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ABSTRACT 

Traffic conditions significantly affect drivers‟ behavior that constitutes one of the principal 

causes of road accidents. Being able to accurately predict traffic conditions significantly 

improves the assessment of accident risk. Traditional approaches to traffic flow analysis use 

static representations of the road system and as such have limited accuracy.  Dynamic Traffic 

Assignment (DTA) approaches better utilize temporal aspects of such system (where and when 

to travel on the road network) to produce better predictions. The work presented herein integrates 

two mature methodologies namely simulation-based DTA and Bayesian Networks (BN) to 

address this problem. The former is widely used in transport modeling to predict driver‟s travel 

behavior while the later constitute a powerful artificial intelligence technique that predicts effects 

given prior knowledge and input evidence in uncertain settings. The integration of BN with the 

DTA-based simulator, Visual Interactive Systems for Transport Algorithms (VISTA), provides 

the framework for improved safety evaluation of road networks and future planning. 

  

Keywords: Road Safety, Dynamic Traffic Assignment, Bayesian Networks 

 

INTRODUCTION 

Road accident statistics in Europe stress the need for more systematic mechanisms for accident 

analysis and prediction. According to the World Health Organization (WHO 2005) road 

accidents constitute the third most frequent cause of death for people of the age 17-29. Given the 
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current trends the accident fatalities are projected to become the second most common cause of 

death in 2020. Given this evidence, the current road safety management and forecasting practices 

need to improve. Forecasting is a field of tremendous importance that enables prediction of road 

safety performance given known, unknown and observed information.  

 

Due to their nature, road networks constitute complex dynamic and uncertain systems influenced 

by human, technological and environmental aspects. Given this, one of the best ways to 

understand the causes of road traffic accidents is to develop various models capable of 

identifying significant factors related to human, vehicle, socio-economic, infrastructural, and 

environmental properties. Hollnagel (2004, 1998) classifies complex systems‟ accident models in 

three core categories, the sequential, epistemological and systemic. The first describes accidents 

as sequence of events that occur in a specific order. The second uses the metaphor of a disease 

that describe outcomes as a combination of factors, some manifested, some latent, and finally, 

systemic models describe performance of a system as a whole (Systems Theory).  With regards 

to road accidents, there are two broad categories of accident analysis methods, the qualitative and 

the quantitative. The former, despite its limited use, it plays an important role in the process of 

accident analysis, modeling and forecasting. On the other hand, quantitative methods are more 

widely used and are classified into two principal groups: Time-series forecasting and Causality-

based forecasting.  

 

The accident analysis approach proposed herein combines a causality-based with a systemic 

technique namely, BN and Traffic simulation. The former is popular in the Artificial Intelligence 

domain and is based on the concept of Bayesian probability. BN provide a language and calculus 

for reasoning under uncertainty (Pearl 2000). They are useful for inferring probabilities of future 

events, on the basis of observations or other evidence that may have a causal relationship to the 

event in question.  

 

The second component of our approach is a road traffic simulator using DTA. Simulation-based 

DTA models constitute an innovation in traffic simulation that departs from the traditional static 

analysis of traffic phenomena, namely static traffic assignment (STA) (Peeta and Ziliaskopoulos, 

2001). DTA use traffic simulation to replicate complex traffic flow dynamics especially for 

signalized systems where the vehicle and signal interactions are difficult to model analytically. 

This enables dynamic control and management systems to anticipate problems before they occur 

rather than simply reacting to existing conditions. DTA has evolved rapidly over the past two 

decades. This advancement has been fueled by the needs of application domains ranging from 

real-time operations to short term and long term planning. DTA models constitute a natural 

evolution in the transportation domain and are expected to become mainstream when their 

inherent assumptions are fully realized with advanced mathematical modeling that will overcome 

to a greater extent their high complexity (Sisiopiku et al, 2006). DTA evolved from the static 

assignment approaches that assume that traffic flow is static and independent of time. Hence, one 

of the main features of DTA models is the dynamic analysis of road networks using time-varying 

traffic demands. Moreover, they effectively model the complex interactions between supply and 

demand in a transport network. As a result, they capture the spatio-temporal trajectories from 

origin to destination (OD) of every vehicle and mimic the drivers‟ route choice behavior 

(Dynamic User Equilibrium - DUE assumes that no user can improve his/her travel time by 

unilaterally changing his/her travel path and/or by altering their departure or arrival time) and 
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flow propagation – using a mesoscopic or microscopic traffic simulator. This constitutes a great 

advantage over traditional models that do not track the movement of individual vehicles but 

instead split traffic at intersections (Ziliaskopoulos et al, 1996). The DTA model used in this 

study is VISTA (Ziliaskopoulos et al, 2005) that at convergence reaches a DUE. DTA methods 

are divided into two groups the analytical and the simulation-based models. The former uses 

mathematical techniques to solve traffic problems while the latter represents problems as a set of 

interrelated components that dynamically change based on the main relationships of speed, flow 

and density. 

 

Alternative simulation methodologies such as CORSIM, VISSIM, PARAMICS, WATSIM do 

not have a true traveler behavior routing component Peeta and Ziliaskopoulos (2001). They 

instead move traffic by splitting it probabilistically at every intersection based on historical 

records or they follow predetermined or DTA paths that are non-DUE. Hence, they cannot be 

used to accurately predict traffic flow characteristics. A DTA model utilizing a microscopic 

traffic simulator and reaches a DUE solution is the best model that could be utilized for traffic 

flow estimation and prediction. 

 

Traditional safety assessment systems employ historical or retrospective analyses instead of 

prospective. This is because traffic safety analysis requires significant amount of data which in 

most cases is not available. This as a result limits their effectiveness and accuracy.  Moreover, 

these approaches mainly stem from the engineering discipline and fail to address important 

dimensions of the problem such as driver behavior. This research aims to address both of these 

issues by combining influences distilled from the analysis of past accident data with traffic flow 

data generated from a DTA simulator in a BN. This constitutes an important step forward 

towards improving safety management practices.  The use of a DTA model enhances the 

limitations of existing practices by providing a consistent way of producing estimates of traffic 

flow conditions of road networks using limited information from traffic flow detectors. 

Moreover, it produces timely traffic volume estimates that can be used to assess accident 

probability.  

 

The paper is organized as follows. Firstly an outline of the method is presented in section 2. Next 

the core aspects of the method are illustrated along with its theoretical underpinnings. 

Subsequently DTA and BN techniques are introduced along with the approach followed to 

implement the VISTA and BN models. The paper concludes with an overview of the tool, the 

results and a short discussion. 

 

RELATED WORK 

Road safety assessment can be performed in different ways; one of the most popular is scenario 

analysis (Ming-Chih et al 2004), the underlying component of which is the notion of event. An 

event may be present in a particular accident sequence, and there may be good reason to believe 

that similar events have caused similar accidents in the past, but that is not sufficient to establish 

that this event was a cause for the accident at hand. Over the past 15 years or so there has been 

increased interest in causal inference as a component of artificial intelligence, and one especially 

useful approach is based on what Pearl (2000) calls a causal model which inherently is the 

backbone of a BN. Scenarios on the other hand also gained considerable attention in safety 

engineering as a mean for analyzing accidents. The term „scenario‟ is used to designate a 
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prototype or a model of an accident process characterized by chains of facts, actions, causal 

relations and consequences in terms of damage to people and property. Scenarios are used to 

design and improve prevention strategies, either by studying past experience or by seeking to 

foresee chains of situations leading to catastrophes. Therefore, scenario analysis is a causality 

investigation technique that examines event patterns that can occur either sequentially or in 

parallel. Scenarios are usually expressed as event sequences that combine information from the 

environment, the road users, the weather or the road infrastructure. Accident scenarios describe 

the abnormal sequence of events that can lead to an accident.  Erroneous events in scenarios can 

cascade and therefore dependencies between events need to be considered. In complex systems 

such as the road networks, where humans and machine agents collaborate, the likelihood of 

committing an error by either party needs to be investigated. Given this, there are two broad 

categories of accident analysis, the human related accidents and the machine related accidents. 

Even though the later can be back-propagated to the designer of the technology these types of 

failures are treaded independently. Human performance analysis on the other hand investigates 

various aspects of human information processing in order to indentify environmental or 

infrastructural improvements to support the limited cognitive capabilities of road users. 

Therefore, to predict error types and possibilities, it is essential that the scenario analysis 

incorporates the situational context of the accident. In practice accident forecasting using 

scenarios is often combined with other forecasting methods, taking into account of possible 

variability in single scenarios as well as possible relationships between different scenarios. In 

essence, scenario analysis aims to identify hazardous scenarios and accordingly assign 

probabilities to them. The outcome of scenario analysis is the identification of causes that lead to 

an accident. However, the two main problems in scenario-based approaches are the lack of 

reliable techniques to automate the generation of sufficient set of scenarios to assess safety and 

the lack of data to generate accident models. For the first problem, several approaches have been 

proposed that ended up with too many scenarios that drawn the safety assessment process in 

excessive detail. The latter problem constitutes the second big bottleneck and is partially 

addressed in this study.  Four techniques have been used for scenario accident analysis, namely, 

Bayesian Networks, Fault Trees, Petri nets and Event trees. Bayesian networks are probabilistic 

graphs that model scenarios in causal networks. Fault and Event trees, are logic block diagrams 

that model a system in terms of the states or events that its components can take. A Petri net is a 

formal, graphical network used for describing discrete dynamic systems.  Event trees clearly 

present the agents involved in the system while Fault trees the events that affect them. Our 

scenario representation and assessment approach is based on the BN paradigm, where BN 

constitute probabilistic graphical models that enable reasoning under uncertainty.  

 

The design of scenarios however requires dynamic and static contextual information to describe 

the traffic conditions and the infrastructure. However, in most of the times these data is 

unavailable or very limited since sensor-based traffic data collection is pathological to coverage, 

cost and real-time issues. One of the main contributions of this work is the use of a simulation-

based Dynamic User Equilibrium (DUE) DTA traffic simulator to produce estimates of traffic 

flow characteristics – mainly traffic flow and speed - in 15-minute time intervals. These 

estimates are then used to normalize the accident records based on a roadway section, link, 

movement or location basis – under this implementation the roadway network was aggregated 

into links only. 
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Related accident prediction approaches such as the one employed by Simoncic (2004) utilize 

probabilistic modeling through BNs. Their work illustrates the application of BN to model road 

accidents and accordingly make inferences for accident analysis. The main limitation of this 

work is that it concentrates solidly on the development of the BN without providing any 

substantial evidence of its performance. Work by Hu et al. (Hu et al, 2004) also uses a 

probabilistic approach to predicting road accidents through intelligent surveillance of vehicle 

kinematics; however, their method does not address the causal aspects that lead to observed 

behaviors and hence cannot be easily generalized. State-of-the-art tools in accident prediction, 

such as SafeNET 2 (Software for Accident Frequency Estimation for Networks), use traffic 

flows and geometric information to assess accident risk (TRL, 2007). However, SafeNET 2 does 

not address the dynamic aspects of road networks using simulation. Hence, their traffic flow 

estimates are generic which in effect could lead to inaccurate conclusions. 

 

METHODOLOGY 

The road safety analysis method presented herein is based on the integration of DTA-based 

VISTA simulator (Ziliaskopoulos and Barrett, 2005) with BN technology. The use of a traffic 

simulator is employed for the following two reasons. Firstly to estimate the traffic flow 

conditions under which a set of accidents occurred at a homogeneous roadway section or 

location for a 15-minute time interval of the day. This information in accordance with accident 

historical data formed the basis to develop the BN model. The time interval of the day (weekday, 

Saturday, Sunday, special day, season, other) should be defined based on a statistical analysis of 

the traffic flow conditions initially in 15-minute time intervals and subsequently in larger 

categories throughout the day). This methodology will aid in the normalization of the accident 

rates that occur at a specific roadway section, location or movement under similar traffic 

conditions. The second reason is prediction of future traffic conditions and the new infrastructure 

changes, based on which the BN will be employed to produce estimates of accident risk per 

homogenous roadway section, link, movement or location. The existence of this combined BN-

traffic simulator will then allow transport agencies to design the transport network either in the 

short or long term in such a way to reduce the occurrence of accidents. 

 

The proposed method can be generalized by a number of steps: 

 Implement a simulation-based traffic simulator to predict the 15-minute traffic flow 

characteristics per roadway section, link, movement or location. Estimate the 

corresponding accident rate based on the estimated 15-minute traffic flow rate. 

 Compile and integrate the infrastructural and traffic control properties into the BN. 

 The above two steps produce the static and dynamic elements of each roadway section, 

link, movement - infrastructure, traffic control and estimated 15-minute traffic flow 

characteristics. 

 Specify the minimum acceptable level of safety for the design under investigation. 

 Accident risk estimation. Start the integrated BN simulation process to assess the 

accident risk per roadway section, link, movement or location. The integration of VISTA 

with the BN is done using a developed Java software. BN input in combination with prior 

BN knowledge is used to assess accident risk. Dynamic input to the BN is provided by 

the DTA simulation on a step by step basis.  
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a. For the development of the BN topology and the parameterization of its prior 

knowledge, historical road accident data and VISTA-generated traffic data were 

used.  

DEVELOPING THE VISTA MODEL 

An important contributing factor to accidents occurrence is the traffic flow characteristics of the 

roadway section, link, movement or location. Therefore, it is essential to predict the traffic 

conditions of each road section at different time intervals of the day. VISTA is a powerful DTA 

simulator that enables the prediction of traffic conditions using prior data of driver dynamics and 

road network‟s infrastructure. The main components of the VISTA DTA model are:  

1. The 15-minute dynamic OD matrix.  This was estimated through the use of a static OD 

matrix developed by the Cyprus Public Works Department (CYPWD) and historical traffic 

counts collected in 2009. 

2. Geographic Information System (GIS) and roadway geometry. The GIS was provided by the 

Cyprus Lands and Surveys Department (CYLSD). The roadway geometry was compiled 

from CYPWD records and manual surveys by CTL Cyprus Transport Logistics Ltd, Nicosia, 

Cyprus via Google Earth and on site inspections. 

3. Traffic control data. Signal timing for 148 intersections, yield and stop control, speed limit 

and turn restrictions were provided by CYPWD. 

4. Bus data. Bus routes (28), schedules and bus stop locations were provided by CYPWD. 

5. Traveler information data. None available 

6. Traffic flow characteristics data. Historical traffic counts and travel time studies were 

provided by CYPWD. 

 

The developed VISTA model features a total of 517,514 OD trips that correspond to 622 OD 

pairs of passenger cars, 148 signalized intersections, and a set of 28 bus routes. 

 

TRAFFIC FLOW PARAMETERS FOR ACCIDENT ANALYSIS 

Road accident are influenced by a large set of parameters some manifested same latent. 

Manifested parameters include, traffic and weather conditions, and vehicle and infrastructural 

properties. Latent parameters include aspects relating to human perception, decision making, 

cognition and psychology.  The following list depicts manifested conditions under which 

accident could occur: 

Traffic flow rate (vehicles/unit of time, vehs/hour): Number of vehicles per unit of time at the 

time of accident occurrence. This parameter is known only in locations and roadway sections 

where traffic count sensors exist and are recorded at the time of occurrence. A surrogate measure 

is the estimated traffic flow rate through the implementation of a traffic simulator – in this 

application we utilized the VISTA DTA model to produce 15-minute traffic volumes. 

The vehicle speed (mi/hour or Km/hour): the speed of the vehicles involved in the accident. This 

parameter is reported (not always) in the police report. 

The distribution of the speed (mi/hour): the distribution of the speed during the 15-minute time 

interval that the accident occurred during the day. This parameter can be estimated from traffic 

flow detectors at some locations or they can be estimated through a traffic simulator. In this 

study the distribution of the speed during a 15-minute time interval was estimated through the 

VISTA DTA model. 

Acceleration or deceleration (mi/s
2
 or Km/s

2
): The acceleration or deceleration of the vehicle(s) 

involved at the accident. This parameter was not utilized in this study yet it is a very important 
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one in the characterization of the conditions under which an accident occurs. This parameter 

maybe estimated through Video Image Processing (VIP) where video cameras are installed for 

such purpose. The best methodology in determining the acceleration/deceleration is through GPS 

enabled devices. As more vehicles and/or drivers are equipped with GPS-enabled devices such as 

cell phones or in-vehicle devices then it will become easier to produce estimates of the vehicles‟ 

speed/travel time, acceleration and deceleration. A calibrated microscopic traffic simulator 

maybe utilized to estimate the distribution of the acceleration/deceleration for a specific time 

interval of the day. The implementation of calibrated microscopic traffic simulators throughout a 

transportation network is strongly recommended to produce estimates of the state of the system 

throughout the day in combination with DTA models - whereas the DTA produces the paths and 

the micro-simulator the traffic flow propagation. 

Gap acceptance (time headway (s)): the gap available at an adjoining lane during the occurrence 

of an accident. This parameter is rarely known unless a VIP sensor is in place. Where such a 

sensor is present then the distribution of the gaps that are used by travellers may be estimated. 

These distributions throughout the network could then be used to calibrate a microscopic traffic 

simulator. As mentioned we did not utilized a microscopic traffic simulator for this study. 

Car following headway (s): the car following headway during a rear-end accident. This 

parameter is usually estimated from police reports through the use of the skid marks on the 

pavements (if such marks are available). However the proliferation of the use of antilock braking 

systems makes this methodology questionable as many drivers do not know how to use them 

properly and the police report may not offer such information (whether an ABS is in place). A 

calibrated traffic simulator may be utilized to produce a distribution of the car following 

headways. This parameter was not utilized in this study. 

Traffic control parameters: the traffic control parameters (e.g. signal timing) at the time of the 

accident is rarely known or reported. The model used in this study utilized the average traffic 

signal timing parameters. A calibrated microscopic traffic simulator models the traffic flow 

parameters in greater detail and produces more robust results. The BN takes into consideration 

whether we have signalized or non-signalized intersections including the speed limit. 

Traveller information devices (such as Dynamic Message Signs): no such devices existed in 

Nicosia, Cyprus until the end of 2009. 

Environmental, weather and pavement conditions: These are included in the police report and 

are taken into account via the BN. 

Driver type: The police records include various characteristics of the drivers involved in an 

accident such as age and gender. The driving behavior (aggressiveness is not reported). The 

driver aggressiveness can be estimated through studies of the transport network, which can then 

be used to calibrate a microscopic traffic simulator. 

 

NORMALISATION OF ACCIDENT RECORDS 

The normalization of the accident records is of principal importance to traffic safety analysis. 

The accident rate is defined as the number of accidents occurred at a roadway section or location 

per Million Vehicles Miles (MVM) travelled. Traditionally, this parameter is estimated using the 

Annual Average Daily Traffic (AADT). This however, constitutes a crude estimate and provides 

limited accuracy. In this study, the accident rate is defined as: 

 

Accident Rate (AR) = Number of accidents reported/estimated traffic flow rate per time period of 

the day 
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The AR for all accidents occurred is estimated through the use of the VISTA DTA model that 

was calibrated for a typical weekday of the year. This parameter needs to be estimated for each 

season - to account for fluctuations in demand - of the year based on the local traffic conditions. 

This would then yield to a set of DTA models for each statistically different “traffic” season. 

Similarly, a different DTA-traffic simulation model could be determined for Saturdays and 

Sundays and any special days that have statistically different traffic patterns throughout the 24-

hour time period. 

 

Given that the traffic flow rate fluctuates throughout the 24-hour time period, an analysis was 

conducted to divide the time period of the day into distinct traffic flow periods that have 

common traffic flow characteristics (volume and speed). The estimated VISTA DTA 15-minute 

traffic flow rates for links 6, 9, 12, 17 are depicted in Figure 1 for a typical 24-weekday. Figure 1 

demonstrates that different links peak at different time periods of the day. Given the different 

working hour daily patterns for the government, bank and semi-governmental organizations it is 

recommended that a different DTA and/or micro-simulation model is developed. For example, 

banks work a full day on Monday‟s (8:00 – 18:00) and government employees work a full day 

on Wednesdays (7:30 – 18:00) with a one-hour break at noon time. A typical workday for 

government employees is from 7:30 to 14:30 with no break in between. As such it is best to 

develop a different simulation model for each day of the week. Further different models need to 

be developed for the various seasons and holidays as the traffic patterns change substantially. It 

is noted that these models will need to be continuously calibrated in order to produce accurate 

estimates of the traffic flow rate. 

Link 6, 9, 12, 17 15-min traffic flow rate
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Figure 1 Traffic flow rate (vehs/hr) for link 6, 9, 12, 17 vs. 15-min. time interval 

 



9 

 

BAYESIAN NETWORKS  

BNs are directed acyclic graphs of causal influences, where the nodes represent random 

variables, and the arcs represent (usually causal) relationships between variables. The two main 

components of BN are the causal network model (topology) and the conditional probability 

tables (CPT). The model causal relationships are expressed as directed acyclic graphs. Variables 

are denoted by nodes in the model and can have any number of states, so the choice of 

measurement scale is left to the analyst‟s discretion. Causal relationships among variables are 

described by arcs among nodes. CPTs describe the prior knowledge of the problem domain and 

explicitly specify the causal dependencies in terms of conditional probability distributions. 

Parameterizing the CPTs is often the most demanding task in BN development, as the number of 

probabilities can be counted in hundreds or even thousands. CPTs can be inferred from data 

when available or subjectively specified by experts.  The former is more objective, however it is 

unlikely to have all the data needed to specify all CPTs in a model, hence the use of experts is 

sometimes imperative. BNs can be used in two main types or reasoning bottom-up/diagnostic 

and top-down/predictive. The former infers the most likely cause given evidence of an effect. 

While the latter, "top down", deduces the probability that a certain cause would have given a 

specific effect. 

 

 

  

 

 

 

Figure 2 Example BN topology of Accident Risk 

 

Formally, a BN encodes the joint probability distribution over a set of n variables X = 

{X1,…,Xn}. Therefore, let us denote by Xi a random variable, and by Πi the set of parent nodes of 

Xi. Then the joint distribution of X can be expressed as the product of the conditional 

distributions of each variable given its parents, where x represents an instantiation of X, πi an 

instantiation of Πi, and xi denotes the state of Xi,: 

 

                                                   



n

i

iixpXp
1

π      (1) 

 

The conditional probabilities described by equation (1) are presented in the CPT. When the 

topology and CPTs have been completed, Bayes‟ theorem can be used to diagnose a cause given 

an effect or the chain rule (1) to predict an effect given a number of causes. The theorem is 

shown in equation (2): 

 

                                        
)(

)()/(
)/(

j

iij

ji
xp

xpxxp
xxp 

    (2) 

where, 

 p(xi/xj) = posterior (unknown) probability of xi given xj 

 p(xj/xi) = prediction term for xj given xi  

 p(xi) = prior (input) probability of xi 

Traffic Flow Traffic Control 

Accident Risk 

Parent nodes 

Child node 
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 p(xj) = input probability of xj  

 

or, less formally: 

                        Evidence

abilityPrior_ProbLikelihood
yProbabilitPosterior_




  (3) 

 

The example in Figure 2 shows two influences on accident risk (AR), namely, traffic flow (TF) 

and traffic control (TC). Let us denote by W the AR, M the TF, and S the TC. Their 

corresponding states are described by w, m and s respectively. The variables can have any 

number of states, so the choice of measurement scale is left to the analyst‟s discretion. Let us 

denote by nW, nM and nS the number of states for W, M and S respectively. In the following 

sections, we assume that the variables can take three discrete states (nW = nM = nS = 3), namely, 

high (h), medium (m), and low (l). Therefore, based on the above example, to diagnose (bottom-

up) the probability that traffic flow is mj given that we have evidence that accident risk is sk, we 

use the Bayes‟ rule: 

                                            

 
   

 k

jjk

kj
sp

mpmsp
smp 

    (4) 

 

In predictive reasoning the chain rule is applied,  to calculate the likelihood that accident risk is 

wk , given evidence of traffic flow is mj and traffic control is si,:  

       
jjikijki mpmswpspmwsp ,,,          (5) 

 

Input evidence values are propagated through the network, updating values of other nodes as 

explained above. The network predicts the probability of certain variable(s) being in particular 

state(s), given the combination(s) of evidence entered. BN models are extremely computation-

intensive when the topology and the variable states increase. However, recent propagation 

algorithms exploit graphical models‟ topological properties to reduce computational complexity 

(Pearl, 1988, 2009). These are used in several commercial inference engines such as HUGIN 

(Kjaerulff, 2008). BNs have to conform to a strict hierarchy since cycles lead to recursive and 

non terminating propagation of probabilities by the algorithm. This imposes some compromises 

in modeling influences, which can be partially overcome by introducing additional input nodes to 

model cyclic influences, although this increases complexity of the network and the control 

process for the algorithm. 

 

MODELLING ACCIDENT RISK IN BN  

For the development of the accident risk BN it was imperative to firstly identify the variables and 

their state, find dependencies among variables and finally encode the prior knowledge the 

express the causal influence that variables have between then in the CPTs.  Development of the 

BN model was based on machine learning using accident data obtained from the Cyprus Police. 

However, due to the limited scope of the data, important information that significantly affects 

accident risk such as traffic flow and road infrastructure was missing. Hence, to enrich the initial 

dataset with this missing information we used the VISTA simulator to generate traffic flow data 

for each accident record. In addition, due to limited information regarding infrastructural 

properties in the accident reports, it was necessary to map each accident on a geospatial GIS 

platform and subsequently import these on VISTA (Figure 3) to obtain more information 
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regarding the infrastructure at each accident point. Once this mapping was achieved additional 

information regarding the road network at the accident scene was obtained from VISTA. This 

helped to define the causal relationships of the BN variables that described the infrastructure and 

the traffic dynamics. Parts of the accident dataset were used to train the BN and others to identify 

black spots on the network. These points were later used to validate the BN model.   

 

 

 
Figure 3 Road network black spots as overlaid dots in VISTA Java GIS 

 

Preliminary compilation of the initial Police dataset was performed with the SPSS statistical 

package. The accident dataset covered all accidents occurred in the Nicosia area from 2002 until 

2008 and comprised over 9000 records. Each record consisted of 43 (six continuous and 37 

categorical) input parameters covering global, local, temporal, accident, driver and car 

characteristics collected at the site of the accident by the police officers, eye witnesses and the 

involved parties. Each record was associated with a single categorical output parameter 

pertaining to accident severity, namely light, severe and fatal, as evaluated by the police officer 

at the site of the accident.  

 

Dataset pre-processing involved two steps (a) replacement of missing and erroneous (e.g. falling 

outside the acceptable range) parameter values by the mean value of the parameter values of the 

other (assumed correct) records, and (b) grouping neighboring or related values of multi-valued 

(i.e. containing more than 12 values) categorical parameters so as to have a manageable number 

of intelligible as well as regular categories per parameter.  

 

Statistical analysis relating the 43 input parameters (independent variables) to accident type 

(dependent variable) reveals that the Spearman correlation coefficient values between the inputs 

and the output are low (Figure 4), while the Spearman p-values are relatively high. Owing to the 

sufficient size of the database however, it is still possible for some of the correlations to be 

statistically significant. In support of that, accident type prediction was found far from 

satisfactory when only the statistically significant/correlated parameters were employed, thus 

demonstrating that statistically derived feature selection cannot be performed on a statistical 

basis for extracting the input parameters that affect the output and discarding those that do not 

provide accident type-related information.   

Black 

spots 
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Figure 4 Statistically derived correlation coefficients (left) and p-values (right) between the 43 

input parameters and accident type. 

 

The processed accident data was subsequently used to identify the core variables of the BN 

model. To reduce the complexity of the process and the model itself, the dimensionality of the 

initial data set was reduced using Principal Component Analysis (PCA). In principle, PCA 

projects the original data into a new set of orthogonal axes in such a way that the original 

multidimensional dataset with possibly correlated parameters is linearly transformed into a novel 

dataset of identical dimensions but with totally uncorrelated parameters. Owing to the fact that 

each new axis is selected so as to maximally expose the (remaining) variability of the dataset, it 

is not unusual for the first few axes of the PCA mapping to account for most of its variability. 

Hence, small PCA axes are generally sufficient in representing the original data with minimal 

loss of information. Results from this process yielded 12 artificial variables. 

 

Additional information from the accident location was obtained from VISTA using the 

geospatial coordinates.  Finally the traffic volumes along with traffic speed of vehicles were 

mapped to each accident record given the time of the accident the geospatial coordinates. These 

were used to calculate traffic density for each accident location. Merging of the results from the 

dimensionality reduction using PCA and the traffic density and infrastructural properties from 

VISTA produced 19 variables that were the baseline for learning the BN topology (Figure 5) and 

the CPT. The machine learning algorithm used to develop the BN model is expectation 

maximization (EM). EM is a robust algorithm that enables learning of BN model parameters 

from incomplete data. In essence, EM algorithm is a method for finding the maximum 

likelihood, based on unobserved latent variables. EM is an iterative method which alternates 

between performing an expectation (E) and maximization (M) step. In the E step, we calculate an 

expected value of the log likelihood based on an estimation of the unobserved data, while in the 

M step, we find the parameter that can maximize the log likelihood. The EM steps improve the 

log likelihood while iterating and achieve an optimal when it converges. The EM algorithm is 

part of the HUGIN tool that we used to develop the BN model. 
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Figure 5 Data generated BN topology 

 

BN MODEL VALIDATION 

To estimate the accuracy of the developed BN model, five-fold cross validation was performed. 

Accident database that was enhanced with traffic data was randomly partitioned into five folds of 

equal number of records. Subsequently, and for each fold, four of the sets were employed for 

training the model while the remaining set was reserved for testing. Prediction accuracy was 

calculated by the weighted average of the test results of the five folds. Overall, the results of the 

validation process demonstrated that the model can accurately predict accident risks. However, 

the fact that traffic volume is based on simulated results biases the outcome. Therefore, an 

additional validation study needs to be performed to verify that the model performs well in 

realistic settings.   

 

An additional validation study sought to evaluate the effect of certain input variables to the target 

variable, namely, accident risk. Therefore, attribute relevance analysis (Figure 6) was performed 

using the Envisioner data mining tool to compute the relevance between each causal factor to 

accident risk. The relevance of variables to accident risk was compared against the learned 

conditional probability that emerged from EM algorithm and the posterior probabilities 

computed by the BN with the independent instantiation of each leaf node variable. The results 

highlighted a high correlation between the relevance of certain variables to the target variable 

and the causal effect of the same variables to the target variable. 
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Figure 6 Relevance Analysis results 

 

THE ROAD SAFETY ASSESSMENT TOOL 

The assessment of road safety is achieved through the combination of the VISTA and BN 

technologies.  The main components of the tool‟s architecture are: the BN engine, the accident 

risk assessor, the VISTA simulator, the data pre-processor that incorporates the scenario 

generator, the results analyzer and the visualizer. Figure 7 depicts these along with the 

subcomponents of the VISTA technology.  

 

The system was developed using a component-based software engineering methodology. With 

the initial specification of the system requirements captured, we proceeded in the identification 

of suitable software components that matched the initial system requirements. These components 

were subsequently integrated to implement parts of the system‟s functionality. In particular the 

Bayesian inference engine and the visualization components were selected after thorough 

investigation. The glue-code that enabled components integration was implemented in Java. The 

risk assessor quantifies accident risk using a Bayesian inference engine that utilises the 

probabilistic model of accident risks. Input to the BN assessor is categorized into static and 

dynamic. The former is obtained from the VISTA database and the latter is the output of the 

VISTA simulation.  
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Visualiser Results Analyser
Accident Risk 
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Figure 7 The Software System Architecture 

 

Input to the accident risk assessor is organized in the form of scenarios. An input scenario to the 

BN assessor is defined by the static and dynamic properties of each road section. Static 

information is obtained from the VISTA database and in combination with the dynamic input 

from the simulator provides the baseline for generating a number of plausible test scenarios for 

each section. Generated scenarios are executed by the risk assessor to quantify the probability of 

Effect of variables on 

accident risk high low 
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accident. The scenario generator is responsible for generating plausible scenario variations to 

stress-test the safety performance of the road network. The visualizer processes the results and 

depicts these to the user graphically. An overview of the tool‟s information flow is depicted in 

Figure 8. 

 
Figure 8 The System components information flow 

 

Scenario input evidence is pre-processed before executed by the BN model, embedded in the risk 

assessor.  Test scenario inputs are propagated down the BN to produce the posterior probability 

of accident risk per scenario. The integration of the VISTA with the BN model was realized 

through asynchronous data interchange.  

 

To establish communication between VISTA and the risk assessor it was imperative to pre-

process VISTA‟s output data prior to being utilized by the BN in the risk assessor. Specifically, 

VISTA variables are continuous by nature, hence, had to be converted into categorical/discrete to 

be processed by the developed BN that used only discrete nodes. Hence, it was necessary to 

discretise the output from VISTA prior to instantiating the BN model. For the discretization 

process it was necessary to refer to domain experts that specified the cut-off values for each 

variable. Specifically, for traffic volume three states were defined, namely, low, average and 

high. The first corresponding to less than 100 vehicles per 15 time interval, the second to less 

than 350 and the last to greater than 350.  

 

 

RESULTS 

Results from the accident risk assessor were used to calculate the accident risk index of each 

road section. Analyzed scenarios for each segment were labeled accident prone if the estimated 

BN accident risk probability was above a pre-specified threshold value. BN scenarios that fell 

below the threshold value were ignored. This enables the safety engineer to alter the granularity 

of the analysis by altering the threshold value.  To produce the accident risk index it was 

imperative to normalize the number of accidents that were predicted by the BN and where above 

the threshold value, with the traffic volume per time interval, for each road section. The 

developed system uses a systematic approach that utilizes the traffic volume estimates from the 

VISTA simulation and the accidents predicted using the BN risk assessor. Traffic volume acts as 

a normalizing factor for the number of accidents predicted using the BN risk assessor. This gives 

rise to the accident risk index for each road section that inherently highlights network's black 

spots. An illustration of the preliminary results produced by the method is depicted in Figure 9. 

This figure illustrates a subset of the results and indicates that sections with IDs, 3, 21 and 47 

have the highest accident risk index. This enables the safety engineer to introduce appropriate 
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countermeasures to alleviate the problem. These are then implemented in the simulation model. 

Each countermeasure then undergoes an evaluation procedure in the system to verify that the 

problem is eliminated prior to being implemented. 

 

 
Figure 9 Links on the road network with highest accident risk index 

 

DISCUSSION 

The method described herein illustrates a novel approach to quantifying road safety using 

probabilistic inference with DTA simulation. Integration of VISTA with BN, as presented, 

enables the combination of static, dynamic, known and uncertain evidence for accident risk 

quantification. The system combines state of the art technologies in traffic simulation and 

accident risk assessment. Integration of these provides the decision makers with the necessary 

means to perform a holistic safety analysis. The method escapes from the problem of traffic data 

shortage that limits most traditional approaches through the use of DTA simulation.  VISTA 

provides traffic volume data estimates for all road sections, links and movements of the network 

on a 24 hour basis at the desired time interval – a 15-minute time interval was used in this study. 

This methodology is implemented as a prototype to demonstrate the methodology rather than an 

operational model that requires substantial calibration of the underlying DTA model and/or 

traffic simulator. Once a model is properly calibrated then the traffic flow rate estimates will 

correspond closely on the actual conditions that the group of crashes that occurred at each 

roadway segment, link and movement, yielding more accurate crash rate estimates and 

consequently a better normalizing methodology rather than the AADT. 

 

BNs have been used in road safety analysis to describe and quantify the causal relationships 

between factors leading to accidents. However, the instantiation of BN with improved 

assessments of traffic conditions through DTA simulation makes this work novel. BNs gained 

widespread acceptance with the introduction of computational algorithms that enabled their 

exploitation. The main limitation of BNs is that they do not provide a direct mechanism for 

representing temporal dependencies in a problem. Given that many real problems are complex 

and changeable over time, static BNs are inadequate. Therefore, many improvements have been 

proposed to deal with this limitation, such as representing probabilities as functions of time or 

considered each node composing of two parts, i.e. a state value of a random variable and a time 

interval associated to the change of the state. DBN structure consists of many temporal slices 

which maintain multiple copies of nodes and connections in a static network and oriented arcs 

which connect variables in different time-slices. However, such formulations require exogenous 

knowledge of how the probabilities or states vary over time. Despite that, the benefits of DBN 

Highest accident risk 

indexindex 
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over static are considerable in certain situations. Therefore, considering the possibility that some 

observations lose their relevance or importance with the passage of time in the simulation, part of 

our future directions includes the application of DBN paradigm to the accident risk assessment 

algorithm. 

 

We also note that while the current version of VISTA incorporates a mesoscopic traffic simulator. 

A mesoscopic traffic simulator does not have the capability to produce the detailed traffic flow 

conditions under which accidents are occurring.  Future research directions include the 

replacement of the mesoscopic traffic simulator with a microscopic traffic simulator. This will 

produce estimates of the DUE paths and the associated traffic flow characteristics at the 

microscopic level (traffic flow rate, speed distribution, acceleration/deceleration speed 

distributions, gap acceptance distribution, car following headway distribution, other) per time 

interval of the day. Alternatively, given the slow convergence of DTA models the last iteration of 

a DTA model could be send to a microscopic traffic simulator to produce the corresponding 

traffic flow parameters. 

 
Install a traffic flow monitoring system at strategic locations throughout the transportation 
network to calibrate the DTA-micro model on a daily basis thus reducing the bias of one DTA-
micro-simulator representing all daily and seasonal traffic patterns. 

Continuously calibrate the DTA-micro simulation model either offline or in real time. 

Utilize the calibrated model to produce estimates of the traffic flow conditions based on various 
infrastructure changes. 

Integrate the DTA-micro model with the BN to produce estimates of accident risk based on 
proposed changes of the transport network. 
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