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ABSTRACT  

Driving behavior in traffic has been modeled quite successfully in simulation software using 
predefined car-following model rules. However, most car-following models are not capable of 
representing naturalistic driving behavior during safety-critical events, since they were designed 
to adhere to safe driving conditions. Also, detailed lateral maneuvering has not been simulated in 
most simulation software. The proposed methodology in this paper focuses on establishing a 
traffic state-action mapping rule to simulate real driver actions including risky behavior that a 
driver would take during safety critical events instead of the predefined actions given by car-
following models. Traffic states are defined by the variables that are influential to driver action 
such as relative distance, speed or the acceleration of leading vehicle with the purpose of finding 
the most critical causalities of the events. State-action mapping rules are calibrated and validated 
using artificial neural networks.   

KEY WORDS: safety-critical events, regression analysis, artificial neural network, car-
following model, driving behavior   

 

INTRODUCTION  

Drivers react differently to different traffic situations. Driving behavior is a representation of a 
driver’s driving objectives and patterns. For example, the objective of a driver while free-driving 



is to maintain the desired speed, while the objective in of a driver in emergency situations is to 
avoid incoming conflicts. Most car-following models are formulated by using different vehicle 
action equations when the driving objectives are different. 

Driver actions in car-following models are defined by pre-specified rules. These rules are mostly 
interpreted by relating the traffic state situation that a driver observes to his/her applied response. 
Different car-following models consider different criteria in traffic states as causalities which 
stimulate the driver’s reactions. However, in reality, these rules specified by car-following 
models may not necessarily capture naturalistic driving behavior due to the complexity and 
instability of the human decision making process. For example, in the emergency driving regime, 
longitudinal decelerations derived by most car-following models guarantee that the following 
vehicle will always keep a minimum safety distance from its leading vehicle, thus car-following 
models are not able to simulate crash and near crash events.  

The motivation of this paper is to construct an agent-based model to simulate vehicle naturalistic 
actions in traffic, especially during safety-critical events. To achieve this goal, individual driver 
behavioral rules are extracted from the naturalistic data and used in agent training so that agent 
should be capable of replicating a driver like a clone. Because Artificial Neural Network (ANN) 
has shown some robustness and variability in driver behavior modeling [1, 2], we applied a 
special type of ANN Backpropagation (BP) to train agents. We also used the Wiedemann model 
as a comparison to our proposed methodology. 

In our proposed methodology, the naturalistic traffic state and driving actions are extracted from 
the Naturalistic Truck Driving Study (NTDS) database provided by the Virginia Tech 
Transportation Institute (VTTI). Safety critical events from individual drivers are extracted based 
on the trigger of the events and car-following situations are also extracted as baseline references. 
Driving actions were recorded in instrumented vehicles that have been equipped with specialized 
sensor, processing, and recording equipment.  

DRIVER BEHAVIOR AND STATE SPACE REGIME IN CAR-FOLLOWING MODELS 

In the last fifty years, a considerable amount of research has focused on modeling longitudinal 
vehicle actions in traffic, producing a large number of car-following models. One of the most 
widely used car-following model Wiedemann model[3, 4] uses the regime-based behavior idea. 
In Wiedemann model, relative speed and relative distance space is divided into free driving, 
closing in, following and emergency regime where driver has different predefined acceleration 
equations in each regime. Drivers maintain their desired speeds in free-driving regime where 
speeds are considered to be constant and no accelerations need to be taken. When a vehicle is 
approaching a predecessor, it is coming to the following regime where driver reacts to its leader 
and makes decision to accelerate or decelerate according to the distance, relative speed and 
driving action of the leading vehicle. In the emergency regime when driver anticipates an 
upcoming incident, evasive actions breaking should be taken to avoid upcoming events.  



In the Wiedemann model, the emergency regime is named the Danger regime. The Wiedemann 
model assumes that drivers will always keep a safety distance at any time and can always stop 
before hitting the leading vehicle. When the distance to the leading vehicle is smaller than the 
risky distance (a prespecified threshold) , the following vehicle uses its max deceleration, 

 to extend the headway [3, 5].  and  are calibration parameters and are driver 
dependent. As long as a vehicle falls into the danger regime, it will always take the maximum 
deceleration.  

SHORTCOMINGS OF CAR-FOLLOWING MODELS DURING SAFETY CRITICAL 
EVENTS 

From the naturalistic driving database, we noticed that safety critical events defined by VTTI  are 
not necessarily located in the emergency regime but can overlap with the car-following regime. 
In fact, the threshold between the car-following regime and the emergency regime can be 
ambiguous. When a driver is braking, the space headway to its leader is greater than the 
Wiedemann’s threshold, and the deceleration is not as great as Wiedemann’s. By using a smaller 
deceleration started at an earlier point before the upcoming conflict, the vehicle can reach the 
collision avoidance goal but without following Wiedemann’s thresholds and equations.   

Another finding is related to vehicle actions and traffic states. As mentioned before, driving 
behavior during safety critical events could be a complicated behavior. In this regime, the goal of 
the driver is to avoid crash, so a driver could hit a brake or control the steering wheel to execute 
a maneuver or both. From the naturalistic driving database, we notice that in most of the cases, 
vehicles were not only taking longitudinal action deceleration, but also taking lateral actions 
maneuvering simultaneously. Both actions worked together to avert potential conflicts. For 
example, a driver may take a maneuver and execute a lane change simultaneously while braking. 
Traffic states in this study can be represented by the condition of the following vehicle as its 
surrounding traffic environment including the information of its leader. Also, different from car-
following regimes, actions in safety critical events are sequential tasks which mean actions at 
previous states can affect the action at current and following states. For example, when a driver 
decides to decelerate in the previous state, he/she is more likely to continue decelerating instead 
of executing a maneuver. Therefore, we think previous actions should be incorporated as the 
state variables. Because traffic stimuli and causalities sometimes can be very complicated and 
vary a lot, it is very hard to establish predefined longitudinal and lateral action models. Most 
existing car-following models tend to overlook the importance of lateral actions and complicated 
state action relations. So far, no lateral action models have been integrated in car-following 
models to simulate actions in safety critical events. 

PROPOSED APPROACH: AGENT-BASED MODELING 

Agent-based modeling (ABM) is a relatively new paradigm for exploring the behavior of 
complex systems [6]. Within the transportation domain, ABM is particularly good at modeling 



systems in which human decision making and action is a critical component. Existing ABM 
studies in driver behavior simulation include driver response to incidents, interaction between 
cars and trucks, driver behavior approaching a work zone, etc [7-9]. Bonabeau [10] suggests 
ABM is best applied to simulations when the interactions of agents are complex, nonlinear or 
discontinuous, the agents are heterogeneous where each individual is different, and the agents 
exhibit complicated behavior including learning and adaptation. In this paper, vehicle actions in 
safety critical events are complicated and driver independent. Therefore, ABM could provide 
new insights to understand driver behavior another than existing car-following models.  

Driver individual behavior rules should be used to teach agent to learn. Behavior rules associate 
actions with traffic state provide a driver-specific driving policy for its agent to follow. So when 
an agent experiences a certain traffic state, the policy will map the traffic state to associated 
actions. By using naturalistic driving data in training, agents will learn to adopt driving rules in 
the training procedure and should be capable of replicating driver and vehicle actions when 
training is completed. Accordingly, if safety critical events data is used in training, agents will 
perform driver specific naturalistic action which can probably result in a crash or near crash.  

ARTIFICIAL NEURAL NETWORK 

Artificial Neural Network (ANN) is a widely used learning algorithm in agent training, 
especially in supervising learning. In supervised learning, a set of examples pairs are given and 
the objective of learning algorithm is to find the mapping functions between given inputs and 
outputs example. Sample outputs evaluate the goodness of fit of mapping rules and provide 
feedback for learning algorithm to adjust mapping rules. In this paper, since naturalistic driving 
database can be utilized as the sample traffic states and naturalistic actions, ANN supervised 
learning can be used to extract driving rules and train agents.  

Neural networks have been applied in car-following model design. Jia et al [11] designed a car-
following model using vehicle speed, relative speed, relative distance and driver type to in ANN 
training. Panwai and Dia [1] tested several types of ANN to in car-following behavior simulation. 
Although ANN seems to have a good approximation on car-following behavior according to 
preliminary results, the traffic state variables, the traffic regimes and driver types were somehow 
arbitrary selected and may cause biases. Also, existing approaches are dealing with car-following 
behavior which is relatively easy to simulate rather than the complicated behavior in safety 
critical events.   

In this paper, we select a general-purpose network paradigm backpropagation (BP) neural 
network as the ANN type for training. BP has a relatively simple structure with fast 
computational speed but shows some robustness when calibrating dynamic behavior such as the 
sequential car driving task. Moreover, according to its nature, BP can adapt to driver behavior 
change and have a prediction on driver action when action data are not sufficient; it could be 



interesting to test the goodness of vehicle longitudinal and lateral action estimation in our 
problem.  

BP ANN DISCRIPTION 

In our proposed agent-based neural network model, the driver agent observes the traffic state (its 
environment) and reacts, which is very similar to the decision process of human driver. BP ANN 
does not need a pre-specified function to associate states with actions but requires the sample 
state-action pairs as references to construct mapping rules. BP ANN provides a non-linear 
approximation method based on example outputs from the training data sample. With a set of 
limited input and output training data, BP ANN is capable to provide state-action mapping rules 
for the whole state space even when some state patterns are not provided in training data. 
  
As the name tells, BP is a propagation of error. BP neural network calculates the error between 
desired output and actual sample output and propagates error back to each neuron in the network. 
Network weights between layers are updated through training until the propagation of errors 
become relatively small and weights value converges. BP neural network follows a gradient 
descent algorithm learning rule to gradually approximate driver actions using the input data 
(traffic state) and target data (actual actions) from the training episodes.  
 
Backpropagation neural network is composed of an input layer, hidden layer(s) and an output 
layer. The th hidden layer vector s(k) is computed from its upstream layer input vector s(k-1). A 
weighted sum of input and bias is calculated, and the results are transformed by a transfer 
function:  	 ,,.. ,.

∑ , ,...∑ , ,.
                                                                                      (1) 

 
where  is the number of neurons in kth layer ,  is the value of the mth hidden neuron, , is 
the weight connecting the ith input neuron and the mth hidden neuron in the kth layer,  is the 
bias for the mth hidden neuron in the kth layer, and ∙  is the transfer function. 
 
A nonlinear sigmoid transfer function is used here. This sigmoid transfer function takes the value 
from the summation results and turns them into values between 0 and 1: 

 	 1                                                                                                                        (2)                         
 
Similarly, the output layer vector y(k) is calculated as 

 



...
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                                                                                                (3) 

 
where ,  is the weight connecting the ith hidden neuron to the lth output neuron, and  is the 
bias for the lth hidden neuron. A linear transfer function is used to transform from the last hidden 
layer to the output layer. The BP neural network structure is shown in Figure 1. 
 

 
FIGURE 1. BP ANN Structure 

 
Backpropagation learning algorithm is divided into two phases: propagation and weight update. 
Propagation phase forward transfers training input through neural network to generate the 
propagation’s output activations. Then, back propagation of output activations are transferred 
through neural network using the target output to generate the gradients of all output and hidden 
neurons. In the weight update phase, the output delta and input activation are multiplied to get 
the gradient of weight. Weights are brought in the opposite direction of the gradient by 
subtracting a ratio from the weight learning rate. One iteration can be written as: 
 

                                                                                                                      (4) 
 
where  is a vector of current weights and biases, is the current gradient and  is the 
learning rate. 
 
The agent receives the traffic environment information as the input layer of the neural network. 
Each input is weighted with an appropriate weight . The sum of weighted inputs and bias 
become the input of the transfer function in hidden layer(s). The neurons of the last layer are the 
output of the transform function.  
 
In agent training, as mentioned before, we use speed, space headway, relative speed, previous 
acceleration/deceleration, previous yaw angle and lane offset as traffic state variables for the BP 



ANN input layer (See Equation (5)). We use acceleration and yaw angle as representatives of 
vehicle longitudinal and lateral actions for the output layer (see Equation (6)). 
 

  ∆   ∆   ′  ′  
                                                                                                                                            (5) 

 
  
                                                                                                                                           (6) 

 
where  is 	state input variable,  is the 	output action variable,  is the vehicle speed, ∆  
is the space headway vehicle relative to its leading vehicle, ∆  is the relative speed (speed of the 
leading vehicle minus the following vehicle), ′ is the previous acceleration, ′ is the previous 
yaw angle (the angle between vehicle longitudinal axis and lane marking), is the vehicle lateral 
position offset (vehicle location relative to the center of the lane),  is the acceleration associated 
with the current state and 	is the current yaw angle. 

NATURALISTIC DRIVING DATA 
 
To test our proposed method, we used data from Naturalistic Truck Driving Study (NTDS) 
collected by VTTI. As opposed to traditional epidemiological and experimental / empirical 
approaches, this in situ process used drivers who operate vehicles that have been equipped with 
specialized sensor, processing, and recording equipment. In effect, the vehicle becomes the data 
collection device. The drivers operate and interact with these vehicles during their normal 
driving routines while the data collection equipment is continuously recording numerous items of 
interest during the entire driving. Naturalistic data collection methods require a sophisticated 
network of sensor, processing, and recording systems. This system provides a diverse collection 
of both on-road driving and driver (participant, non-driving) data, including measures such as 
driver input and performance (e.g., lane position, headway, etc.), four camera video views, and 
driver activity data. This information may be supplemented by subjective data, such as 
questionnaire data.  
 
As part of the NTDS study (Blanco et all in press), four companies and 100 drivers participated 
in this study. Each participant in this on-road study was observed for approximately 4 
consecutive work weeks. One hundred participants were recruited from four different trucking 
fleets across seven terminals and one to three trucks at each trucking fleet were instrumented 
(nine trucks total). After a participant finished 4 consecutive weeks of data collection, another 
participant started driving the instrumented truck.  Three forms of data were collected by the 
NTDS Data Acquisition System (DAS): video, dynamic performance, and audio.  Approximately 
14,500 driving-data hours covering 735,000 miles traveled were collected. Nine trucks were 
instrumented with the DAS. 
 
EXPERIMENT 



 
In our test, the following vehicle is the instrumented vehicle. The measured vehicle trajectory 
data include speedometer output, longitudinal and lateral accelerations, yaw angle, heading and 
indications of turning signal, brake and accelerator. For the leading vehicle, range, range-rate and 
azimuth were collected by instrumented forward viewing radar from the following vehicle. 
Speed collected from speedometer, range and range-rate from radar, yaw angle and lane offset 
extracted from video recording were used as traffic state variables. Acceleration from the 
accelerometer was used as longitudinal traffic action and yaw angle was used as a lateral action. 
Although yaw angle is not strictly a lateral action variable, however, we found out that the gyro 
(vehicle angular speed) data was too noisy, so we considered yaw as an equivalent lateral action. 
The safety critical events were identified and analyzed in a previous work by VTTI[12].  The 
method used to identify the safety critical events were triggers or thresholds on individual 
variables that were collected.  For an event to be flagged, only one of the triggers has to be met.  
Those triggers are as follows: 

 
• Longitudinal Acceleration greater than or equal to -0.2g 
• Forward Time-to-Collision of less than or equal to 2 seconds 
• Swerve greater than or equal to 2 rad/sec2 
• Lane Tracker Status equals abort (lane deviation) 
• Critical Incident Button 
• Analyst Identified 

 
In our preliminary efforts, one driver from the 8 Truck Study was selected since the 8 Truck 
Study is the latest study and provided the most accurate data. We use all the safety critical events 
available for sufficient training purpose to avoid biases. Although conditions and casualties of 
different events can be totally different, BP ANN theoretically should still capture rules of 
individual driver quite well because different events are located at different state space with little 
overlaps.  
 
Before training, errors from data collection measurement should be excluded. We arbitrarily set 
up additional constraints to make sure that state data are plausible.  
 

• Speed>=0 km/h 
• Range>=0 feet and Range<=400 feet (when there is no leading vehicle in front, we 

assume Range=400 feet) 
• Range Rate>=-10 feet/second 
• Offset<=72 inch and Offset>=-72 inch 

 
BP ANN TRAINING RESULTS 
 
The training dataset are randomly divided into three sets with 60% used to train the network, 20% 
to validate how well the network generalized and the rest 20% provide an independent test of 
network generalization for data that the neural agent has never seen. Figure 2 shows the 
performance function of the neural agent training data using all the available data points. Starting 
at a large value, the performance function decreases to a smaller value through the training 
process. It shows that the neural agent is learning. Training stops when the number of iterations, 
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smooth and continuous profile. However, BP is able to capture both vehicle longitudinal and 
lateral actions quite well.  

  
FIGURE 3. BP ANN Longitudinal Acceleration Validation Performance 
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FIGURE 4. BP ANN Lateral Yaw Angle Validation Performance 

 
 
SIMULATED TRAFFIC STATE TRAJECTORY BY BP ANN 
 
From the output actions of BP ANN and the current state, the longitudinal speed and lateral 
offset trajectory can be simulated following basic kinematic equations. 
 ∗ ∆                                                                                                                     (7) ∗ ∆ ∗ sin	                                                                                                  (8) 
 
where  is the vehicle speed at time ,  is the vehicle lateral location offset at time ,  is 
the simulated acceleration at time 1,  is the simulated yaw angle at time 1, and ∆  is 
the length of time step (0.1s)  
 
Figure 5 and Figure 6 represent the reconstructed speed and offset trajectory according to outputs 
from BP ANN. Simulated speed and offset are very close to naturalistic data which means that 
the BP ANN neural agent performs quite well under the support of sufficient naturalistic data.   
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FIGURE 5. BP ANN Speed Trajectory 

0 50 100 150 200 250 300 350
60

65

70

75

80

85

90

95

100

105

110
Longitidinal Speed

Time (0.1s)

S
pe

ed
 (k

m
/h

)

 

 
Naturalistic
Agent



 
FIGURE 6. BP ANN Lateral Offset Trajectory 

 
WIEDEMANN MODEL CALIBRATION FOR SAFETY CRITICAL EVENTS 
 
As a comparison to our proposed methodology, the existing Wiedemann model is also calibrated 
in this study. To simplify the problem, for this event example, we only consider two regimes: 
emergency regime and car-following regime. As defined by Wiedemann, when space headway is 
less than a predefined threshold , the vehicle is in the emergency regime. Or else, the 
vehicle is in the car-following regime. In the emergency regime, the acceleration of the following 
vehicle in order to avoid a collision is: 
 ∗ ∆∆ ∗ ∆                                                                 (9) ∗ ∗                                                 (10) 
 
where  is the deceleration of the following vehicle,  is the deceleration of the leading 
vehicle, ∆  is the relative speed, ∆  is the relative distance,  is the length of vehicle, , , ,  and  are calibration parameters and  is a random 
number between 0 and 1. 
 
For car following regime, the acceleration or deceleration rate  is defined as 
 ∗ 4                                                                                       (11) 
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where  is a calibration parameter, 4 is a normally distributed driver parameter 
and  is a normally distributed random number.  
 
Since we have more car-following situations for the same driver in the naturalistic driving 
database, these calibration parameters can be determined by using a heuristic optimization 
methodology (Genetic Algorithm). For more technical detail of Wiedemann model calibration, 
please refer to our previous paper [13]. After calibration parameters are determined, Wiedemann 
deceleration equation (9), (10) and equation (11) can be applied to get the vehicle longitudinal 
acceleration for the same event example. 
 
BP ANN AGENT AND WIEDEMANN MODEL COMPARISON 

 
FIGURE 7. BP ANN Agent and Wiedemann Model 

 
Figure 7 shows the performance of the Wiedemann model and a BP ANN agent. Apparently, in 
this event, the Wiedemann model uses a big deceleration in the beginning to avoid a potential 
conflict. This result shows consistency with the concept of safety distance in the Wiedemann 
model definition. Accordingly, the BP ANN agent driver is more willing to take risk while the 
Wiedemann driver is always using the maximum deceleration during events. However, in our 
previous research, the Wiedemann model performs quite well when using a large number of car-
following situations in calibration and validation [13]. The performance in this example may 
result from the calibration methodology itself. Compared to large amount of car-following 
situation data, the number of safety critical events are very few. From the perspective of 
calibration methodology, insufficient event data may not have any influence on the calibration 
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parameters. In fact, parameters are most probably determined by the driver behavior in car-
following regime. 
 
CONCLUSIONS AND FUTURE RESEARCH 
 
In this paper, we first proposed an agent-based backpropagation neural network modeling 
approach to simulate driver longitudinal and lateral behavior during safety critical events. We 
used naturalistic microscopic vehicle near crash event in agent training. Simulated speed and 
offset trajectory are used in validation. Also, the Wiedemann model is calibrated as a comparison 
to agent performance. Our preliminary results show that the BP ANN agent is able to capture the 
driver behavior quite well no matter which regime the vehicle is in. Instead, the Wiedemann car-
following model always assumed that the driver would take the maximum deceleration in safety 
critical events. The Wiedemann model may work well in the car-following regime, but lack the 
capability to simulate driver dependent risk taking behavior in the emergency regime, probably 
because of insufficient driving data.  
 
This paper represents the potential opportunities for practical applications which might provide 
realistic simulations in traffic operations. The results could lead to several practical applications 
in simulation software. 
 
1. Since Wiedemann model is capable of simulatiing car-following behavior quite well and ANN 
is proved to be a good approximation in simulating driving behavior during safety critical events 
in the emergency regime, cooperating Wiedemann and ANN could provide a better simulation 
on realistic driving behavior simulation. Therefore, the switching mechanism from Wiedemann 
to ANN and ANN to Wiedemann could be important. From our recent study, statistical 
discriminant analysis can provide switching thresholds to distinguish traffic states between 
Wiedemann and ANN. By “setting up” predefined thresholds in simulation software, safety 
critical events simulate by ANN could be incorporated into existing car-following models.  
 
2. Risk-taking driving behavior captured by ANN has the capability to generate a crash or near 
crash event which can eventually cause the whole traffic break down or result in congestion. By 
setting up an idle time in simulation software when safety critical events happen (two vehicles 
stop on the road during this time), the whole traffic flow is affected by idle time and the traffic 
operation may become much closer to reality. It may worthwhile to analyze the effect of risk-
taking behavior of one driver  on the traffic operation of the whole system. 
 
The neural agent has been proved to be a successful way of modeling driver behavior in lateral 
action estimation. In our future research, we intend to study the execution and duration of lateral 
lane changing behavior because of vehicles taking longitudinal and lateral actions 
simultaneously. In this paper, we mainly focused on driving behavior during safety critical 
events. Analysis of lane-changing data may bring insights in more understanding of the driving 
decision process. 
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