorcycle), driver type (male), and violation type (alcohol use), have significant effects on 
the shift of thresholds, and changing severity level classification results (Table 4). Notably, 
the value of correlation coefficient ρ decreases slightly when compared with that of the BOP 
model (Table 3), because these explanatory variables are incorporated into threshold 
functions. 
 
The estimated parameters with a positive sign in threshold functions indicate that when the 
associated type of a condition is present, the threshold shifts to the right and then increases 
the interval of the defined severity level and increases probability, resulting in a lower 
severity level compared with that of the other party (Eluru et al., 2008). A negative estimated 
parameter has the opposite effects. The estimated parameters in threshold functions are 
interpreted by the elasticity effect in the following subsection. 
 
Based on the estimated parameters in latent propensity functions, a parameter with positive 
sign indicates that when the type of an associated explanatory variable is present in an 
accident, the severity level for this party increases. These estimated parameters for the first 
and second parties are markedly different and some factors related to one party have 
significant effects on the severity level of the other party, explaining the interaction between 
two parties involved in an accident (Table 4). 
 
For the estimated parameters for driver type (gender and age), when the driver is male, the 
latent propensity to injury himself can be curtailed by 0.326 and 0.165 for the first and the 
second parties, respectively. This estimation result is in agreement with those in previous 
studies (Kockelman and Kweon, 2002; Abdel-Aty, 2003; Yamamoto and Shankar, 2004; 
Holdridge et al., 2005; Eluru and Bhat, 2007; De Lapparent, 2008; Eluru et al., 2008; Gkritza 
and Mannering, 2008; Yamamoto et al., 2008) and the gendered stereotype that posits that 
male drivers are in better physical condition for resisting potential dangers and are faster in 
responding to risk, resulting in male drivers being less injured in accidents than female 
drivers. However, the magnitude of estimated parameter of corresponding variable for the 
second party is much lower than that of the first party, implying that although the second 
party is male, he is still more vulnerable to a severe injury than the male first party. 
Additionally, the parameter of the male second party in the threshold function 3,2

~
== lnu  is 

negative (-0.068), suggesting that a male second party has a higher risk for severe injury than 
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a female second party; this finding runs counter to our expectation. This may be because the 
driver overacts and this increases injury severity. 
 
The age variable (continuous form in the logarithmic term and discretized form for drivers 
aged >65) only affects the latent propensity of the first party, suggesting that when the first 
party is aged > 65, his/her injury severity in an accident increases. This finding is also 
consistent with that in other studies (Kockelman and Kweon, 2002; Zajac and Ivan, 2003; 
Abdel-Aty, 2003; Ulfarsson and Mannering, 2004; Yamamoto and Shankar, 2004; Eluru and 
Bhat, 2007; De Lapparent, 2008; Eluru et al., 2008; Yamamoto et al., 2008). Conversely, the 
ln(Age) parameter of the second party has a negative sign, implying that old drivers may have 
more experience than young drivers and respond to potential crashes better, thereby reducing 
the possible injury to the other party. 
 
The estimated parameters for violation type indicate that when the first driver is drunk, injury 
severity of the first and the second parties increases by 0.932 and 0.699, respectively. This 
analytical result is also in agreement with that in many previous studies (O’Donnell and 
Connor, 1996; Kockelman and Kweon, 2002; Zajac and Ivan, 2003; Abdel-Aty, 2003; 
Ulfarsson and Mannering, 2004; Yamamoto and Shankar, 2004; Holdridge et al., 2005; Eluru 
and Bhat, 2007; Eluru et al. ,2008; Wang and Abdel-Aty, 2008 ; Yamamoto et al., 2008), 
because alcohol adversely affects driver responses to risk by prolonging reaction time. 
However, if a drunk driver is the second party, only his/her injury severity increases, and has 
no significant effect on that of the first party. Surprisingly, negative effects of other behaviors 
that break traffic laws on injury severity of the second party are significant, implying that  
the second party breaking traffic laws may reduce his/her injury severity. This unexpected 
finding resembles that obtained by Abdel-Aty (2003). 
 
The effects of vehicle type on injury severity of the first or second party are also significant. 
Unlike previous studies of univariate model (Kockelman and Kweon, 2002; Zajac and Ivan, 
2003; Yamamoto and Shankar, 2004; Holdridge et al., 2005; Eluru and Bhat, 2007; Eluru et 
al., 2008; Gkritza and Mannering, 2008; Yamamoto et al., 2008) which cannot further 
identify the effects of vehicle type to both parties, the BGOP model can identify the 
interrelation between the vehicle types used by two parties. According to the estimation 
results, several findings are identified. First, when the vehicle of the first party is a bus, the 
injury severity of the second party increases, since damage typically increases as vehicle size 
of the another party increases and vice versa. Additionally, if the vehicle of the first party is a 
car, then the injury severity of the second party also increases, but not vice versa. Notably, 
motorcycles have the largest effect on injury severity of the riders themselves, since the 
estimated parameters have the largest value among all explanatory variables. Those riding a 
motorcycle typically suffer serious injury regardless of whether they are the first or second 
party in an accident. This finding underscores the dangers associated with this transportation 
mode, as motorcycles lack external protection, and coincides with the fact that motorcyclist 
fatalities in Taiwan account for 56.69% of all traffic deaths (Wen et al., 2011). However, 
when the vehicle type of the second party is a motorcycle, then injury severity of the first 
party declines slightly, due to reduced impact from a motorcycle. 
 
In this analysis, intersection types affect injury severity of the second party, not that of the 
first party. When an intersection is a three-leg or multiple-leg intersection, injury severity of 
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the second party increases, since most intersections are four-leg intersections; three- and 
multiple-leg intersections are rare for urban streets, such that drivers unfamiliar with these 
intersections may lack the knowledge of how to respond to potential dangers, rendering them 
vulnerable to injury. When one roadway at an intersection is a major arterial, injury severity 
for the second party is decreased. This is because major arterials have a high geometrical 
design standard. Drivers on such roads have better sight distance and longer time to respond 
than drivers on other minor roads. 
 
Rear-end collision is the only collision type that affects injury severity. Similar findings were 
obtained by Chang and Mannering, 1999; Khattak, 2001; Kockelman and Kweon, 2002; 
Eluru and Bhat, 2007; De Lapparent, 2008; Gkritza and Mannering, 2008. Injury severity of 
the first party increases in a rear-end collisions (Table 4). The reason is likely that in rear-end 
accidents, drivers of following vehicles are usually the first party and fail to maintain a safe 
distance from the front vehicle. For a rear-end collision, passengers in front vehicles and 
drivers of following vehicles tend to have more-severe injuries than the other drivers and 
passengers. 
 
Last, lighting condition factors also affect injury severity of the first or second parties. The 
injury severity level of the first party is higher when a crash occurs at night (24:00–6:00), 
because vehicles during that period are often moving at relatively high speeds and drivers can 
become distracted (Eluru and Bhat, 2007; Eluru et al., 2008). Additionally, injury severity of 
the second party is higher when an accident occurs under poor lighting (Abdel-Aty, 2003; 
Zajac and Ivan, 2003; Holdridge et al., 2005; Eluru and Bhat, 2007). Under this condition, 
drivers have poor visualization and lack sufficient reaction time to avoid serious accidents. 
 
4.2 Elasticity Effect 
 
The estimated parameters of explanatory variables (Table 4) do not directly show the 
magnitude of effects on the probability of each injury severity level. Some explanatory 
variables have different effects on injury severity level of one party in threshold functions and 
latent propensity functions. To elucidate the impact of contributing factors, this study 
computes the aggregate level “elasticity effects” of variables (Tables 5 and 6) for the first and 
second parties using the BOP and BGOP models. Thus, one can calculate aggregate level 
“elasticity” of any dummy variable by changing the variable value to 1 for the subsample of 
observations for which the variable has a value of 0, and to 0 for a subsample of observations 
for which the variable has a value of 1. Following computation, this study sums shifts in 
expected aggregate shares in the two subsamples after reversing the signs of shifts in the 
second subsample, and computes an effective percentage change in expected aggregate shares 
in the entire sample after changing the dummy variable value from 0 to 1 (Eluru and Bhat, 
2007, 2008). The elasticity effect can be interpreted as percentage change in probability of an 
injury severity category due to changing the variable to 1 from 0, except for the continuous 
variable, ln (Age). 
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Table 5  Elasticity effects for the first party 
BOP BGOP 

Types Variables Property 
damage only

Possible 
injury 

Evident 
injury 

Disabling 
injury & 
fatality 

Property 
damage only

Possible 
injury 

Evident 
injury 

Disabling 
injury & 
fatality 

1st 0.17 -0.56 -1.41 -1.76 -1.36 -0.56 -0.99 -2.06 Male 
2nd 0.00 0.00 0.00 0.00 -2.63 0.00 0.00 0.00 

Age > 65 1st -0.11 0.36 0.86 1.06 3.50 0.49 0.88 1.83 

Driver 

ln(Age) 2nd 0.13 -0.32 -0.65 -0.76 0.12 -0.30 -0.48 -0.77 
1st -0.47 3.04 17.18 27.40 1.27 2.50 5.93 29.91 Alcoholic use 
2nd 0.00 0.00 0.00 0.00 3.95 0.00 0.00 0.00 

Violation 

Others 2nd 0.00 0.00 0.00 0.00 -0.77 0.00 0.00 0.00 
1st 0.00 0.00 0.00 0.00 3.93 0.00 0.00 0.00 Bus 
2nd -0.52 4.07 29.21 50.32 1.75 2.92 7.35 43.42 

Car 1st 0.00 0.00 0.00 0.00 3.38 0.00 0.00 0.00 
1st -2.59 14.60 655.46 2348.98 -4.53 23.14 3.11 5231.09 

Vehicle 

Motorcycle 
2nd 0.29 -0.94 -2.73 -3.57 2.16 -0.88 -1.61 -4.04 

Three-leg 0.00 -0.01 -0.03 -0.03 2.75 -0.01 -0.01 -0.02 
Multiple-leg  0.01 -0.02 -0.05 -0.06 3.52 -0.01 -0.02 -0.04 

Intersection

Major arterial -0.01 0.06 0.13 0.16 3.58 0.03 0.05 0.09 
Collision Rear-end -0.28 1.33 4.68 6.44 3.40 1.31 2.66 8.53 

Time (24:00~06:00) -0.15 0.51 1.29 1.61 1.00 0.50 0.89 1.84 Lighting 
conditions Lighting (Night without 

illumination) 0.01 -0.02 -0.04 -0.05 2.39 0.00 0.00 0.00 
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Table 6  Elasticity effects for the second party 
BOP BGOP 

Types Variables Property 
damage only

Possible 
injury 

Evident 
injury 

Disabling 
injury & 
fatality 

Property 
damage only

Possible 
injury 

Evident 
injury 

Disabling 
injury & 
fatality 

Driver Gender (Male) 1st 0.00 0.00 0.00 0.00 -4.02 0.00 0.00 0.00 
   2nd 0.14 -0.09 -0.30 -0.40 -1.95 -0.10 -0.53 0.02 
  Age > 65 1st 0.00 0.00 0.00 0.00 6.06 0.00 0.00 0.00 
Violation Alcoholic use 1st -0.56 0.56 3.27 5.32 4.83 0.69 0.65 6.25 
   2nd -0.48 0.46 2.48 3.92 6.06 0.41 1.46 4.24 
  Others 2nd 0.24 -0.14 -0.51 -0.70 -0.59 -0.14 -0.41 -0.74 
Vehicle Bus 1st -0.44 0.38 1.88 2.89 6.01 0.37 1.27 3.41 
  Car 1st -0.28 0.16 0.57 0.78 -0.27 0.15 0.46 0.83 
  2nd 0.00 0.00 0.00 0.00 6.68 0.00 0.00 0.00 
 Motorcycle 1st 0.00 0.00 0.00 0.00 3.32 0.00 0.00 0.00 
   2nd -3.62 5.81 211.52 624.11 -7.98 10.86 1.35 1514.77 
Intersection Three-leg -0.18 0.11 0.40 0.55 3.32 0.10 0.31 0.57 
  Multiple-leg -0.28 0.19 0.76 1.08 4.68 0.18 0.57 1.16 
Roadway Major arterial 3.20 -3.68 -100.97 -262.45 7.50 -4.00 -14.19 -361.55 
Collision Rear-end 0.00 0.00 0.00 0.00 6.45 0.00 0.00 0.00 

Time (24:00~06:00) 0.00 0.00 0.00 0.00 4.85 0.00 0.00 0.00 Lighting 
conditions Lighting (Night without 

illumination) -0.27 0.18 0.69 0.96 0.10 0.81 0.38 0.13 
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Without considering “flexible” thresholds, all elasticity effects of the BOP model increase 
monotonically or decrease across severity levels (Tables 5 and 6). However, for the BGOP 
model, elasticity effects may exhibit a bi-modal pattern (i.e., have a larger effect on the two 
extreme severity levels), which can better describe the effect of a factor. Most variables 
considered in this study are categorical. The heterogeneity of variables may be rather large. 
The estimation results of the BOP and BGOP models differ, not only for signs of elasticity, 
but also for magnitude. 
 
To avoid redundant implications and discussions based on estimation results for latent 
propensity, the following only focuses on factors that have relatively large elasticity effects. 
Vehicle type of motorcycle has the largest positive elasticity effect on disabling injury and 
fatality (5231.09), underlining the danger to the first party driver and passenger when they are 
riding a motorcycle. Notably, the elasticity effect of this variable does not increase 
monotonically with injury severity, but has a large effect on severity levels of possible injury, 
and disabling injury and fatality. Additionally, this variable only reduces the probability of 
property damage, again emphasizing the risk of riding a motorcycle. This estimations result is 
in agreement with that obtained by Wen et al. (2011). The second-largest positive elasticity 
effect is colliding with a bus (43.42), and this variable (vehicle type=bus driven by the second 
party) exhibits a monotonic pattern from the least-serious severity level to the most-serious 
severity level. The third-largest positive elasticity effect is drunk driving. Drunk drivers tend 
to get injured with monotonically increasing probability. Conversely, the largest negative 
elasticity effect is to collide with a motorcycle (-4.04). 
 
For the second party (Table 6), similar to the first party, the largest elasticity effect is riding a 
motorcycle (1514.77), underscoring the danger in using this transportation mode regardless 
of whether the motorcycle is driven by the first or second party. In Taipei City, which has a 
convenient public transportation system, motorcycle ridership accounts for approximately 
30% of total trips; however, in other cities in Taiwan, ridership is as high as 70%, similar to 
that in many Asian cities. Thus, motorcycles should be equipped with enhanced passenger 
and driver protection and collision warning systems. Of course, the most effective 
countermeasure is to reduce motorcycle usage. 
 
The second- and third-largest positive elasticity effects are drunk drivers as the first or second 
party. According to the magnitudes of these elasticity effects of the two parties, being hit by a 
drunk driver is more dangerous than a drunk driver hitting another vehicle. Notably, for major 
arterials, the injury severity level of the second party is markedly reduced (-361.55), due to 
high design standards and improved sight distance. 
 
4.3 Safety Implications 
 
Several key risk factors of two-vehicle accident severity at signalized intersections are 
identified. One of the most dangerous factors is motorcycle use. Potentially effective 
strategies to improve the safety of motorcycles or reduce motorcycle usage are allocating 
lanes to motorcycles only on urban streets to reduce interactions among different vehicle 
types, to strictly enforce mandatory use of helmets for motorcycle riders, discouraging 
motorcycle usage by proving a convenient and affordable public transportation system, and 
increasing motorcycle parking fees. For further discussion of motorcycle safety measures, see 
the studies by Pai and Saleh (2007), Pai and Saleh (2008) and Pai et al. (2009). 
 
The second key factor is alcohol use. Obviously, cracking down on drunk driving is an 
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effective countermeasure, especially during the night (24:00–6:00). Additionally, drivers 
aged > 65 are at high risk for severe accidents. Programs that educate aged people not to ride 
motorcycles and drive cars instead should be considered. Further, a periodic review of the 
physical condition of aged drivers (riders) is also important. Moreover, the geometric design 
of intersections and roadways is also a factor key to injury severity. Well-designed roadway 
systems (e.g., major arterials) reduce injury severity, while poorly designed intersections (e.g. 
multi-leg intersections) increase injury severity. In summary, crash severity can be reduced 
through education, engineering, enforcement, and encouragement, the so-called 4Es. 
 
4.4 Model Validation 
 
Another dataset consisting of 611 cases is used to validate the BOP and BGOP models in 
terms of two commonly used performance indices—MAPE and RMSE—for each crash level 
and overall performance (Table 7). For comparison, both indices are computed for the 
estimation dataset. Both models perform extreme well with an MAPE < 5% and hit ratio 
>80% (Table 5). Additionally, the BGOP model outperforms the BOP model with a lower 
overall MAPE. Notably, the BGOP model has better prediction accuracy than the BOP model 
for two most-severe injury levels of evident injury and disabling injury and fatality. 
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Table 7  Validation result of the BOP and BGOP models 
Dataset Actual Predictions 

 BOP BGOP 
Estimation Sample       
Shares (%) 1st 2nd 1st 2nd 1st 2nd

Property damage only 68.15 40.54 69.33 41.60 68.88 41.21 
Possible injury 26.98 49.07 24.99 47.30 25.76 47.70 
Evident injury 2.39 5.90 2.29 5.62 2.30 5.99 
Disabling injury & fatality  2.49 4.49 3.39 5.49 3.06 5.11 

MAPE (RMSE)   
Property damage only 0.50(0.43) 0.80(0.55) 0.52(0.45) 0.84(0.57)
Possible injury 1.00(0.54) 0.50(0.38) 1.11(0.60) 0.57(0.43)
Evident injury 1.22(0.22) 0.68(0.19) 0.81(0.17) 0.50(0.15)
Disabling injury & fatality  1.64(0.46) 0.97(0.27) 1.51(0.42) 0.88(0.24)

Overall MAPE 4.36 2.95 3.95 2.79
Validation Sample       
Shares (%) 1st 2nd 1st 2nd 1st 2nd

Property damage only 71.36 36.82 71.25 42.56 70.88 42.22 
Possible injury 24.71 53.52 23.83 46.67 24.35 47.02 
Evident injury 1.80 4.91 2.06 5.47 2.18 5.88 
Disabling injury & fatality  2.13 4.75 2.86 5.30 2.59 4.88 

MAPE (RMSE)  
Property damage only (%) 0.45(0.41) 0.86(0.58) 0.47(0.43) 0.91(0.61)
Possible injury (%) 1.06(0.55) 0.44(0.38) 1.17(0.61) 0.51(0.42)
Evident injury (%) 1.45(0.24) 0.84(0.21) 0.97(0.18) 0.58(0.17)
Disabling injury & fatality (%) 1.66(0.41) 0.90(0.25) 1.54(0.38) 0.80(0.22)

Overall MAPE 4.62 3.04 4.14 2.80
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5. CONCLUSIONS 
 
The injury severity of two parties involved in two-vehicle accidents differs markedly. Thus, 
factors contributing to injury severity warrant analysis. This study applies the BGOP model, 
which relaxes the assumption of fixed threshold values for injury severity levels. Estimation 
results show that the BGOP model performs better than the conventional BOP model in terms 
of goodness-of-fit and prediction accuracy, and provides a superior understanding of factors 
contributing to different injury severity levels. 
 
According to estimated parameters in latent propensity functions and threshold functions and 
elasticity effects, several key risk factors are identified—driver type (aged >65), vehicle type 
(motorcycle), violation type (alcohol use), intersection type (three-leg and multiple-leg 
intersections), collision type (rear-end), and lighting conditions (night and night without 
illumination). Corresponding countermeasures for such risk factors are also proposed. 
 
Several research directions for future studies are identified. First, additional explanatory 
variables (e.g., road width, number of lanes, and signal control) with regard to two-vehicle 
accidents can be collected and analyzed to propose relatively more effective improvement 
strategies. Second, the injury severity levels can be re-designed according to injured body 
parts of involved parties; different body parts can be injured by different contributing factors 
such as collision type (e.g., head-on, rear-end, and sideswipe collisions), crash sites (e.g., 
intersection and segment), and driver traits (helmet use and traffic violations). Last but not 
least, the random coefficient specification and latent class approach can be utilized to derive 
the mixed BGOP model and latent class BGOP model to reveal the unobserved heterogeneity 
of latent injury propensity of the two parties. 
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