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Abstract 
 
A Pareto Archived Dynamically Dimensioned Search (PA-DDS) algorithm is introduced for the 
calibration of microscopic traffic simulation platforms and compared to other single and multi-
criteria calibration approaches.  PA-DDS algorithm explicitly considers trade-off in errors among 
the various constituent fitting function such that any solution on the non-dominated curve cannot 
be improved without incurring a corresponding degradation in error in at least one of the 
constituent fitness criteria. For example, improvement in speed error cannot be achieved without 
increased error in either volume or safety performance or both. In this paper, PA-DDS is used to 
calibrate selected VISSIM model parameters based on observed traffic data obtained from the 
Federal Highway Administration (FHWA) Next Generation Simulation (NG-SIM) vehicle 
tracking study.  The calibration seeks to obtain best-estimate parameter values that minimize 
residual mean square percentage error (RMSPE) for three fitness criteria: speed, volume, and 
Crash Potential Index per vehicle (a surrogate safety performance metric).  This comparison 
clearly demonstrates that the multi-criteria PA-DDS algorithm yields best-estimate parameter 
values with acceptable residual errors for the two traffic factors of speed and volume, as well as 
for the safety performance criteria. The best estimate VISSIM parameters obtained from the PA-
DDS application were found to differ significantly from default values and from values obtained 
based on other calibration methods that do not explicitly consider trade-off errors in fitness 
criteria.  A number of solution sets were obtained from the PA-DDS algorithm, with a range of 
parameter values.  The best estimate solution (lowest overall model goodness-of-fit) yielded 
parameters that differed from other PA-DDS solution sets (with higher overall error).  This 
suggests that trade-offs (non-dominated sets) of parameter values can have significant 
implications for values that correspond to the lowest overall model goodness-of-fit. 
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Introduction 
 
Microscopic traffic simulation models have been receiving increasing attention as an effective 
means of analyzing traffic operations and safety for a wide spectrum of mitigating factors.  
Critics of these types of models, however, have argued quite effectively that the results obtained 
from simulation have not been adequately verified with regard to observational data, and hence 
may be suspect when compared to “real world” traffic conditions.  A major challenge to a more 
extensive adoption of traffic simulation models remains bridging the gap between simulated and 
real-world driving experience (Sayed and Zein, 1999).  To bridge this gap it is important that 
input model parameters are accurately determined such that simulated traffic attributes reflect 
observational data for different road and traffic conditions.  
 
A number of recent calibration studies have adopted evolutionary-based search algorithms using 
single criterion fitness functions (e.g. normally travel time or flow). These are discussed by Ma 
and Abdulhai, 2002; Hourdakis et al, 2003; Park and Qi, 2005; Kim et al, 2005; Cunto and 
Saccomanno, 2008; Cicu et al, 2011; Vaiana and Gallelli, 2011.  Table 1 provides a brief 
description of the main features of these single-criterion calibrations for several traffic platforms 
(VISSIM, PARAMICS, and AIMSUM). 
 

Table 1 Single-criteria parameter calibration studies 

 
 
In principle it can be argued that the single criterion approach fails to recognize that traffic is a 
multi-faceted entity.  Accuracy in one attribute (e.g. travel time or speed) does not ensure 
accuracy in another attribute (e.g. acceleration or spacing), or even accuracy in the overall model 
outputs.  Lack of accuracy in any important traffic attribute can significantly bias the simulation 
results, and in general weaken the acceptance of simulation as a logical tool for analyzing safety 
performance, traffic operations, or vehicle emissions.  In this paper, it is argued that the 
calibration process needs to take into account trade-offs in traffic attribute error as well as 
minimizing overall model goodness of fit.  

Study Type of Optimization Model Network 
Measures of 
Performance Results Note

Ma and Abdulhai 
(2002)

genetic algorithm PARAMICS
Arterial 
Network

flows 46.09 % (GRE) Global relative error

Hourdakis et al 
(2003)

heuristic search AIMSUM Freeway volume 8.84 % (RMSPE)
Root mean squate percentage 
error

Park and Qi (2005) genetic algorithm VISSIM
Freeway 
interchance

travel time 12.6 % (RMSPE)
Root mean squate percentage 
error

Kim et al (2005) genetic algorithm VISSIM
Freeway 
network

travel time 1 % (MAER) Mean absoluted error ratio

Cunto and 
Saccomanno (2008)

genetic algorithm VISSIM Intersection
Crash Potential 
Index (CPI)

0.026 % (RMSPE)
Root mean squate percentage 
error

Cicu et al (2011) Experimental VISSIM Roundabouts Capacity
Visual Inspection 
(graphically)

Authors did not estimate errors

Vaiana and Gallelli 
(2011)

Experimental VISSIM Roundabouts Speed 5 % (MAER) Mean absoluted error ratio
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A number of recent calibration studies have acknowledged the multi-faceted nature of traffic by 
adopting a multi-criteria approach to calibration.  A number of these multi-criteria calibration 
studies are summarized in Table 2 for several traffic model platforms (MITSIMLab, 
PARAMICS, AIMSUM and VISSIM).  It should be noted that many of these studies have 
considered a maximum of two related traffic attributes - mostly speed and volume. 
 

Table 2 ‘Multi-criteria’ parameter calibration 

 
 
Any thorough calibration exercise must be able to identify the trade offs in error for different 
attributes, as well as the effect on overall model goodness-of-fit.  For instance, how does error in 
one criterion such as speed affect error in another error such as, flow; and if speed and flow are 
inputs in safety performance, how do errors in these traffic attributes affect error in safety 
performance?  A basic shortcoming in current multi-criteria calibrations is that trade-offs in error 
between different traffic attributes has not been considered explicitly with respect to errors in 
safety performance or in overall model goodness-of-fit. While several studies have recognized 
this issue, their attempts to resolve it has focused on subjective weighting procedures (Ma et al 
2007; Ciuffo et al 2008); ie. expressing model goodness-of-fit in terms of a weighted 
combination of fitness criteria errors. The problem with this approach is that the weights 
themselves are treated externally to the calibration exercise, such that their values are determined 
subjectively or require calibration themselves. 
 
In their formulation, Fonseca and Fleming (1993) combined Pareto optimality with a Genetic 
Algorithm to solve the multi-criteria calibration problem with trade-offs in constituent traffic 
attribute errors. They refer to this approach as Multi-objective Genetic Algorithm (MOGA). In 

Study Type of Optimization Model Network 
Measures of 
Performance Results Note

Toledo et. al. (2004) iterative averaging MITSIMLab Freeway
Speed and 
Density

4.6 % (MAE for 
speed)

Only speed data shown; does 
not apply multi-criteria 
framework

Balakrishna et. al. 
(2007)

Simultaneous 
Perturbation 
Stochastic 
Approximation 
(SPSA)

MITSIMLab Freeway
Volume 
(Counts)

22 to 65 % 
(RMSPE)

Introduces a multi-criteria 
framework but does not apply it

Ma et. al. (2007) SPSA PARAMICS Freeway
Link capacity 
and critical 
occupancy

0.70 % (Sum of 
GEH)

Two-criteria calibration

Ciuffo et. al. (2008) OptQuest/Multistart 
Heuristic) OQMS

AIMSUM Freeway
Volume 
(Counts) and 
Speed

11 % (RMSPE 
speed); 17% 
(RMSPE 
Volume)

Two-criteria calibration

Duong et. al. (2010) Genetic Algorithm VISSIM Freeway Volume and 
Speed

1.9 % (RMSPE 
Speed); 10.5 % 
(RMSPE 
Volume)

Introduces the concept of 
Pareto opt imality (non 
dominance)  to the traffic 
calibration problem

Huang and Sun 
(2009)

NSGA II VISSIM Freeway Volume and 
Speed

1.0 (Volume 
Fitness) and 0.97 
(Speed Fitness)

Applies the NSGA II without 
looking at the resultant non 
dominance set



4 
 

MOGA instead of converting the multi-criteria calibration into a combined weighted fitness 
function, trade-offs in different fitness errors are considered explicitly using dominance/non-
dominance selection.  The result of the MOGA calibration is a set of points that are Pareto non-
dominated, such that any solution in this set cannot be improved upon without incurring a 
corresponding degradation in error in at least one other constituent criterion. For example, 
improvement in speed error cannot be achieved without increased error in either volume or safety 
performance or both.  
 
The  MOGA approach has been applied to solve multi-criteria calibration problems (Koski, 1994; 
Yapo, 1998; Madsen, 2000; Cheng et al, 2002; Shea et al, 2006) in a wide range of engineering 
disciplines.  A number of these studies are summarized in Table 3. 
 

Table 3 MOGA problems outside of transportation 

 
 
The studies in Table 3 found that MOGA yielded better calibration results for multi-criteria 
problems than the conventional weighted method.  A major shortcoming of the MOGA approach, 
however, is that previous generations of non-dominated solutions in GA are not retained 
following the parent selection process.  While this might enhance the speed of the search process, 
and reduce the number of computations involved, there is a possibility that the optimum 
(solution) may actually reside in the parent set. Hence, to ensure that an acceptable solution is 
obtained there needs to be a way of retaining or archiving solutions on the non-dominated set in 
the parent pool of solutions. 
 
Knowles and Corne (2000) improved the MOGA approach by formulating a new class of 
algorithms, called the Pareto Archive Evolutionary Strategies (PAES), where the Pareto set of 
surviving solutions is recorded or archived throughout the iterative process.  In the GA, the next 
generation of ‘offspring’ characteristics (traffic attributes) are created from mutation and/or 
crossover of ‘parent’ set (current non-dominated Pareto set), and these off-spring solutions then 
replace the ‘parent’ solution set if and only if any one of these solutions is dominated. Otherwise 
the parent solution is retained.  
 

Study Field
Type of 

Optimization Problem Measures of Performance

Shea et al (2006) Structural/ 
Construction Ant Colony Building Envelope Design

11 criteria, including costs, 
lighting, thermal conduction, 
veiw of the Eiffel Tower

Koski (1994) Structural/ 
Construction Heuristic Design of a Flexural Plate 2 criteria, weight and 

deflection

Madsen (2000) Hydrology
Shuffled Complex 
Evolution Algorithm

MIKE 11/NAM rainfall-runoff 
model

4 criteria, overall volume, 
overall error, peak flow, low 
flow

Yapo et al (1998) Hydrology

Multi-objective 
complex evolution 
global optimization 
algorithm

Sacramento Soil Moisture 
Accounting Model and 
National Weather Service 
River Forcasting System

2 criteria, two fitting functions 
for flows

Cheng et al (2002) Hydrology
Fuzzy Optimal 
Genetic Algorithm

Conceptual rainfall–runoff 
models (CRRS)

3 criteria, rainfall, runoff and 
evaporation
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In this paper, a Pareto Archived Dynamically Dimensioned Search Algorithm (PA-DDS) is 
described and subsequently applied in calibrating the VISSIM traffic simulation model. This 
paper has two specific objectives: 
 

1) Present the results of a PA-DDS multi-criteria calibration based on the three RMSPE 
fitness functions for speed, volume, and safety performance.  Safety performance is 
measured in terms of a Crash Potential Index (CPI) per vehicle (after Cunto and 
Saccomanno, 2009). 
 

2) Compare the results of the PA-DDS calibration with several conventional calibration 
methodologies for the same dataset.  These include a single-criterion calibration based on 
either speed, volume or safety performance, and a combined weighted summation 
measure for the two traffic and one safety performance criteria. 

 
For the calibration presented in this paper, observed vehicle tracking data from the FHWA (2007) 
NG-SIM program are used. 
 
CALIBRATION APPROACH  
  
The calibration procedure that is illustrated in Figure 1 involves three basic steps: 
 

1. Establish statistical significance of model parameters (select parameters to be 
calibrated) 

2. Select appropriate fitness criteria(s) with corresponding fitness function(s) 
3. Obtaining best estimate parameter values that results in acceptable fitness errors with 

corresponding trade-offs 
 

The primary focus of the paper is on the second and third steps. 
 
While the ultimate purpose of the simulation model (when used as a road safety assessment tool) 
is to generate measure of safety performance, these measures are themselves a complex function 
of traffic inputs/outputs.  Hence, the simulation must capture individual driver/vehicle responses 
and actions that will vary over time along a given road segment. A number of different measures 
of safety performance have been documented in the literature, including: “time to collision” 
(TTC), “deceleration rate to avoid the crash” (DRAC), “post encroachment time” (PET), “crash 
potential index” (CPI).  In this paper, we have adopted CPI/vehicle from Cunto and Saccomanno 
(2009).  
 
For a given criteria, fitness can be expressed in a number of different forms (Ciuffo and Punzo, 
2009).  In this study, fitness is expressed in terms of the root mean square percentage error:  

                                Root Means Squared Percentage Errork

              

 = �1
𝑛𝑛
∑ �𝑆𝑆𝑡𝑡

𝑘𝑘−𝑂𝑂𝑡𝑡
𝑘𝑘

𝑂𝑂𝑡𝑡
𝑘𝑘 �

2
                (1) 

Where,  St
                           O

 =  simulated value for traffic factor k (e.g. speed) at time increment t 
t

                           n =    number of time increments in simulation 
 = observed value for traffic factor k at time increment t       
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Screening parameter inputs for statistical significance can have a major effect on reducing the 
number of parameters in need of calibration, and hence improve the efficiency of the calibration 
exercise.  VISSIM for example requires the specification of more than 30 parameters (Table 4) to 
simulate three different driving regimes, car-following, lane-changing, gap-acceptance.  Only 
those having a significant effect on traffic attributes and corresponding safety performance need 
to be considered.  Presumably the nature of the driver behaviour parameters and their significance 
depends on the geometric attributes of the study area being considered. For example freeway 
driver behaviour is expected to differ from arterial driver behaviour, etc. 
 
To obtain the VISSIM parameters in need of calibration, a heuristic procedure for establishing the 
significance of model parameters as introduced by Cunto and Saccomanno (2008) has been 
applied.  A total of seven significant parameters were determined to affect the three fitness 
criteria (speed, volume, CPI/veh), and these are summarized in Table 4.  
 

Table 4 VISSIM parameters affecting speed, volume, and CPI (PTV 2008) 

 
 
The screening process for establish statistical significance as applied to the VISSIM was found to 
significantly reduce the number of parameter requiring calibration, from 30 to 7, five for car-
following and two for lane-changing models.  It should be noted that these results apply to 
freeway driving regimes only. 
 
 
PA-DDS Multi-criteria procedure 
 
The Pareto Archived Dynamically Dimensioned Search Algorithm (PA-DDS) used in this study 
was developed by Asadzadeh and Tolson (2009) (see Appendix) to include non-dominance and 
crowding distance.  As illustrated in Figure 1, the PA-DDS calibration consists of several steps:  
 

Number Parameter Description
Lower 
Bound

Upper 
Bound

1 (max) Look ahead 
Distance (m)

Defines the distance that vehicles can see forward to react to other vehicles in front 
or beside it on the same link

50.00 300.00

2 CC0 Standstill distance (m), which defines the desired distance between stopped 
vehicles

0.50 3.00

3 CC1 Headway time, is the time in seconds that a driver wants to keep. Setting a high 
value will make drivers more cautious

0.50 1.75

4 CC3 Threshold for entering Following, controls the start of the deceleration process.  By 
setting this higher, a driver will wait longer before decelerating to the safe distance. -15.00 -4.00

5 CC5
For positive speed differences; following thresholds control the speed differences 

during the following state. Smaller values result in a more sensitive reaction of 
drivers to accelerations or decelerations of the preceding car

0.10 2.00

6
Accepted 

deceleration
For the trailing vehicle. -2.50 -0.25

7
Safety distance 
reduction factor

takes effect for; a) the safety distance of the trailing vehicle in the new lane for the 
decision whether to change lanes or not, b) the own safety distance during a lane 

change and c) the distance to the leading (slower) lane changing vehicle.
0.20 0.80
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1. Perform single-criterion calibration separately for each criteria and retain all solutions (set 
of parameter values). 

2. Combine all these solution sets and sort the resultant solution into a non-dominated set 
using an algorithm suggested by Deb et al (2000) 

3. For each solution in the non-dominated set, a crowding distance is calculated to enhance 
the search spectrum to include maximum variation in parameter values (Deb et al, 2000) 

4. Select one solution based on order of dominance and highest crowding distance, and 
mutate the parameter values to generate next generation solution 

5. Sort and determine the new non-dominated sets and recalculate crowding distances. If the 
mutated solution is found to be non-dominated it is retained, otherwise we return to step 4 
and select another solution. 

6. The process is terminated if either of two conditions are satisfied, ie. no further changes 
are observed in the membership of the highest non-dominated set, or the maximum 
number of iterations is reached as specified by the user. 
 

 
Figure 1 Flow chart of calibration procedure 

 
The solutions in the combined sets (Step 2) include both dominated and non dominated solutions, 
with the optimum set of parameter values occurring in the non-dominated region. The Pareto 
(non-dominance and dominance) concepts are illustrated in Figure 2 for the minimization 
problem. When solution j = (j1, j2) is compared to k = (k1, k2), for all n=1 and 2, jn < kn; hence 
solution k is dominated by solution j.  A solution is considered dominated, if there exist another 

Find significant parameters 
for each measure of 
performance (MOP) 

Randomly select initial 
parameter sets 

Run simulation 

Simulated MOPs 

Observed 
MOPs 

Calculate Fitness 

Fast non-dominated sorting 

Crowd distance assignment 

Selection of current 
parameters set 

New parameter set is 
created through mutation 

Iteration > max Front 1old = Front 1new 

  
End yes yes 

no 
no 
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solution in the set with lower errors in all criteria.  Comparing solutions j and l, j1 < l1, but j2 > 
l2, and therefore neither solution dominates the other.  There are no other solutions in this set that 
is better in all criteria for j and l and therefore these solutions are non-dominated.  Simulation 
runs can then be ranked into a series of non-dominated classes, cn

 

, where lower values of n 
correspond to higher non-dominated sets (i.e. solution sets with lower overall model goodness-of-
fit). 

FIGURE 2 Graphical illustration of non-dominated sets. 
 
Crowding distance was introduced into PA-DDS to ensure that solutions found in more crowded 
regions of each non-dominance curve are deleted from the surviving solution set.  Solutions in 
crowded regions of the solution space often share common attributes (e.g. parameter values), and 
hence, in order to capture the full spectrum of parameter attributes in the surviving set it is 
preferred to mutate these survivors from solutions found in less crowded regions. Thus we ensure 
that the maximum variation in parent attributes is passed onto the off-spring set. As illustrated in 
Figure 3, for each point on the same non-dominated set a cuboid is established with respect to its 
two neighbouring points, and a crowding distance, Ii,distance

 

, is estimated in terms of the average of 
the cuboid lengths. 

F1 

F2 

j1 

j2 

k2 
k1 

l2 

l1 
C1 

C2 
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FIGURE 3 - Graphical depiction of crowd distance calculations. 

 
The crowding distance has been expressed by Deb et al (2000) as: 
 

Ii, distance = ∑( I(i+1), Fi – I(i-1),Fi
 

 )                          (2) 

The application of crowding distance requires a minimum threshold wherein neighbouring 
solutions are deleted from parent pool in favour of nearest solution set.  
 
 
CALIBRATION CASE STUDY 
 
In this paper the observed vehicle tracking data from the FHWA (2007) NG-SIM Interstate 
Highway 101 dataset is used to calibrate the VISSIM platform parameters using the PA-DDS 
approach. The NG-SIM data were extracted from a video taping of Highway 101, California on 
June 15, 2005 for a 15-minute time period (7:50 am to 8:05 am). 
 
 
 
 
 
 
 
 

Figure 4 NG-SIM highway 101 study area 
 
Single criteria calibration exercises were carried out and the results are summarized in Tables 5 – 
7. The calibration is based on minimizing each of the three criteria for speed, volume, and 
CPI/vehicle separately. Table 8 summarizes the results of the calibration based on the total 
weighed sum of the three criteria fitness errors. For this exercise all criteria are given equal 
weighting. A total of 20 parameter sets were obtained from each calibration for the single and 
weighted summation criteria used in the calibration. 

F1 

F2 

Non-dominated set 1, c1 

i-1 

i+1 

i 

0 

L Cuboid 

Non-dominated set 2, c2 

640 meter 

Ventura Boulevard On-ramp Cahuenga Boulevard Off-ramp 
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Table 5 DDS results using speed RMSPE 

 
 

Table 6 DDS results using volume RMSPE 

 
 
 
 
 
 

Trials

(max) 
Look 

ahead 
Distance 

(m)

CC0 CC1 CC3 CC5

Accepted 
deceleration 

of trailing 
vehicle for 

lane change

Safety 
distance 
reductio
n factor

Speed 
(km/h)

Volume CPI
RMSPE 
Speed

RMSPE 
Volume

RMSPE 
CPI

SUM

1 151.44 1.81 1.08 -10.37 0.48 -2.19 0.65 95.9 2065 610,042 0.645 0.041 0.311 0.997
2 219.56 2.12 1.08 -10.37 0.48 -2.50 0.37 101.0 2066 203,774 0.732 0.040 0.770 1.543
3 80.50 2.14 1.08 -7.34 0.48 -1.87 0.49 102.0 2066 2,839,001 0.749 0.040 2.206 2.996
4 163.71 1.81 1.21 -11.44 0.48 -1.72 0.62 95.4 2065 373,982 0.636 0.041 0.578 1.255
5 209.47 2.21 1.34 -11.44 0.60 -1.72 0.61 92.4 2064 669,973 0.585 0.041 0.243 0.869
6 209.47 2.21 1.47 -6.11 0.63 -1.72 0.53 84.6 2062 649,650 0.451 0.042 0.266 0.760
7 209.47 2.51 1.55 -7.31 0.63 -1.77 0.53 78.3 2043 235,803 0.343 0.051 0.734 1.128
8 271.44 2.51 1.55 -7.31 0.10 -1.76 0.53 79.2 2047 327,290 0.358 0.049 0.630 1.038
9 223.57 2.32 1.55 -7.31 0.63 -1.77 0.53 80.4 2051 874,467 0.379 0.047 0.012 0.439
10 209.47 2.47 1.55 -10.74 0.63 -1.77 0.53 77.7 2032 384,533 0.333 0.056 0.566 0.955
11 209.47 2.47 1.72 -10.74 0.59 -1.91 0.53 70.6 1963 66,869 0.211 0.088 0.924 1.224
12 209.47 1.97 1.72 -14.03 0.59 -2.03 0.60 72.6 1962 402,531 0.245 0.089 0.545 0.879
13 209.47 2.47 1.72 -9.46 0.74 -1.86 0.53 72.7 1937 235,891 0.247 0.100 0.734 1.081
14 209.47 3.29 1.72 -9.36 0.59 -1.91 0.53 74.0 1913 371,697 0.269 0.111 0.580 0.961
15 209.47 2.47 1.50 -11.09 0.59 -1.91 0.61 84.0 2050 823,323 0.441 0.048 0.070 0.559
16 236.92 2.47 1.55 -13.98 0.59 -1.91 0.51 81.7 2051 365,084 0.401 0.047 0.588 1.036
17 196.64 2.62 1.72 -10.74 0.38 -1.91 0.53 70.7 1954 222,870 0.213 0.092 0.748 1.053
18 190.11 2.55 1.72 -10.74 0.59 -1.91 0.53 71.1 1958 302,332 0.219 0.091 0.659 0.969
19 222.33 2.47 1.72 -10.74 0.59 -1.91 0.53 72.6 1962 389,248 0.245 0.089 0.560 0.894
20 209.47 2.47 1.34 -10.23 0.59 -1.91 0.53 94.1 2064 189,842 0.614 0.041 0.786 1.441

Defaults 250.00 1.50 0.90 -8.00 0.35 -0.50 0.60 104 1992 539,547 0.787 0.0748 0.391 1.253
Observed 58 2153 885,402

Trial

(max) 
Look 

ahead 
Distance 

(m)

CC0 CC1 CC3 CC5

Accepted 
deceleration 

of trailing 
vehicle for 

lane change

Safety 
distance 

reduction 
factor

Speed 
(km/h)

Volume CPI
RMSPE 
Speed

RMSPE 
Volume

RMSPE 
CPI

SUM

1 59.76 1.12 0.93 -4.63 1.24 -1.11 0.57 103.6 2064 207,594 0.777 0.0413 0.766 1.584
2 135.18 1.12 0.93 -4.63 1.05 -1.28 0.55 99.6 2066 1,588,737 0.708 0.0404 0.794 1.543
3 83.94 0.85 0.52 -4.63 0.93 -1.28 0.62 104.6 2067 1,851,319 0.794 0.0399 1.091 1.925
4 83.94 1.52 0.50 -5.21 0.48 -1.28 0.56 104.5 2068 1,492,440 0.792 0.0395 0.686 1.517
5 129.97 1.52 0.50 -7.62 0.48 -1.42 0.56 103.7 2069 727,334 0.779 0.0390 0.179 0.996
6 118.28 1.55 0.65 -5.72 1.16 -1.42 0.56 104.4 2067 222,437 0.791 0.0399 0.749 1.579
7 129.97 1.52 0.50 -6.99 0.96 -0.56 0.48 104.8 2068 15,661 0.797 0.0395 0.982 1.819
8 170.42 0.61 0.52 -7.05 0.48 -1.42 0.48 103.6 2069 395,737 0.777 0.0390 0.553 1.369
9 129.97 0.76 0.86 -7.24 0.56 -0.90 0.56 103.1 2066 400,221 0.768 0.0404 0.548 1.357
10 143.50 1.52 0.50 -10.14 0.37 -1.42 0.65 103.5 2068 523,447 0.775 0.0395 0.409 1.223
11 182.06 1.79 0.50 -7.62 0.48 -1.42 0.54 102.5 2069 1,604,647 0.758 0.039 0.812 1.609
12 129.97 1.96 0.50 -7.62 0.62 -1.40 0.56 102.9 2069 958,357 0.765 0.039 0.082 0.886
13 129.97 1.52 0.72 -4.00 0.48 -1.42 0.76 101.1 2067 1,822,120 0.734 0.040 1.058 1.832
14 68.82 2.14 0.50 -9.86 0.27 -1.42 0.56 104.4 2058 4,977,715 0.791 0.044 4.622 5.457
15 112.98 1.52 0.50 -12.86 0.71 -1.42 0.56 104.6 2066 444,511 0.794 0.040 0.498 1.332
16 166.31 1.52 0.50 -7.62 0.48 -1.42 0.70 102.2 2069 1,158,228 0.753 0.039 0.308 1.100
17 129.97 0.94 0.65 -8.10 0.48 -1.42 0.71 102.1 2067 824,496 0.751 0.040 0.069 0.860
18 129.97 0.94 0.50 -7.62 0.48 -1.42 0.56 103.7 2069 709,174 0.779 0.039 0.199 1.017
19 129.97 1.52 0.50 -8.10 0.48 -1.42 0.56 103.2 2066 521,645 0.770 0.040 0.411 1.221
20 129.97 1.52 0.65 -7.62 0.48 -1.42 0.56 102.9 2066 624,740 0.765 0.040 0.294 1.100

Defaults 250.00 1.50 0.90 -8.00 0.35 -0.50 0.60 104 1992 539,547 0.787 0.0748 0.391 1.253
Observed 58 2153 885,402
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Table 7 DDS results using CPI RMSPE 

 
 
From Table 5, the speed criteria calibration, Solution 11 yielded the minimum fitness error for 
speed (21.1%).  However, the safety performance metric, CPI/vehicle, resulted in an 
unacceptably high error of 92.4%.  This is indicative of the limitation of a single criteria 
calibration, as only one objective function is minimized without regard to the other criteria.  
Table 6 summarizes the results from a single criterion calibration based on volume.  Solution 6 
produced the minimum volume error (4.0%) and an acceptable CPI/vehicle error of 17.9%. 
However, for this solution the speed error was unacceptably high at 77.9%.  For the CPI-based 
calibration given in Table 7, a minimum error of 6.6% was obtained.  The volume error was 
acceptable at 4.0%, but the speed error proved to be unacceptably high at 78.2%. 
 
None of these parameter sets were found to be acceptable for use in a road safety study.  While 
some solutions sets yielded acceptable CPI/vehicle error this was achieved at the expense of 
unacceptably high traffic related errors. Since CPI/vehicle is a function of these traffic attributes 
this creates validity issues related to the application of this type of simulation platform in road 
safety studies.  
 
A number of researchers have attempted to overcome the single-criteria calibration problem by 
adopting a ‘multi-criteria’ approach, whereby all individual attribute errors are combined into a 
into a single fitness criterion, which is then minimized. Table 8 summarizes the results of the 
calibration based on a weighted summation approach. 
 

 
 
 
 
 

Trials

(max) 
Look 

ahead 
Distance 

(m)

CC0 CC1 CC3 CC5

Accepted 
deceleration 

of trailing 
vehicle for 

lane change

Safety 
distance 

reduction 
factor

Speed 
(km/h)

Volume CPI
RMSPE 
Speed

RMSPE 
Volume

RMSPE 
CPI

SUM

1 185.64 1.22 0.54 -5.05 0.15 -1.39 0.80 103.5 2068 783,598 0.775 0.0395 0.115 0.930
2 185.64 1.22 0.85 -4.18 0.15 -1.75 0.80 97.1 2066 1,946,692 0.665 0.0404 1.199 1.904
3 138.90 1.70 0.54 -5.05 0.15 -1.69 0.80 102.6 2068 1,027,223 0.760 0.0395 0.160 0.959
4 185.64 1.22 0.77 -4.00 0.81 -1.39 0.72 100.2 2066 1,801,185 0.719 0.0404 1.034 1.793
5 185.64 1.22 0.54 -5.05 0.10 -1.95 0.80 102.8 2068 1,868,404 0.763 0.0395 1.110 1.913
6 185.64 1.22 0.50 -4.20 0.15 -1.35 0.72 103.9 2068 826,564 0.782 0.0395 0.066 0.888
7 119.65 1.66 0.50 -4.20 0.15 -2.82 0.72 102.2 2069 2,373,310 0.753 0.0390 1.680 2.472
8 185.64 1.50 0.50 -4.20 0.15 -1.35 0.72 101.4 2068 3,934,349 0.739 0.0395 3.444 4.222
9 162.27 0.78 0.61 -4.20 0.15 -1.35 0.72 102.6 2067 1,444,319 0.760 0.0399 0.631 1.431
10 244.45 2.27 0.50 -4.20 0.87 -1.12 0.80 95.1 2068 8,999,845 0.631 0.0395 9.165 9.835
11 191.39 1.22 0.50 -4.20 0.10 -1.35 0.54 103.0 2069 1,691,052 0.767 0.0390 0.910 1.716
12 201.57 1.42 0.50 -4.20 0.15 -1.35 0.80 102.3 2067 1,759,941 0.755 0.0399 0.988 1.782
13 237.64 1.04 0.55 -4.52 0.15 -0.99 0.72 101.8 2069 2,867,942 0.746 0.0390 2.239 3.024
14 133.77 0.63 0.50 -4.88 0.15 -1.53 0.72 102.5 2069 1,749,924 0.758 0.0390 0.976 1.773
15 185.64 1.22 0.77 -4.80 0.15 -0.94 0.72 99.9 2069 1,851,269 0.713 0.0390 1.091 1.843
16 140.05 1.22 0.77 -4.20 0.19 -1.34 0.58 102.5 2067 950,139 0.758 0.0399 0.073 0.871
17 248.46 1.35 0.50 -6.40 -0.14 -1.77 0.72 99.7 2069 4,737,069 0.710 0.0390 4.350 5.099
18 223.59 1.22 0.86 -4.20 0.15 -1.35 0.67 99.8 2069 1,176,434 0.712 0.0390 0.329 1.079
19 185.64 1.22 0.50 -4.20 0.15 -1.35 0.63 103.3 2068 1,811,671 0.772 0.0395 1.046 1.857
20 185.64 1.22 0.50 -4.20 0.37 -1.35 0.72 102.0 2071 2,506,836 0.749 0.0381 1.831 2.619

Defaults 250.00 1.50 0.90 -8.00 0.35 -0.50 0.60 104 1992 539,547 0.787 0.0748 0.391 1.253
Observed 58 2153 885,402
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Table 8 DDS results using RMSPE summation 

 
 

 
The weighted summation calibration also fails to provide parameter sets that are acceptable for 
use in road safety analysis. The CPI/vehicle error produces a disproportionate impact on the 
calibration exercise. This means that the parameter search acts similar to a single criteria 
CPI/vehicle calibration and there is little sensitivity to both speed and volume error.  In practice, 
different weights have to be attributed to the various criteria in order overcome this issue.  
However, there is no conclusive evidence as to what these weights should be.  Extra data would 
be needed to calibrate these weights accurately and objectively. Another problem that arises is 
that the weighted summation calibration can become trapped in the local minima that can differ 
from the true minima, as is the case in Table 8 where default parameter values actually result in 
errors that are lower than the other solutions.  This is because the weighted summation method, 
using GA or DDS, archives only one or two best solutions from the previous iteration. 
 
The multi-criteria procedure suggested in this paper makes use of non-dominance to replace a 
rather arbitrary summation error function. One of these multi-criteria procedures is the Pareto 
Archive Dynamically Dimensioned Search algorithm (PA-DDS). The PA-DDS procedure 
discussed in this paper makes use of three RMSPE fitness measures based on speed, volume and 
CPI/vehicle.  Table 9 shows the non-dominated solutions obtained from applying the PA-DDS 
algorithm to the NG-SIM dataset for VISSIM. 
 
 
 
 
 
 
 

Trial

(max) 
Look 

ahead 
Distance 

(m)

CC0 CC1 CC3 CC5

Accepted 
deceleration 

of trailing 
vehicle for 

lane change

Safety 
distance 

reduction 
factor

Speed 
(km/h)

Volume CPI
RMSPE 
Speed

RMSPE 
Volume

RMSPE 
CPI

SUM of 
RMSPEs

1 143.31 1.01 0.56 -5.26 0.14 -0.42 0.35 102.9 2069 931,768 0.765 0.0390 0.052 0.856
2 143.31 1.01 0.67 -5.68 -0.38 -0.42 0.33 103.5 2066 598,078 0.775 0.0404 0.325 1.140
3 143.31 1.01 0.56 -8.53 0.14 -0.25 0.20 104.8 2069 151,817 0.797 0.0390 0.829 1.665
4 100.31 1.10 0.56 -5.26 0.17 -0.95 0.35 104.7 2068 309,076 0.796 0.0395 0.651 1.486
5 176.98 0.86 0.56 -4.87 0.69 -0.53 0.43 103.0 2068 1,264,603 0.767 0.0395 0.428 1.234
6 164.55 1.05 0.56 -4.00 0.14 -0.42 0.37 104.1 2068 318,775 0.785 0.0395 0.640 1.465
7 189.32 1.11 0.59 -5.26 0.22 -0.42 0.59 102.4 2067 1,697,217 0.756 0.0399 0.917 1.713
8 197.39 0.65 0.70 -5.26 0.14 -0.42 0.35 102.9 2066 866,013 0.765 0.0404 0.022 0.827
9 197.39 1.36 0.70 -5.26 0.28 -0.25 0.35 101.9 2068 1,093,930 0.748 0.0395 0.236 1.023
10 211.12 0.65 0.70 -4.64 0.32 -0.42 0.35 104.1 2067 28,302 0.785 0.0399 0.968 1.793
11 260.95 1.35 0.70 -7.45 0.14 -0.42 0.35 103.0 2064 654,838 0.767 0.0413 0.260 1.068
12 187.97 1.08 0.70 -9.03 0.14 -0.42 0.35 102.4 2067 870,483 0.756 0.0399 0.017 0.813
13 225.70 1.23 0.70 -9.03 0.14 -0.64 0.47 102.6 2066 864,907 0.760 0.0404 0.023 0.823
14 239.38 1.08 0.61 -9.03 0.14 -0.42 0.35 102.0 2068 1,445,721 0.749 0.0395 0.633 1.422
15 246.77 1.08 0.70 -9.03 0.14 -0.25 0.37 101.8 2068 806,006 0.746 0.0395 0.090 0.875
16 185.56 1.91 0.70 -9.03 0.14 -1.61 0.35 101.5 2068 1,015,698 0.741 0.0395 0.147 0.928
17 91.70 1.08 0.70 -9.03 0.14 -0.25 0.35 104.3 2065 942,723 0.789 0.0409 0.065 0.895
18 254.36 1.08 0.70 -6.77 0.14 -0.25 0.30 101.0 2068 1,781,189 0.732 0.0395 1.012 1.784
19 239.30 1.08 0.70 -11.23 0.50 -0.42 0.23 102.5 2068 711,718 0.758 0.0395 0.196 0.994
20 234.31 1.40 1.24 -11.66 0.14 -1.16 0.35 100.0 2067 169,056 0.715 0.0399 0.809 1.564

Defaults 250.00 1.50 0.90 -8.00 0.35 -0.50 0.60 104 1992 539,547 0.787 0.0748 0.391 1.253
Observed 58 2153 885,402
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Table 9 Pareto set of solutions (non-dominated solutions) 

 
 
The PA-DDS seems to overcome many of the issue associated with the weighted summation 
approach through the use of ‘trade-offs’ or non-dominance.  There are no weights needed since 
the algorithm will allow some criteria to become worse in order to improve other criteria.  Since 
more solutions are retained the chance of being stuck in local minima is reduced. The set of non-
dominated solutions is retained to allow for the random sampling within this set.   
 
The results of the PA-DDS application are summarized in Table 9.  This application yield two 
possible solution that minimize the sum of the errors while obtaining acceptable trade-offs for 
most constituent criteria (Solutions 1 and 2).  For Solutions 1 and 2 the CPI/vehicle errors are 
minimized with very low speed errors (although not minimum) and reasonably low volume 
errors.  Since volume does not vary significantly between simulations runs the results obtained 
from PA-DDS are acceptable from both a traffic and road safety analysis perspective. 
  
A number of solutions in Table 9 were found to have unacceptably high fitness errors; in some 
cases exceeding 40%. These were subsequently removed from our set of non-dominate solutions.  
Five non-dominated solutions with acceptable fitness errors are summarized in Table 10.  These 
solutions reflect the best estimate parameter values as determined by the PA-DDS application.  
While all these solutions are non-dominated and reflect good balance in fitness errors between 
speed, volume and CPI/vehicle, they do not necessarily result in the lowest overall model 
goodness-of-fit.  Overall model goodness-of-fit can be expressed in terms of the sum of all the 

Pareto 
Solution 
Number

(max) 
Look 

ahead 
Distance 

(m)

CC0 CC1 CC3 CC5

Accepted 
deceleration 

of trailing 
vehicle for 

lane change

Safety 
distance 
reductio
n factor

Speed 
(km/h)

Volume CPI
RMSPE 
Speed

RMSPE 
Volume

RMSPE 
CPI

SUM

1 240.15 3.00 1.50 -4.00 2.00 -0.25 0.80 76.9 1996 876,037 0.319 0.073 0.011 0.402
2 223.57 2.32 1.55 -7.31 0.63 -1.77 0.53 80.4 2051 874,467 0.3790 0.0474 0.0124 0.4387
3 239.86 3.00 1.49 -11.11 1.01 -1.38 0.80 78.2 2016 691,229 0.3412 0.0636 0.2193 0.6242
4 206.80 3.00 1.62 -13.54 1.62 -1.43 0.79 74.2 1956 618,912 0.2726 0.0915 0.3010 0.6651
5 223.57 2.32 1.55 -7.31 0.78 -1.77 0.53 79.8 2036 661,708 0.3687 0.0543 0.2526 0.6757
6 209.47 2.21 1.47 -6.11 0.63 -1.72 0.53 84.6 2062 649,650 0.4510 0.0423 0.2663 0.7595
7 209.07 2.19 1.65 -6.77 0.62 -1.63 0.30 73.1 2035 477,015 0.2538 0.0548 0.4612 0.7698
8 129.97 0.94 0.65 -8.10 0.48 -1.42 0.71 102.1 2067 824,496 0.7512 0.0399 0.0688 0.8599
9 209.47 2.21 1.34 -11.44 0.60 -1.72 0.61 92.4 2064 669,973 0.5848 0.0413 0.2433 0.8694
10 140.05 1.22 0.77 -4.20 0.19 -1.34 0.58 102.5 2067 950,139 0.7580 0.0399 0.0731 0.8711
11 209.47 1.97 1.72 -14.03 0.59 -2.03 0.60 72.6 1962 402,531 0.2452 0.0887 0.5454 0.8793
12 129.97 1.96 0.50 -7.62 0.62 -1.40 0.56 102.9 2069 958,357 0.7649 0.0390 0.0824 0.8863
13 185.64 1.22 0.50 -4.20 0.15 -1.35 0.72 103.9 2068 826,564 0.7820 0.0395 0.0665 0.8880
14 196.64 2.44 1.72 -7.05 0.38 -1.89 0.53 72.9 1960 360,669 0.2503 0.0896 0.5926 0.9326
15 138.90 1.70 0.54 -5.05 0.15 -1.69 0.80 102.6 2068 1,027,223 0.7597 0.0395 0.1602 0.9594
16 190.11 2.55 1.72 -10.74 0.59 -1.91 0.53 71.1 1958 302,332 0.2195 0.0906 0.6585 0.9686
17 151.44 1.81 1.08 -10.37 0.48 -2.19 0.65 95.9 2065 610,042 0.6448 0.0409 0.3110 0.9967
18 271.44 2.51 1.55 -7.31 0.10 -1.76 0.53 79.2 2047 327,290 0.3584 0.0492 0.6303 1.0380
19 196.64 2.62 1.72 -10.74 0.38 -1.91 0.53 70.7 1954 222,870 0.2126 0.0924 0.7483 1.0533
20 223.59 1.22 0.86 -4.20 0.15 -1.35 0.67 99.8 2069 1,176,434 0.7117 0.0390 0.3287 1.0794
21 166.31 1.52 0.50 -7.62 0.48 -1.42 0.70 102.2 2069 1,158,228 0.7529 0.0390 0.3081 1.1000
22 209.47 2.51 1.55 -7.31 0.63 -1.77 0.53 78.3 2043 235,803 0.3430 0.0511 0.7337 1.1277
23 196.64 2.44 1.72 -7.05 1.16 -1.89 0.34 70.9 1962 91,572 0.2160 0.0887 0.8966 1.2013
24 209.47 2.47 1.72 -10.74 0.59 -1.91 0.53 70.6 1963 66,869 0.2109 0.0882 0.9245 1.2236
25 239.86 3.00 1.49 -12.94 0.80 -1.71 0.53 84.6 2054 240,117 0.4510 0.0460 0.7288 1.2258
26 163.71 1.81 1.21 -11.44 0.48 -1.72 0.62 95.4 2065 373,982 0.6363 0.0409 0.5776 1.2547
27 135.18 1.12 0.93 -4.63 1.05 -1.28 0.55 99.6 2066 1,588,737 0.7083 0.0404 0.7944 1.5431
28 185.64 1.22 0.85 -4.18 0.15 -1.75 0.80 97.1 2066 1,946,692 0.6654 0.0404 1.1987 1.9045
29 185.64 1.22 0.50 -4.20 0.37 -1.35 0.72 102.0 2071 2,506,836 0.7495 0.0381 1.8313 2.6188
30 248.46 1.35 0.50 -6.40 -0.14 -1.77 0.72 99.7 2069 4,737,069 0.7100 0.0390 4.3502 5.0992
31 244.45 2.27 0.50 -4.20 0.87 -1.12 0.80 95.1 2068 8,999,845 0.6311 0.0395 9.1647 9.8353
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fitness criteria errors, with regard to tradeoffs.  This defines a point with which we compare the 
errors associated with the five solutions shown in Table 10. 
 
In the weighted summation method all the criteria must be in the same form or they cannot be 
summed.  For the PA-DDS method the criteria do not have to be of the same form.   This requires 
a standardization of the fitness errors when estimating the overall model goodness of fit, such that 
fitness errors have the same scale.  These were expressed as the RMSPE error and summarised in 
Table 10 for the five non-dominated solutions. 
 

Table 10: Acceptable non-dominated solutions 

 
 

 
Figure 5: Sensitivity of VISSIM parameter values to calibration methods 

 
The solution sets (parameter values) from Table 10 were plotted in Figure 5 along with default 
values and values obtained from the weighted summation method for speed, volume, and 
CPI/vehicle. It should be noted that individual parameter values need to be consider as 

Pareto 
Solution 
Number

(max) 
Look 

ahead 
Distance 

(m)

CC0 CC1 CC3 CC5

Accepted 
deceleration 

of trailing 
vehicle for 

lane change

Safety 
distance 
reductio
n factor

Speed 
(km/h)

Volume CPI
RMSPE 
Speed

RMSPE 
Volume

RMSPE 
CPI

SUM

4 206.80 3.00 1.62 -13.54 1.62 -1.43 0.79 74.2 1956 618,912 0.2726 0.0915 0.3010 0.6651
1 240.15 3.00 1.50 -4.00 2.00 -0.25 0.80 76.9 1996 876,037 0.319 0.073 0.011 0.402
3 239.86 3.00 1.49 -11.11 1.01 -1.38 0.80 78.2 2016 691,229 0.3412 0.0636 0.2193 0.6242
5 223.57 2.32 1.55 -7.31 0.78 -1.77 0.53 79.8 2036 661,708 0.3687 0.0543 0.2526 0.6757
2 223.57 2.32 1.55 -7.31 0.63 -1.77 0.53 80.4 2051 874,467 0.3790 0.0474 0.0124 0.4387
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constituents of the whole solution set suggested by each method with associated errors. The 
parameter values in Figure 5 have been normalized for comparison purposes.  
 
Figure 5 suggests that there is fair amount of variation associated with the parameter values 
depending on which calibration method is used. This is especially true when comparing the 
weighted summation and default methods to the Pareto (non-dominated) methods.  The default 
profile compare well with those suggested by the weighted summation method (for all seven 
parameters).  The Pareto methods seem to yield some consistency in parameter values.  However, 
the Pareto method that explicitly considers overall model goodness of fit (distance to the origin) 
seems to differ somewhat from the other Pareto solutions for a selected number of parameters.  
This result will require some investigation, however, it seems that the non-dominated solutions 
generated in this exercise while essentially on the same plane in terms of error they vary to a 
degree in parameter values. These results are consistent with observations made by Madsen 
(2000). 
 
It should be note that Parameter Set 1 gives the best trade off in fitness error while at the same 
time minimizing the overall fitness error for the model.  As such, the parameter values associated 
with this solution set suggest the best estimate parameter values for simulation.  Solution Set 1 
results in the lowest CPI/vehicle error, but yields higher speed and volume errors with respect to 
the minima for these solutions.  The choice of whether to select Solution Set 1 depends on how 
tolerant we are on moderate errors in constituent traffic and safety attributes. In this case the 
compromise was not found to be particularly severe.  
 
Figure 6 provides a three dimensional representation of criteria error for several calibration 
methods, the Pareto solutions in Table 10, as well as the single-criterion (speed, volume, and 
CPI/vehicle), weighted summation, and VISSIM defaults.  
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Figure 6: 3D Solution Space 

 
The single-criteria methods are clearing in unacceptable region for other (non-calibrating) errors 
as well as overall model goodness of fit (distance to the origin). The same can be said for the 
weighted summation method and VISSIM defaults. The Pareto solutions tend to cluster nearer to 
each other close to the origin. Solution 1 in Figure 6 reflects the Pareto non-dominated solution 
set that minimizes the overall model goodness of fit. 
 
VALIDATION RESULTS 
 
The transferability of the results to a separate set of data needs to be ascertained if these results 
are generalized. A separate set of observed vehicle tracking data was extracted on which to 
validate the transferability of the parameter results obtained in Table 10.  These data were also 
extracted from the FHWA (2007) NG-SIM program for Interstate Highway 101 and apply to a 
different time period (8:20 am to 8:35 am) than was used in the calibration exercise.  For this 
paper we have assumed that the two NG-SIM datasets are independent.   
 
Table 11 summaries the results of the validation test solution sets 1 and 2 from the PA-DDS 
calibration in the previous table. 
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Table 11 Validation errors versus errors from default parameters 

 
 
The results suggest a good transferability of parameter values between the two datasets. The best 
estimate parameter values from Table 10 yielded errors shown in Table 11 for the validation 
dataset.  We note that in both cases the best estimate parameter values produce errors that were 
acceptable for speed, volume and CPI/vehicle as well good overall model goodness of fit.  For 
the validation dataset both PA-DDS solution sets indicate significant improvement in error when 
compared to default values. 
 
 
CONCLUSIONS 
 
This paper introduced the basic concepts of multi-criteria calibration based on non-dominance. 
The Pareto Archive Dynamically Dimensioned Search was demonstrated using three fitness 
criteria: speed, volume, and CPI/vehicle. The following observations were made from the case 
study analysis. 
 

• Single-criterion calibration gives only good results for the criterion on which calibration 
is carried out, but other traffic and safety metrics may not be within acceptable ranges of 
error. 

• The weighted summation method can become “stuck” in local minima since certain 
criteria may disproportionately govern the parameter search, and this suggests a need to 
calibrate the weights for the summation algorithm itself.  The results presented in this 
paper for the weighted summation method assume a value of one for all the criteria.  
Using these weights, the weighted summation method yielded parameter values and 
fitness errors that differed significantly from the Pareto non-dominated methods. 

• The PA-DDS algorithms consider trade-offs (non-dominance) and do not need the 
specification of weights in an overall error function. It provides a set of solutions 
(parameter values) that yield acceptable though not necessarily minimal fitness errors for 
each of the criteria.  In this paper three criteria were used: speed, volume, and 
CPI/vehicle. This should not be viewed as a limitation of the approach since any number 
of criteria and different fitness functions can be selected. 

• The application of the PA-DDS algorithm used a RMSPE fitness function for each 
criterion.  This function produces dimensionless errors terms that can be comparable 
amongst the various criteria used. As such RMSPE provides an objective bases for 
comparing the different calibration approaches. 

• The overall best parameter set was found to be the one with the lowest least squares 
summation of the errors from the Pareto non dominated set of solutions.  The resultant 
parameter values were found to differ significantly from those suggested by defaults and 
the weighted summation method.  

Pareto 
Solution 
Number

(max) 
Look 

ahead 
Distance 

(m)

CC0 CC1 CC3 CC5

Accepted 
deceleration 

of trailing 
vehicle for 

lane change

Safety 
distance 
reductio
n factor

Speed 
(km/h)

Volume 
(veh)

CPI
RMSPE 
Speed

RMSPE 
Volume

RMSPE 
CPI

SUM

1 240.15 3.00 1.50 -4.00 2.00 -0.25 0.80 64.7 1932 1,035,306 0.320 0.009 0.087 0.416
2 223.57 2.32 1.55 -7.31 0.63 -1.77 0.53 67.8 1968 808,162 0.384 0.028 0.152 0.563

Defaults 250.00 1.50 0.90 -8.00 0.35 -0.50 0.60 102.0 1891 793,907 1.082 0.013 0.167 1.261
Observed 49.0 1915 952,591
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This paper has demonstrated that microscopic simulation platforms need to be calibrated using a 
multi-criteria approach that considers tradeoffs explicitly. This is especially true when the 
simulation platform is applied as a road safety assessment tool.  Without careful consideration of 
the multi-faceted nature of the transportation problem, the validity of safety performance outputs 
derived from simulation can be suspect.  Other applications of simulation platforms, such as 
capacity estimation, traffic operations and vehicle emission estimation, suffer from the very same 
problem wherein they are affected by interactions of other traffic factors.  Pareto archival 
approaches offer a method to calibrate simulation platforms that can consider accuracy in a 
number of fundamental traffic metrics (e.g. speed, volume, density) as well safety performance 
(in this study, CPI/vehicle) and other metrics (e.g. capacity and emissions). 
 
 
APPENDIX - PA-DDS PSEUDO CODE 
 
The following is the pseudo code for the PA-DDS Algorithm as described by Asadzadeh and 
Tolson (2009): 
 
Step 0 – Define the measures of performances, n objectives 
Step 1 – Optimize each measure of performance using a portion of the computational budget (e.g. 
in this case minimize each objective) 

• Use DDS to optimize each objective using n trials 
• Sort the resultant trials into a non-dominated set called the ‘external set’ using the 

‘fast non-dominated sort’ algorithm developed by Deb et al (2000) 
Step 2 – Select a ‘current’ solution, xcurrent

• Calculate crowding distance as proposed by Deb et al (2000) 
, from the external set 

• Selection based on roulette wheel with emphasis on picking solutions from less 
crowded regions 

Step 3 – Sample one new solution and evaluate 
• Generate a new solution, xnew

• Check the dominance of x

, by perturbing the current solution as defined in the 
original DDS algorithm developed by Tolson and Shoemaker (2007) 

new
• If computation budget is not exceeded 

 against the external set 

o If Xnew is non-dominated  then Set Xcurrent = X
o Else, go back to Step 3 

new 

• Else, Stop  
 
The DDS pseudo code is thus (Tolson and Shoemaker, 2007): 
 
Step 1 – Define the DDS inputs:  

o Neighbourhood perturbation size, r (0.2 is the default value) 
o Iteration size, m 
o The lower and upper bounds of the D parameters, xmin and x
o Initial solution, x

max 
o=[x1, ...,xD

Step 2 – Set the counter i = 1, evaluate measure of performance F, F
] 

best = F(xo) and xbest = xo 



19 
 

Step 3 – Randomly choose J of D parameters for inclusion in the neighbourhood set {N}. If {N} 
is empty then select one random parameter 

Step 4 – For j = 1...J parameters in {N}, perturb xj
best

o x
 using the standard normal variable, N(0,1): 

j
new = xj

best + r(xj
max – xj

min

o If x
)*N(0,1) 

j
new < xj

min then xj
new = x

jmin + (xj
min – xj

o If x
new) 

j
new > Xj

max, set xj
new = xj

o If x
min 

j
new > xj

max then xj
new = xj

max – (xj
new – xj

max

o If x
) 

j
new < xj

min, set xj
new = xj

Step 5 – Evaluate new F(x
max 

new) and update best solution if F(xnew) ≤ Fbest then Fbest = F(xnew) and 
xbest = x

Step 6 – Update iteration counter i = i + 1, stop if i = m, else go to Step 3 
new 

 
The pseudo code for the crowing distance assignment is shown below (Deb et al, 2000): 
 
l = |I|     number of solutions in the archive 
for each i, set Ii,distance 
for each objective m 

= 0  initialize distance 

 I=sort(I, m) 
 I1, distance = Il, distance
 For i = 2 to (l – 1)  for all other points 

 = ∞ boundary points are always selected 

  Ii, distance = Ii, distance + ( I(i+1), m – I(i-1),m
 

 ) 

Higher Ii, distance
 

 means solutions are on less crowded regions of the solution space. 
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