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ABSTRACT  
 
While lane departures constitute a substantial number of motor vehicle crashes and a 
disproportionate number of fatalities, the factors and events associated with lane 
departure crashes are complex and not well understood.  The use of data from naturalistic 
driving studies can provide insights into these factors in the timeframe before and after an 
event occurs as well as on the impact of existing ambient conditions and current roadway 
conditions on these crash types.  
 
An evaluation of lane departure incidents was conducted using data from a field 
operational test on a road departure curve warning system conducted by UMTRI.  
Although a specific system was being evaluated, drivers were able to drive in their 
normal setting in all road and weather conditions during a baseline condition (when the 
system was not activated).  Hence, naturalistic data were available and reduced for 44 
drivers on rural two-lane roads.  There were 22 incidents involving a vehicle leaving the 
lane on the right and 51 incidents departing the lane on the left on rural two-lane roads 
available for analysis.  Because no near-crashes or crashes occurred, these incidents were 
used as a safety surrogate for lane departure crashes.  Further, data for which no incidents 
occurred were also extracted and used for normal driving conditions. 
 
Corresponding roadway, environmental, and driver variables were used in a logistic 
regression analysis.  Separate models were developed for right-side and left-side lane 
departures.  The analysis evaluated the relationship between curve characteristics, 



shoulder type, driver age and gender, percent of time the driver has exceeded the posted 
speed limit or speed limit on curves, lane width, and time of day.   
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INTRODUCTION 
 
Background 
 
The US DOT - Federal Highway Administration (FHWA) (2011) estimates that 58% of 
roadway fatalities are lane departures, while 40% of fatalities are single-vehicle run-off-
road (ROR) crashes.  Neuman et al. (2003) also estimated that 39% of national fatal 
crashes are single-vehicle run-off-road (SVROR) crashes.  Addressing lane-departure 
crashes is therefore a priority for National, State, and local agencies.   
 
However, there are several issues with crash-based safety analyses (Songchitruksa and 
Tarko, 2006).  Events with similar traffic, weather, and roadway conditions are quite rare 
and as a result, safety analyses must depend on small sample sizes.  Crash reporting 
across sites is also inconsistent making comparisons quite difficult.  The data are also 
limited in the type of roadway, environmental, and driver characteristics recorded.  
Timeliness of the crash data is also an issue, particularly for evaluating crash 
countermeasures.  An appropriate study requires data before and after the treatment is 
implemented, requiring several years of crash data. 
 
Some researchers have addressed limitations in crash data by utilizing crash surrogates as 
a measure of risk.  Reduction in violations has been used to evaluate the effectiveness of 
red-light running countermeasures, such as red light running camera enforcement 
(Retting et al., 2007; Bonneson et al., 2004; Garber et al., 2005; Fitzsimmons et al, 2009).  
Change in speed is frequently used to assess the effectiveness of treatments assuming that 
if speeds are reduced, crashes will also be reduced.  Time to collision (TTC) or separation 
time has also been used as crash surrogates (Archer, 2001; Songchitruksa and Tarko, 
2006; Hayward, 1972; Burgett and Miller, 2001).    
 
Several types of crash surrogates have been used to evaluate lane departures.  Lane 
deviation is one measure used as a crash surrogate to assess the likelihood of ROR 
crashes (LeBlanc et al., 2006) and the likelihood of crashes due to distraction (Donmez et 
al., 2006).  Several studies have used lateral placement to assess countermeasures so 
more immediate measures of safety than reduction in crashes can be obtained.  Porter et 
al (2004) used lateral placement and speed to evaluate centerline rumble strips.  Pratt et al 
(2006) used vehicle lateral position and change in vehicle separation to evaluate the 
impact of centerline and edge-line rumble strips.  Miaou (2001) developed a method to 
estimate roadside encroachment frequency and the probability distribution for the lateral 
extent of encroachments using an accident based prediction model.  Miles et al (2006) 
recorded the number of erratic and avoidance maneuvers that occur with placement of 
advance stop line rumble strips to determine how drivers respond to the devices.  Taylor 



et al (2005) observed vehicle placement relative to the edge line using single versus 
double paint lines to delineate presence of shoulder rumble strips.  Hallmark et al (2010) 
used lateral position to evaluate the effectiveness of edge line rumble stripes. 
 
Most of the studies that have used lane departures or deviation as a crash surrogate have 
used roadway based data collected using a video data collection setup or road tubes.  The 
advantage of using a roadway based measuring system is the availability of exposure 
information over a long period of time.  The main disadvantage it is usually only applied 
in a few locations due to resource constraints and the number of variables that can be 
collected is limited to a few roadway and prevailing environmental conditions.  Driver 
variables usually cannot be included.  Other alternatives for collection of lane position 
data are driving simulators and naturalistic driving studies (NDS).  These data collection 
techniques provide additional variables and can be applied over a number of roadways.  
However, cost for conducting these studies can increase quite rapidly. 
 
Project Scope 
 
The purpose of this study was to explore use of existing NDS data to assess the feasibility 
of answering lane departure research questions.  The knowledge gained can be applied to  
the full-scale study Strategic Highway Research Program (SHRP) 2 and other large scale 
naturalistic driving studies.  SHPR 2 will encompass a rich naturalistic dataset on 1,950 
instrumented passenger vehicles that can be used to answer a number of research 
questions including lane departures.  
 
The value of naturalistic data is the ability to observe safety critical as well as non-safety 
critical events over time; something that is not possible in crash data only.  Moreover, 
researchers are given the opportunity to observe drivers in their natural driving setting 
and interactions among different traffic, road, and environmental conditions can be 
assessed and incorporated in various analysis tools.  The disadvantage of naturalistic data 
is the lack of control for establishing causality of the circumstances leading to an event.  
However, the SHRP 2 data collection addresses this downfall by providing data over a 
prolonged period (at least one year).  Hence, there is a high likelihood of observing the 
same roadway type and conditions for commuters and trip repeaters.    
 
Another strength of naturalistic driving studies is the substantial number of normal 
driving data that will be available.  This can provide information on how often drivers are 
exposed to a particular set of circumstances. Currently, there is no realistic method to 
obtain exposure data for an individual driver, and it is even difficult to obtain detailed 
exposure for a cohort of drivers. 
 
This study attempts to demonstrate the benefits of naturalistic data using lane departure 
and normal driving events that were identified and extracted from a NDS dataset from the 
University of Michigan Transportation Research Institute (UMTRI).  Logistic regression 
analyses were then used to predict the likelihood of a lane departure as influenced by 
driver, roadway, and environmental factors that can only be gathered from naturalistic 
data.   



DATA 
 
Studies show that there are many relevant roadway factors that impact lane departure 
crashes including the presence and characteristics of horizontal curves, vertical curvature, 
lane width, shoulder type, shoulder width, median type, driveway density, shoulder 
rumble strips, centerline rumble strips, and roadway delineation and signing (Miaou et al, 
1993; Hauer et al, 2004; Luediger et al, 1988; Council, 1998; Vogt and Bared; 1998; 
Zegeer et al, 1992; Deng et al., 2006; Garder and Davies, 2006; Corkle et al., 2001; Miles, 
2005; Sun et al., 2007; Donnell et al., 2006). Environmental factors identified were 
pavement surface condition, roadway lighting, and precipitation (Deng et al., 2006; 
Shankar et al., 1998; McLaughlin et al., 2009).   
 
Those roadway, driver and vehicle variables that were likely to contribute to the 
occurrence and severity of lane departures and by extension lane departure crashes were 
extracted from the NDS as available.  Driver factors which have been correlated to lane 
departure crashes include influence of alcohol or drugs, speed, age, gender, and 
distraction/inattention (Dissanayake, 2003; McGinnis et al., 2001; Khattak and Hummer, 
1998; McLaughlin et al., 2009; Ulmer et al., 1997; Williams et al., 1997).  Another 
benefit of naturalistic data is the ability to quantify these driver factors. 
 
Data source 
 
Data were extracted from a field operational test for a road departure curve warning 
(RDCW) system conducted by the University of Michigan Transportation Research 
Institute (UMTRI).  The 11 vehicles (same make and model) in the study included an 
instrumentation packages that encompassed a variety of sensing systems, including a 
forward video and driver face video, forward and side radar, and global positioning 
system (GPS). The RDCW system also utilized a lane tracking system that calculated 
lane position based on vehicle position relative to lane lines or roadway edge (LeBlanc et 
al., 2006).   
 
RDCW data included 78 drivers that were evenly split by gender and age. Although the 
purpose of the RDCW data was to test the collision warning system, data were collected 
for a one-week period prior to activation of the system for each driver to use as a baseline. 
During the first week of driving, the system was recording data but alerts were not 
provided to the driver. As a result, the first week of data collection reflected naïve driving 
with no in-vehicle warning system alerts.  Data used in this project were from that first 
week of naïve driving. 
 
Data were requested from UMTRI for rural 2-lane roadways for the time periods when a 
vehicle was likely to have left its lane as well as periods of normal driving.  UMTRI 
provided a database and forward imagery for 44 different drivers. The database contained 
a number of fields with data from the instrumentation system, such as lateral acceleration, 
forward speed, etc.  Each row of data represented 0.1 second of data.  GPS data provided 
vehicle position that can be overlaid with aerial imagery or roadway data.  Lane width 
and vehicle position in relationship to the lane was provided through the lane tracking 



system.  Forward imagery was provided and was usually available at 2 Hz (2 per s or 1 
image per 5 rows of vehicle trace data).  
 
Data Reduction  
 
Lane departures were selected as the crash surrogate of interest.  Data were partioned into 
events by lane departures and normal driving.  The occurrence of a lane departure event 
was determined by calculating vehicle wheel path using vehicle offset, lane width, and 
track width from the NDS lane tracking system. A lane departure was defined as a 
vehicle wheel path crossing over the right (right-side lane departure) or left (left-side lane 
departure) lane line and encroaching upon either the shoulder or the adjacent lane by 0.1 
m or more. The threshold 0.1 m was used as a buffer because there is some uncertainty in 
estimation of wheel path. In all cases, the vehicle departed the lane and then returned to 
the initial lane of travel without losing control.  It should be noted that some of the left-
side lane departures for either curve direction, may have been drivers intentionally 
crossing the centerline (i.e. “cutting the curve”).  In future studies, it may be possible to 
ascertain this from the driver face video and from driver hand position on the steering 
wheel. However, for this study the team did not have access to this information.  
 
The data reduction resulted in a total of 22 right-side lane departure and 51 left-side lane 
departure events for two-lane rural roads. It also resulted in over 113,000 observations 
(0.1 s data frames) of normal driving. 
 
Data for each lane departure event were aggregated to a level for a logistic regression 
analysis.  The start point for each lane departure was defined as the point that the vehicle 
began deviating from its path towards the edge of the lane.  The end point of the event 
was the point after the vehicle returned to the roadway and corrected its path. The start 
and end times were noted at those points and data were summarized into a single 
observation.  A lane departure event included time spent drifting from the roadway or 
lane, time off the roadway or lane, and time returning to the original lane of travel. The 
length of time did vary for each lane departure event and a variable was included in the 
model to account for differences that time interval may have on the probability of a right 
or left lane departure. 
 
Data for which no lane departure had occurred were used to represent normal driving data.  
Driving traces received from UMTRI included segments of a vehicle trip along a rural 2-
lane road.  Sections of the driving trace when no lane departure event occurred were 
divided into epochs where roadway and environmental conditions were consistent. When 
a change in roadway characteristics occurred, a new epoch was created. For instance, data 
along a tangent section would be marked as one epoch if the roadway cross-section did 
not change.  If cross section changed such as a major change in shoulder width, a new 
epoch was created.   Vertical curvature was not available so this could not be included as 
a changing roadway characteristic.  When the vehicle encountered a curve, a new epoch 
would be created that contained all of the vehicle activity on the curve. At the end of the 
curve, a new epoch would be created for the next tangent section. Data could not be 
partitioned by driver characteristics because dynamic driver characteristics were not 



available and static driver variables such as age and gender did not change. In most cases, 
environmental conditions were consistent across a roadway section, so it was not 
necessary to consider changes in environmental conditions for a particular trace. Data 
were summarized for each epoch. The length of each epoch was different because drivers 
spent different amounts of time driving on a particular type of roadway. The number of 
0.1 s intervals for each epoch was included as a factor in the analysis to account for any 
differences that intervals may have on the outcome.  
 
Several roadway variables were included with the NDS dataset.  Lane width was 
calculated from the lane tracking system.  Radius was also reported with the NDS data 
but did not appear to be accurate. A number of other variables that were not provided in 
the UMTRI data were extracted or created from either the UMTRI data or from other 
available data sources. Other data sources included aerial imagery, a roadway database, 
and a crash database for Michigan.      
 
All of the data elements that the team determined were important from the literature and 
could be obtained from one of the available databases (vehicle data, aerial imagery, 
roadway data, forward imagery, and crash database) were extracted.  For instance, curve 
radius and direction were determined by overlaying the vehicle database with aerial 
imagery and determining the start and end point in the vehicle data that corresponded to 
each curve, while curve radius was measured using the aerial imagery.  
 
A qualitative assessment of the quality of pavement markings, and shoulder type were 
obtained from a review of the forward image.  Shoulder width was estimated from the 
forward view by using the known distance of lane width as a reference.  Annual average 
daily traffic (AADT) was obtained from the Michigan Department of Transportation.  
The forward view was used to tabulate the number of on-coming vehicles that passed the 
subject vehicle during the segment.  On-coming vehicle density (vehicles/meter) was 
calculated using this information.  Driveway density was calculated by identifying the 
number of driveways for each segment and then dividing the number of driveways by 
total segment length resulting in the variable “DwyDensity.” 
 
Driver age and gender were available in the NDS dataset.  The fraction of time a driver 
spent traveling over the posted or advisory speed limit was calculated for each driver 
using all of the observations of data that were available for that driver.  Posted speed limit 
and advisory speed for the segment were determined either through the Michigan road 
database or from a review of the forward imagery.  Driver speed for each time interval 
was compared against the posted or advisory speed.  The intervals where a driver 
exceeded the posted or advisory speed by 5 or 10 mph were divided by total intervals for 
that vehicle trace.  The resulting variable was fraction of time a driver spent traveling 5 or 
10 mph over the speed limit.  Time spent traveling over the posted or advisory speed was 
used as a measure of driver aggressiveness.   
 
Time of day was identified as nighttime or daytime based on time and the forward view.  
Environmental conditions were assessed but only dry roads were present for the data 



obtained.   No overhead street lighting was present on any of the roadways where NDS 
data were available.   
 
Lane departure crash density was calculated by overlaying segments with the Michigan 
crash database (2000 to 2006).  The number of lane departure crashes was summed and 
divided by the total segment length resulting in the variable, lane departure crash density 
(crashes per meter).  This resulted in the variable “CrashDensity.” 
 
A number of driver variables, such as driver distraction or driver glance location, were 
not be available since driver face video was not included due to IRB limitations.  This 
type of data will be available in the full-scale SHPR 2 study and are typically available in 
other NDS. 
 
 
METHODS 
 
Separate logistic regression models were developed for right-side and left-side lane 
departures.  For each model, data recorded for lane departures were used as the cases, 
while records that included no lane departures were considered controls (or normal 
driving).  Each lane departure event or normal driving epoch was modeled as one 
observation. As noted earlier, the number of 0.1 s intervals for each epoch was included 
as a factor in the analysis to account for any differences that interval length may have on 
the outcome.  A list of the explanatory variables considered for the analysis is shown in 
Table 1. Both models were created using the LOGISTIC procedure in the SAS/STAT 9.2 
software package. 
 
The response variable for lane departure (Z) was coded as 0 if there is no lane departure  
(normal driving) and 1 if a lane departure occurred (either right or left side departure). 
Given that Z is a Bernoulli outcome with p=P(Z=1) as the probability of occurrence of a 
lane departure, the odds that a lane departure happens is p/(1-p). In order to link the odds 
of a lane departure to the matrix of explanatory variables, X, the logit link function was 
used. Hence, a connection between the probability of a lane departure and the linear 
combination of explanatory variables (X’s) using equation 1:  
 
logit (p)= log(p/(1-p))= β0+β1X1+…. βkXk               (eq.1)  
 
Stepwise selection was used to determine which variables were relevant and should be 
included in the model. For each step, a covariate was added to the model if the 
significance level for entry was met (0.1 was used). Then the chi-square statistic was 
computed. If the covariate satisfied the significance level (0.1), it was included in the 
model. The Akaike Information Criteria (AIC) and Schwarz criterion (SC) were used to 
compare models and determine which variables to include in the final model.  
 



Table 1:  Explanatory Variables Used in Analysis 
Variable description Type Values 
driver driver ID, Included to 

account for repeated 
measurements 

 NA 

Age driver age category categorical 0:  20 to 30 years old 
1:  31 to 59 years old 
2: 60 to 70 years old 

Gender driver gender categorical 1:  male 
2:  female 

Curve type and direction of 
curve 

categorical 0:  tangent 
1:  right curve 
2:  left curve 

Radius curve radius (meters) continuous 98 to 1,717 
tangent indicated as 
9999 

LaneWidth lane width (meters) continuous 3.0 to 4.7 
AADT volume (vpd) continuous 11 to 57410 
ShldWidth shoulder width (meters) continuous 0.8 to 5.0 
Density on-coming vehicles per 

meter 
continuous 0.0 to 0.5 

PvmMarking pavement marking 
condition 

categorical 0: highly visible 
1: visible 
2: obscure 

TimeOfDay time period categorical 0: day 
1: dusk/night 

CrashDensity lane departure crashes 
per meter 

continuous 0.0 to 0.029 

DwyDensity driveways per meter continuous 0.0 to 0.027 
OvrSpd5 Fraction of time driver 

traveled 5 mph over the 
speed limit 

continuous 0.0 to 0.90 

OvrSpd10 Fraction of time driver 
traveled 10 mph over 
the speed limit 

continuous 0.0 to 1.0 

ShldType shoulder type categorical 1: paved 
3:  gravel 
4: earth 
6:  no shoulder 
7:  partially paved 

 
 
Only a small sample of left- and right-side lane departures was available (51 and 22, 
respectively). As a result, it was not possible to evaluate the significance of all variables 
and test correlations between variables. In order to build a model that best represented the 
data, the decision to remove variables from the model was based on whether it was 



expected that there would be correlation among input variables. Maximum likelihood 
(ML) method was used to calculate the coefficient estimates, and the Wald statistic was 
used to test the significance of each explanatory variable.  
 
A variable labeled “Observation” was also included in the model to indicate the 
frequency of occurrence of each observation. Odds ratios were used to assess whether a 
specific condition was more or less likely to result in a lane departure. An odds ratio 
greater than 1 indicated that the odds of a lane departure occurring are higher, and an 
odds ratio less than 1 revealed lower odds. Hosmer and Lemeshow Goodness-of-Fit Test 
is used and Large Chi-Square values (and small p -values) indicate a lack of fit of the 
model. 
 
 
RESULTS 
 
Left-Side Lane Departures 
 
There were several variables considered initially, but not included in the final model for 
several reasons. The covariates “AADT", “ShoulderType",  and “RoadSurf" were not 
significant after the stepwise model selection was employed. “Density”, “CrashDensity”, 
“DwyDensity”, and “OvrSpd5” were signficant but their coefficents were quite small 
indicating no practical signficance (parameter estimate << 0.001).  As a result, these 
variables were removed from the model. As one would anticipate, “Curve” and “Radius” 
are highly correlated with each other.  Thefore, only “Radius” was included as it provided 
a better model fit.  The final model for the left-side lane departure is:   
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LDP

 
(1)*0.4118(0)*5746.03097.0 AgeAge II   +  

0.5197 * IGender (1) – 0.00025 * Radius – 0.7282 * LaneWidth + 
0.3193 * ShoulderWidth – 0.9096 * IPvmMarking(0) + 0.2320 * IPvmMarking(1) -  

                  0.6147 * ITimeOfDay – 1.4494 * OvrSpd10                                               (eq.  2) 
  
where )LD(P  indicates the probability that a left-side lane departure occurs.  The odds 
ratio (OR) estimates are shown in Table 2.   
 
From the model above, the relationship between any change in explanatory variable and 
the change in the probability of getting left-side lane departure can be determined.   For a 

non-categorical variable, let i̂  be the estimation of coefficient for ith explanatory 

variable, as the ith explanatory variable increases one unit, the odds of a left-side lane 

departure will change ie ̂ .   Since the exponential function is an increasing function, the 

positive sign of i̂  means the increase in the odds of left-side lane departure occuring and 

a negative sign of i̂  means the a decrease in the odds of a left-side lane departure.   For 

example, for explanatory variable, LaneWidth, a one meter increase in lane with, the 



estimated odds of a left-side lane departure multiply by 0.483 times; that is, they decrease 
by 0.517 times.   
 
 
Table 2: Results for the Left-Side Lane Departure Model 
Variable Condition Estimate Std 

Error 
p-
value 

OR 95 
percent 
lower 

OR 
estimate 

OR 95 
percent 
upper 

Intercept  -0.3097 0.3013 0.3040  
Age 0 vs 2 0.5746 0.0529 <.0001 1.602 1.776 1.970
Age 1 vs 2 0.4118 0.0528 0.0360 1.361 1.510 1.674
Gender 1 vs 2 0.5197 0.0423 <.0001 1.548 1.682 1.827
Radius  -0.00025 3.662E-6 <.0001 1.00 1.00 1.00
LaneWidth  -0.7282 0.0726 <.0001 0.419 0.483 0.557
ShldWidth  0.3193 0.0229 <.0001 1.316 1.376 1.439
PvmMarking 0 vs 2 -0.9096 0.1180 <.0001 0.32 0.403 0.507
PvmMarking 1 vs 2 0.2320 0.0876 .0081 1.062 1.261 1.497
TimeOfDay 0 vs 1 -0.6147 0.0373 <.0001 0.503 0.541 0.582
OvrSpd10  -1.4494 0.1052 <.0001 0.191 0.235 0.288

 
 
The coefficient estimates for agegroups 0 (20 to 30 year olds) and 1 (31-59 year olds) are 
reported in comparison to agegroup 2 (60 to 70 year olds).  Hence, the odds of a left-side 
lane departure for drivers aged 20 to 30 years old compared to drivers aged 60 to 70 is 
given by: 
 

exp(age = 0 vs 2) = exp(0.5746) = 1.78                                                      (eq. 3) 

             
Consequently drivers aged 20 to 30 are 1.78 times more likely to be involved in a left 
lane departure than older driver. Similarly, the odds of a left-side lane departure for 
middle aged drivers (age = 1) compared to older drivers (age = 2) is 1.51.  This indicates 
that middle-aged drivers 31 to 59 years old are 1.51 times more likely to be involved in a 
lane departure than older drivers.  Middle aged drivers have 0.85 times the odds of being 
involved in a lane departure compared to their counterparts aged 20 to 30 years old.  
Conversely, the odds for a younger driver compared to a middle aged driver are 1/0.85 = 
1.18. 
 
Based on similar calculations, males are 1.68 times more likely to be involved in a lane 
left lane departure than females.  The negative coefficient for “Radius” indicates that the 
odds of a left side lane departure decrease as radius increases.  A very large radius value 
of “9999” was used for tangent sections and the variable was modeled as a continuous 
variable.  For each 30.48 meter increase (approximately 100 feet) in radius the odds of 
having a left side lane departure decrease by 0.99.  So a 100 foot increase in radius results 
in an approximate 1% decrease in the odds of a lane departure.  
 



The positive coefficient for shoulder width indicates that as shoulder width increases, the 
odds of a left lane departure also increase.  This result was unexpected since increased 
shoulder width has generally been correlated to a decrease in lane departure crashes. 
 
Highly visible lane markings (PvmMarking = 0) had much lower odds (0.403) of a left 
lane departure than lane markings indicated as obscure (PvmMarking = 2) while 
moderate visible lane markings (PvmMarking = 1) had higher odds (1.062) of having a 
lane departure than obscure markings (PvmMarking  = 2). 
 
As noted in Table 2, so daytime crashes have 0.54 times the likelihood of a left lane 
departure than nighttime crashes or nighttime crashes have 1/0.54 = 1.85 times the odds 
than during daytime hours. 
 
The negative coefficient for the explanatory variable “OvrSpd10” indicates that drivers 
who spend a greater fraction of their time traveling at 10 or more mph over the posted or 
advisory speed have a lower odds of a left lane departure.  This result is somewhat 
counter-intuitive, however.  The opposite effect was found for right side lane departures 
so drivers who regularly speed may be more likely to stay towards the right-side of their 
lane. 
 
 
Right-Side Lane Departures 
Equation 4 describes the final model for right-side lane departure events. The covariates 
“OvrSpd5”, “Gender”, “ShldWidth”, “TimeOfDay”, and “DwyDensity”, were not 
statistically significant.  The covariate, “CrashDensity”, was statistically significant but 
the parameter estimate did not provide a practical significance and was removed from the 
model.  As with the left-side lane departure model, “Curve” and “Radius” are correlated.  
For this model, a better fit model resulted using the “Radius”.  The final model for a 
right-side lane departure is given by: 
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                        0.0001 * AADT – 2.1367 * LaneWidth – 5.3996* Density + 0.2273 * IPvmMarking (0)                   
                        - 1.9341 * IPvmMarking (1) + 2.4446 * OvrSpd10 + 2.4232 * IShldType(1) – 1.2771 *  
                        IShldType(3) – 3.2313 * IShldType(4) + 2.4946 * IShldType(6)                                 (eq. 4) 

 
where P(RD) indicates the probability that a right-side lane departure occurs.  The odds 
ratio estimates are shown in Table 3.   
 
 
 
 
 
 
 



Table 3:  Results for the Right-Side Lane Departure Model 
Variable Condition Estimate Std 

Error 
p-
value 

OR 95 
percent 
lower 

OR 
estimate 

OR 95 
percent  
upper 

Intercept  8.1914 0.4943 <.0001  
Age 0 vs 2 -1.7341 0.1337 <.0001 0.136 0.18 0.229
Age 1 vs 2 -1.1016 0.0891 <.0001 0.279 0.33 0.396
Radius  -0.0003 6.768E-6 <.0001 1.00 1.00 1.00
AADT  -0.0001 7.115E-6 <.0001 1.00 1.00 1.00
LaneWidth  -2.1367 0.1321 <.0001 0.091 0.12 0.153
Density  -5.3996 1.4526 0.0002 <0.001 0.01 0.078
PvmMarking 0 vs 2 0.2273 0.1086 0.0364 1.015 1.26 1.553
PvmMarking 1 vs 2 -1.9341 0.0959 <.0001 0.120 0.15 0.174
OvrSpd10  2.4446 0.1151 <.0001 9.198 11.53 14.441
ShldType 1 vs 7 2.4232 0.0914 <.0001 9.431 11.28 13.496
ShldType 3 vs 7 -1. 2771 0.0786 <.0001 0.239 0.28 0.325
ShldType 4 vs 7 -3.2313 0.1219 <.0001 0.031 0.04 0.050
ShldType 6 vs 7 2.4946 0.1646 <.0001 8.775 12.12 16.731
 
Results are interpreted similar to that of the left-side lane departure model.  The negative 
coefficient for “LaneWidth” indicates that for each meter increase in lane width, the odds 
of a right lane departure decreases by 0.882 times.  Similarly, as on-coming traffic 
density and volume (AADT) increase, the odds of a right side lane departure decrease 
which may be due to improved lane keeping.   
 
The negative coefficient for “Radius” indicates that the odds of a right side lane departure 
decrease as radius increases.  A very large radius value of “9999” was used for tangent 
sections and the variable was modeled as a continuous variable.  For each 30.48 meter 
increase (approximately 100 feet) in radius the odds of having a right-side lane departure 
decrease by 0.99. So a 100 foot increase in radius results in an approximate 1% decrease 
in the odds of a right lane departure.  
 
The odds of a right-side lane departure for drivers aged 20 to 30 years old compared to 
drivers aged 60 to 70 is 0.18 times the odds of being involved in a right lane departure 
than older drivers. Similarly, the odds of a right-side lane departure for middle aged 
drivers (age = 1) compared to older drivers (age = 2) is 0.33 indicating that middle aged 
drivers 31 to 59 years old are are less likely to be involved in a lane departure than older 
drivers.  And the odds of a left-side lane departure for middle aged drivers compared to 
younger drivers is 1.88. 
  
The impact of highly visible pavement markings (PvmMarking = 0) versus obscure 
pavement markings (PvmMarking = 2) is given by 1.25 indicating that right lane 
departure were more likely to occur when highly visible pavement markings were present 
although this result is not consistent with the concept that better lane delineation will 
result in fewer lane departures.  Alternatively the impact of visible pavement markings, 



(PvmMarking = 1), compared to obscure pavement markings, (PvmMarking = 2), is 0.15 
so right side lane departures are much less likely with visible pavement markings.   
 
The model also indicates a strong positive relationship exists between the amount of time 
a driver spent driving 10 or more miles per hour over the posted speed limit and the 
likelihood of a right lane departure. 
 
Shoulder type was also relevant in the model.  The coefficients indicate that paved 
shoulders (Shldtype = 1) are more likely to have a right lane departure than partially 
paved (ShldType = 7) while gravel and earth shoulders are more likely to have a lane 
departure than partially paved.  A positive coefficient for no shoulders (ShldType = 6) 
versus partially paved indicates that a right side lane departure was much more likely 
when no shoulder was present than when shoulders were partially paved.  Other 
relationships between shoulder types are provided in Table 4.  As indicated, all shoulder 
types had less likelihood of a right lane departure than no shoulder.  Paved shoulders 
were more likely to result in a right lane departure than gravel, earth, or partially paved 
shoulders.  Although this is counterintuitive, it may be due to the fact that drivers are less 
likely to lane keep with a paved shoulder since there is less risk of a severe outcome if the 
tire leaves the travel way.  Paved shoulders have been shown to reduce number of crashes 
(Hallmark et al, 2010) so the impact of a paved shoulder may be a less severe outcome to 
a lane departure. 
 
Table 4:  Comparison of Lane Departure Likelihood by Shoulder Type 
 Gravel Earth No 

shoulder 
Partially 
paved 

Paved 40.44 282.05 0.931 11.28 
Gravel — 6.98 0.023 0.28 
Earth — — 0.003 0.04 
No shoulder — — — 12.12 
 
 
CONCLUSIONS AND DISCUSSION 
 
Naturalistic data collection can provide insights on lane departures that may not have 
been gained otherwise.  In this study, binary logit models were used to examine the 
likelihood of a right or left side lane departures.  This could not have been possible using 
crash data that does not have a control (or normal driving) outcome.  We do recognize 
that a larger number of departures may have been observed in a controlled setting, but the 
breadth of explanatory variables incorporated into the model would not have been as 
comprehensive. 
 
This study demonstrated that in addition to age and gender, the radius of curvature 
impacted the likelihood of a lane departure.  Although studies on age and gender have 
clearly been documented, this study also brings to light the impact of the road.  Although 
it may seem obvious that greater radii would results in increase lane departure, studies 
have not actually captured the degree to which radius, lane and shoulder width, and even 



pavement marking may influence lane departures.  This study also brings to light the 
differences between a right and left lane departure.   
 
Left side lane departures were less likely as lane width and curve radius increase.  They 
were also less likely in daytime compared to nighttime (OR = 0.54) and were more likely 
for males compared to females (OR = 1.68).  Younger drivers (age 20 to 30 years old) 
were more likely to have a left side lane departure than older drivers, aged 60 to 70 (OR 
= 1.776) and were slightly more likely to be involved in a left lane departure (OR = 1.18) 
than their middle aged counterparts (ages 31 to 59).  Middle aged drivers were more 
likely to be involved than their older counterparts, however (OR = 1.51).  Results indicate 
that an increase in shoulder width increases the odds of a left-side lane departure although 
shoulder width has generally been correlated to a decrease in crash rate.  Pavement 
marking condition was also relevant.  The amount of time a driver spends at 10 or more 
mph over the speed limit decreased the odds of a left lane departure.  Since the opposite 
result was found for right-side lane departures, it is speculated that drivers who speed 
may tend to stay towards the right side of their lane. 
 
The right-side lane departure model indicated that an increase in lane width, radius, on-
coming vehicle density, and an increase in volume, the odds of a right side lane departure 
decrease which may be due to improved lane keeping.  The amount of time a driver 
spend traveling at 10 or more mph over the posted or advisory speed increased the odds 
of a right-side lane departure.  Pavement marking condition and shoulder type were also 
relevant variables.   
 
Results of the study indicated several relationships which are not intuitive.  This may be 
due sample size.  Correlation between variables was examined but correlation with 
variables that were not considered may have been present.  Additionally, the impact of 
some variables may be different than what was expected.  For instance, an increase in 
shoulder width resulted in an increase in left side lane departures.  While a wider 
shoulder may decrease crash risk or severity if a driver leaves the roadway, a driver may 
be less likely to lane keep when a wide shoulder is present than with a narrow shoulder.   
The left lane departure model also indicated that drivers who spend more time traveling 
over the speed limit are less likely to have a lane departure.  Aggressive drivers may be 
more likely to lane keep even though the consequences of leaving their lane are more 
likely to be severe.  The opposite effect was found in right side lane departures where an 
increased amount of time traveling over the speed limit resulted in an increased odds of 
having a right side lane departure.  Results that were counterintuitive in the right side lane 
departure model include an increase in the odds of a lane departure as lane width 
increases and presence paved shoulder had higher odds of a right lane departure than any 
other type of shoulder.  This may be due to drivers paying more attention and lane 
keeping better when lanes are narrow or no shoulders are present. 
 
STUDY LIMITATIONS 
The study provided useful information which can be used to better understand why lane 
departures occur and the outcomes do demonstrate the value of using naturalistic data 
that could not have been observed otherwise.  However, there are several limitations 



which should be acknowledged.  First, the sample size was limited due to the available 
data which may have some consequences for the statistical models.  For example, the 
coefficients for several covariates were not as intuitive as expected and the small sample 
size may not been sufficient to develop a robust model.  Results may also have been 
affected by correlations which were not noted in the model.  A larger dataset, such as the 
one being collected as part of the SHRP 2 program can solidify the results more 
concretely. 
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