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ABSTRACT   
 
Few studies have analyzed the impacts of freight movements (large truck) on crash rates.  This 
study explores a novel application of a method to large truck movements, namely the random 
parameters tobit regression model, by examining crash rates (instead of frequencies) in truck-
miles traveled and ton-miles of freight in the US as continuous censored variables. Using a 
nationwide crash database, the empirical results illustrate that the random-parameters tobit 
regression model provides an increase understanding of the factors determining large truck crash 
rates.  
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parameters tobit model. 
  



2 
 

INTRODUCTION 
 
As the national economy continues to recover, the volume of large trucks (i.e., having a gross 
vehicle weight rating of more than 10,000 pounds) present on the nation’s highway system will 
also experience slow but consistent growth. This increased growth in large truck volume poses 
many challenges for transportation organizations that operate, maintain, and construct the 
transportation system. One example is the presence of increased safety hazards due to large 
trucks on highways—that is, the dangers associated with large trucks when mixed with passenger 
vehicles (Douglas, 2003). Recent statistical data have shown that large trucks have been 
responsible for more fatalities in the United States (US) than passenger vehicles based on the 
number of registered vehicles and vehicle-miles traveled (VMT) (FHWA, 2010; NHTSA, 2008). 
For example, large trucks accounted for roughly four percent of registered vehicles and about 
eight percent of VMT in 2008, but eleven percent of motor vehicle involved crash deaths in 2008 
were due to large trucks (FHWA, 2010). To further illustrate the gravity of large truck involved 
crashes, Figure 1 shows the number of passenger vehicles and large trucks involved in fatal 
crashes over the period from 1999 to 2008. As seen from Figure 1, large truck involved crashes 
on average lead to more fatalities compared to passenger vehicles per 100 million VMT. 
Although the trend slopes downwards (possibly due to advancements in safety technologies and 
some combination of increased fuel prices and economic factors), the numbers are still 
concerning especially given the percentage of trucks on the nation’s highways.    
 
 

 
 

Figure 1: Vehicles involved in Fatal Crashes per 100 million VMT (FHWA, 2010) 
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While fatalities are a major aftermath of large truck involved crashes, the societal effects 
and cost associated with the resulting crashes are remarkably high—for example, expenses 
related to loss of life, medical attention, and insurance, and short term and long term physical 
and emotional effects (Miller, 1993). Moreover, large truck involved crashes greatly influence 
the level of injury severity experienced by those involved (Chang and Mannering, 1999). As 
such, these types of crashes are gnarring increased public and media attention as well increased 
interest from academia, transportation safety professionals, and the trucking industry. 
Consequently, large trucks drive the national economy through daily freight movements and 
would not be going away anytime soon.  
 

To better understand the safety impacts related to increased large truck traffic on the 
nation’s highway system, tools need to be developed that can aid transportation safety 
professionals as well as trucking industry operations managers in the avoidance and mitigation 
(i.e., aid them in the development of countermeasures) of large truck involved crashes. With this 
in mind, our study aims to add to the current literature by proposing a methodological approach 
that takes into account fatalities per million truck-miles traveled and fatalities per ton-miles of 
freight for large truck involved crashes. This is done through the application of a random 
parameters tobit modeling (censored at zero) framework. Through this, we seek to shed light on 
possible contributing factors to large truck involved crashes.  
 

Over the last two decades, crash frequency modeling approaches have been widely used 
in traffic safety analysis. The most frequently applied models in this regard have been the 
Negative Binomial and Poisson models (Shankar et al., 1995; Poch and Mannering, 1996; Abdel-
Aty and Radwan, 2000; Savolainen and Tarko, 2005) and their variants the zero-inflated Poisson 
and zero-inflated Negative Binomial models (Shankar et al., 1997; Carson and Mannering, 2001; 
Lee and Mannering, 2002), random parameter Negative Binomial models (Shankar et al., 1998; 
Chin and Quddus, 2003; Anastasopoulos and Mannering, 2009), Markov switching of two 
different state of crash occurrence (Malyshkina and Mannering, 2009) and Bayesian statistics on 
Negative Binomial models (Park et al., 2010). Although literature in crash frequency modeling is 
rich, severe crash rates in terms of number of crashes per VMT has not been widely studied. 
Specifically, literature pertaining to the modeling of fatalities per million truck-miles traveled or 
fatalities for ton-miles with respect to freight movements is relatively sparse. Using Exposure-
based crashes such as crashes per 100 million VMT instead of traditional crash frequency as the 
dependent variable carries more practical significance since crash rates are widely used in crash 
reporting (Anastasopoulos et al., 2008). 
  

Trucking is important to the national economy, but it also presents a significant safety 
concern (Zhu and Srinivasan, 2011). In the 2007 Commodity Flow Survey trucks accounted for 
70.7 percent of all freight movement, 68.8 percent by weight, and 39.8 percent by ton-miles of 
freight (USDOT/BTS, 2008). Zhu and Srinivasan (2011) illustrate that the unique operating 
characteristics, driving behavior and skills, design-weight related issues for trucks as a mode for 
freight movements significantly impacted the frequency of crashes, and severity of injuries 
sustained.  This is further illustrated from the fact that 413,000 large trucks were involved in 
traffic crashes resulting in 4,808 fatalities, accounting for 12 percent of the total fatality of all 
crashes in 2007 (NHTSA, 2008). 
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In summary, the objective of this study is then to seek those factors related to human (i.e., 
drivers and passengers), vehicle and road-environment and weather that influence fatalities rates 
as the highest level of injury severity for large truck involved crashes using a random parameters 
tobit modeling framework to account for heterogeneity (Tobit model applications to 
transportation problems have primarily assumed fixed parameter estimates see Weiss, 1992; 
Talley, 1995; Nolan, 2002; Anastasopoulos et al., 2008). The number of fatalities per million 
truck-miles traveled and number of fatalities per ton-miles for large truck freight movements is 
considered as a continuous variable instead of discrete integer (non-negative count) over a period 
of time. Since there is a likelihood of zero fatalities per million truck-miles traveled or zero 
fatalities per ton-miles of freight, this research is focused on fatalities higher than zero as a rate 
of safety indicator over a time period on US interstates, where the random parameters tobit 
modeling framework provides the flexibility of censoring the irrelevant count process in the 
regression estimation and at the same time account for unobserved factors that may vary across 
observations.  To best of the authors’ knowledge, these are the first attempts to model fatalities 
per million truck-miles traveled and number of fatalities per ton-miles for large truck freight 
movements utilizing a random parameters tobit modeling framework.  
 
METHODOLOGY 
 
To achieve a better understanding of the causal factors associated to larger tuck involved crashes, 
we seek to develop a statistical model that can be used to determine those influencing factors that 
affect the fatalities per million truck-miles traveled and fatalities per ton-miles for large truck 
freight movements using a tobit modeling framework first introduced by James Tobin (1958).  
The standard tobit model (i.e., fixed parameters) is a statistical model in which the range of the 
response variable is constrained in some way (i.e., censored). Censoring occurs when data on the 
response variable are limited (or lost) and can result in data clustering at either upper or lower 
thresholds. In contrast to truncated data, censored data provides information on non-limited 
values not considered in the former—that is, in censored data all the observations are included in 
the dataset.  
 

For this work, the standard tobit model is then expressed (for large truck involved in 
crash i) using a lower limit of zero (i.e., censored at zero) which is regarded the condition in our 
analysis for zero fatalities per million truck-miles traveled and zero fatalities per ton-miles of 
freight as (Washington et al, 2011): 
 

!!∗ = !!! + !! ,              ! = 1,2,… ,!         
 
!! = !!∗   if   !!∗ > 0 
 
!! = 0     if   !!∗ ≤ 0 

 
(1) 

 
where: 
Y! :   is the dependent variable (fatalities per million truck-miles traveled or fatalities 

per ton-miles of freight),  
!!:   is a vector of independent variables (e.g., human, roadway segment, vehicle, and 

crash mechanism characteristics),  
! :      is a vector of estimable parameters,  



5 
 

!  :     is the number of observations in the sample used in the model, and  
!! :     is normally and independently distributed error term with zero mean and constant 

variance    !!.  
 
 However, to account for heterogeneity (unobserved factors that may vary across 
observations), Greene (2007) has developed estimation procedures (simulation based maximum 
likelihood estimation) for incorporating random parameters in tobit (censored regression) models 
(see Moeltner and Layton, 2002 for power outage costs application). To allow for such random 
parameters in tobit models, estimable parameters can be written as 

 
!! = ! + !! (2) 
 
where: 
!! : is randomly distributed term (for example a normally distributed term with mean 

0 and variance    !!) 
 
With this equation, the tobit model for large truck involved in crash i becomes !!∗|!! = !!! + !!. 
The corresponding log-likelihood can be written as  
 

!! = !" g !! ! !!∗|!! !!!
!!∀!

 (3) 

   
where: 
g ∙  : is the probability density function of the !!, and  
! ∙  : is the probability for the tobit model. 

 
Maximum likelihood estimation of the tobit model shown in Eq. (3) is undertaken with 

simulation approaches due to the difficulty in computing the probabilities.  The most widely 
accepted simulation approach uses Halton draws which is a technique developed by Halton 
(1960) to generate a systematic non-random sequence of numbers.  Halton draws have been 
shown to provide a more efficient distribution of the draws for numerical integration than purely 
random draws (Bhat, 2003; Train, 1999).   

For estimation procedures of the standard tobit model and marginal effects derivations 
the reader is referred to Amemiya (1973, 1985), McDonald and Moffitt (1980), Roncek, (1992), 
and Anastasopoulos et al. (2008). 
 

 
EMPIRICAL SETTING  
 
To illustrate the application of the fixed- and random-parameters tobit models, crash data were 
collected from the Fatality Analysis Reporting Systems (FARS) from 2005 to 2008. FARS is a 
nation-wide crash census system where a set of files have been built documenting all qualifying 
fatal crashes that occurred within all the states in the U.S. The observation in the model is a fatal 
crash (A variable – Fatals includes the total number of fatalities in a fatal collision reported in 
the FARS database system) involving a motor vehicle where at least a large truck is involved in 
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the fatal collision traveling on U.S. interstate system resulting in a fatal (or fatalities) within 30 
days for the collision. Annual average daily traffic (AADT) is not considered in this study.  
  

The ton-miles of freight data from 2005 to 2007 were collected from the Bureau of 
Transportation Statistics special tabulation (BTS/RITA, 2010), whereas, truck-miles traveled 
data from 2005 to 2008 were collected from FHWA travel reports (FHWA, 2009) and secondary 
estimation procedures includes use of State supplied data. Since the crash data were limited to 
the U.S. interstate system, data for the truck-miles traveled and ton-miles of freight models are 
limited to the U.S. interstate system.  
 

For model estimation, the truck-miles traveled and ton-miles of freight were aggregated 
for the range of years of 2005 to 2008 and 2005 to 2007, respectively. Then, fatalities per million 
truck-miles traveled and fatalities per ton-miles of freight were calculated as follows:  
 

!"#"$%#&  !"#$ =   
!"#$%&  !"  !"#"$%#%&'
!"#$% −!"#$%  !"#$%&%'

∗ 1,000,000 (4) 

 

!"#"$%#&  !"#$ =   
!"#$%&  !"  !"#"$%#%&'

!"# −!"#$%  !"  !"#$%ℎ! ∗ 1,000,000
∗ 1,000,000   (5) 

 
 

The total number of observations for fatalities per million truck-miles and fatality per 
ton-miles of freight are 3498 and 2714, respectively.  The crash data were processed using the 
statistical software SAS. The LIMDEP software was utilized to estimate the fixed- and random-
parameter tobit models. Table 1 illustrates descriptive statistics for key variables.  
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Table 1 Descriptive statistics of key variables 
 

Variables 
Fatalities per million truck-

miles traveled 
Fatalities per ton-miles of 

freight 
Mean Std. Dev. Mean Std. Dev. 

Fatalities per million truck-miles traveled 5.676 3.261 - - 
Fatalities per ton-miles of freight - - 0.985 0.58 
Manner of collision  

0.367 0.482 - - 
(1 if rear-end, 0 otherwise) 
Manner of collision (1 if angle, 0 otherwise) 0.065 0.246 0.069 0.253 
Ambient light condition (1 if dawn time, 0 otherwise) 0.027 0.163 0.027 0.163 
Surface condition (1 if wet, 0 otherwise) 0.134 0.341 - - 
Weather condition (1 if foggy, 0 otherwise) - - 0.017 0.129 
Weather condition (1 if rainy, 0 otherwise) 0.093 0.289 - - 
Traffic median barrier (1 if divided highway with 
traffic barrier, 0 otherwise) 0.291 0.454 0.28 0.449 

Time of the day (1 if 5 pm in the evening, 0 otherwise) 0.041 0.198 0.043 0.203 
Time of the day (1 if 6 pm in the evening, 0 otherwise) 0.034 0.183 0.034 0.181 
Trailing unit (1 if two trailing unit, 0 otherwise) 0.051 0.219 0.052 0.222 
State specific crash information (1 if Texas, 0 
otherwise) 0.091 0.287 0.093 0.29 

Month of the year (1 if month is August, 0 otherwise) 0.083 0.276 - - 
Month of the year (1 if month is December, 0 
otherwise) - - 0.076 0.265 

Day of the weekend (1 if Friday, 0 otherwise) - - 0.16 0.367 
Crash related human factors (1 if driving too fast, 0 
otherwise) 0.068 0.252 0.079 0.271 

Driver's license type (1 if license is valid, 0 otherwise) 0.863 0.343 - - 
Involved vehicles in crash  1.843 1.369 1.81 1.195 
Number of person not fatally insured 2.802 4.206 2.739 4.152 
 
 
 
EMPIRICAL RESULTS 
 
Table 2 and Table 3 present estimation results for the tobit fixed- and random-parameters models 
for fatalities per million truck-miles traveled and fatalities per ton-miles of freight, respectively. 
The random parameters tobit models were estimated using simulation-based maximum 
likelihood with 200 Halton draws. This number of draws has been empirically shown to produce 
accurate parameter estimates (Bhat, 2003; Milton et al., 2008; Gkritza and Mannering, 2008). 
With regard to the distribution of the tobit random parameters, consideration was given to the 
normal, lognormal (which restricts the impact of the parameters to be either negative or positive), 
triangular, and uniform distributions. However, only the normal distribution was found to be 
significant. The estimation results in Tables 2 and 3 show the estimated parameters with their 
respective statistical significance (t-stat and P-value) and plausible sign based on the sample 
sizes of 3498 (fatalities per million truck-miles traveled) and 2714 (fatalities per ton-miles of 
freight) of crash observations that had complete information of all variables used.  
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The Madalla pseudo !! was estimated for both the fixed- and random-parameter tobit 
models (see Tables 2 and 3) (Madalla, 1983). Veall and Zimmermann (1996) show that the 
Madalla pseudo !! is good indicator of overall goodness of fit and is computed as (also see 
Anastasopoulos et al., 2008) 
 

!"#"$$"  !"#$%&  !! = 1− ![!! !! ! !!! ! /!] (6) 
 

where: 
!! !  : is log-likelihood at convergence,  
!! 0  :  is log-likelihood at zero, and  
! :  is the number of observations.  
 
For the fatalities per million truck-miles traveled model, the pseudo !! were found to be 

0.227 and 0.355 for the fixed- and random-parameter tobit models, respectively.  Similarly, for 
the fatalities per ton-miles of freight model, the pseudo !! were found to be 0.222 and 0.360 for 
the fixed and random parameter tobit models, respectively. The pseudo !! for the tobit models 
indicate that the random parameter tobit models are more robust in explaining unobserved 
heterogeneity than fixed parameter tobit models. Furthermore, a likelihood ratio test comparing 
the fixed- and random-parameters models for the fatalities per million truck-miles traveled 
(!! = 629.51) and fatalities per ton-miles of freight (!! = 529.54) indicates that we are more than 
99.99% (a p-value near zero) for both models (see Washington et al., 2011). Therefore, the 
interpretation of the estimation of results will be confined to both the fatalities per million truck-
miles traveled and fatalities per ton-miles of freight random parameter tobit models.  

 
To assess the degree of influence of specific variables, Table 4 illustrates the computed 

marginal effects for the fatalities per million truck-miles traveled and fatalities per ton-miles of 
freight for the random parameter tobit models, respectively. Finding the marginal effect of an 
independent variable on the expected value of a dependent variable for all cases,  ! ! , was 
calculated using the McDonald and Moffitt (1980) formula:  

 
!"[!]/(!!!   ) = !(!)×(!"[!∗  ]/(!!!))+ ![!∗]×(!"(!)/(!!!   )) (7) 
 
where: 
! !   :  is the cumulative normal distribution function, associated with the proportion of 

cases above the limit (in this case zero),  
![!∗]:  denotes observations above zero which indicates fatalities per million VMT and 

fatalities per ton-miles of freight (not censored), 
           !" !∗  

!!!
 : denotes observations above zero which indicates fatalities per million VMT and 

fatalities per ton-miles of freight (not censored), 
                !" !

!!!
: is the change in the cumulative probability of being above zero associated with an 
independent variable. 
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Table 2 Tobit regression estimation for fatalities per million truck-miles traveled  
 

Variables  
Fixed Parameter Tobit  Random Parameter Tobit 

Coeff. t-stat P-value Coeff. t-stat P-value 
Constant 3.430 19.263 0.000 3.916 19.435 0.000 
 
Crash Mechanism 
 Manner of collision  
  (1 if rear-end, 0 otherwise) 

-0.186 -1.744 0.081 -0.229 -2.122 0.034 

 Manner of collision (1 if angle, 0 
otherwise)   0.591 2.901 0.004 0.725 4.961 0.000 

Temporal Characteristics 
Ambient light condition (1 if dawn   time, 0 
otherwise) 

0.598 1.995 0.046 0.920 4.175 0.000 

Time of the day (1 if 5 pm in the evening, 0 
otherwise) 0.756 3.063 0.002 0.898 5.046 0.000 

Time of the day (1 if 6 pm in the  evening, 0 
otherwise) 0.809 3.040 0.002 0.806 4.574 0.000 

Month of the year (1 if month is August, 0 
otherwise) 0.416 2.362 0.018 0.432 3.131 0.002 

Location Characteristics 
State specific crash information (1 if Texas, 
0 otherwise) 

0.501 2.950 0.003 0.361 2.504 0.012 

Environment - Weather  
Weather condition (1 if rainy, 0 otherwise) -0.834 -3.266 0.001 -0.741 -3.275 0.001 

Road  
Surface condition (1 if wet, 0 otherwise) 0.565 2.606 0.009 0.478 2.609 0.009 

Road - Geometry  
Traffic median barrier (1 if divided 
highway with traffic barrier, 0 otherwise) 

-0.234 -2.182 0.029 -0.233 -2.007 0.045 

Vehicle Configuration 
Trailing unit (1 if two trailing unit, 0 
otherwise) 

-0.517 -2.334 0.019 -0.488 -1.881 0.060 

Human Factor 
Vehicle maneuver (1 if going straight, 0 
otherwise) 

0.398 3.527 0.000 0.174 1.508 0.132* 

Crash related human factors (1 if driving 
too fast, 0 otherwise) 1.167 5.970 0.000 0.741 4.897 0.000 

Driver's license type (1 if license is valid, 0 
otherwise) 0.399 2.813 0.005 0.332 2.003 0.045 

Exposure to Injury Severity 
Number of vehicles involved in the crash 0.438 10.211 0.000 0.293 8.887 0.000 

Std. dev. of parameter distribution    0.409 36.118 0.000 
Number of persons not fatally injured in the 
crash 0.246 17.328 0.000 0.236 19.659 0.000 

Std. dev. of parameter distribution    0.247 32.781 0.000 
Number of variables 17 17 
Log-likelihood at zero, LL(0) -9097.403 -9097.403 
Log-likelihood at convergence, LL(β) -8646.047 -8331.289 
Χ2 = –2[LL(0) – LL(β)] 902.71 1532.228 
Number of observations 3498 3498 
Madalla pseudo-R2 0.227 0.355 

*the p-value is considered upto 0.15 indicating that we are 85% confident that coefficient estimates are significantly different 
from zero. 
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Table 3 Tobit regression estimation for fatalities per ton-miles of freight 
 
 Fixed Parameter Tobit  Random Parameter Tobit 
Variables Coeff. t-stat P-value Coeff. t-stat P-value 
Constant 0.679 32.485 0.000 0.696 33.487 0.000 

Std. dev. of parameter distribution - - - 0.025 3.096 0.002 
 
Crash Mechanism 
Manner of collision (1 if angle, 0 otherwise)   

0.136 3.469 0.000 0.135 5.038 0.000 

Temporal Characteristics 
Ambient light condition (1 if dawn time, 0 
otherwise) 

0.110 1.916 0.055 0.108 3.146 0.002 

Time of the day (1 if 5 pm in the evening, 0 
otherwise) 0.147 3.025 0.003 0.137 4.205 0.000 

Time of the day (1 if 6 pm in the evening, 0 
otherwise) 0.185 3.391 0.001 0.164 5.232 0.000 

Day of the week (1 if Friday, 0 otherwise) 0.062 2.312 0.021 0.077 3.117 0.002 
Month of the year (1 if month is December, 
0 otherwise) -0.100 -2.686 0.007 -0.062 -1.775 0.076 

Location Characteristics 
State specific crash information (1 if Texas, 
0 otherwise) 

0.109 3.194 0.001 0.092 3.226 0.001 

Environment - Weather 
Weather condition (1 if foggy, 0 otherwise) -0.267 -3.471 0.000 -0.214 -2.488 0.013 

Road - Geometry 
Traffic median barrier (1 if divided highway 
with traffic barrier, 0 otherwise) 

-0.052 -2.350 0.019 -0.036 -1.571 0.116* 

Vehicle Configuration 
Trailing unit (1 if two trailing unit, 0 
otherwise) 

-0.102 -2.309 0.021 -0.082 -1.627 0.104* 

Human Factor 
Crash related human factors (1 if driving too 
fast, 0 otherwise) 

0.223 6.041 0.000 0.173 6.366 0.000 

Exposure to Injury Severity 
Number of vehicles involved in the crash 0.087 8.923 0.000 0.075 11.489 0.000 

Std. dev. of parameter distribution - - - 0.068 27.787 0.000 
Number of persons not fatally injured in the 
crash 0.043 15.117 0.000 0.039 17.377 0.000 

Std. dev. of parameter distribution - - - 0.055 35.470 0.000 
Number of variables 14 14 
Log-likelihood at zero, LL(0) -2373.439 -2373.439 
Log-likelihood at convergence, LL(β) -2032.271 -1767.500 
Χ2 = –2[LL(0) – LL(β)] 682.336 1211.878 
Number of observations 2714 2714 
Madalla pseudo-R2 0.222 0.360 
*the p-value is considered upto 0.15 indicating that we are 85% confident that coefficient estimates are significantly different 
from zero. 
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Table 4 Marginal effects comparison for fixed- and random-parameter tobit models for fatalities 
per million truck-miles traveled and fatalities per ton-miles of freight  
 

Variables 
Fatalities per million truck-

miles traveled 
Fatalities per ton-miles of 

freight 
Random Fixed Random Fixed 

Constant 3.869 3.349 0.688 0.661 
Manner of collision  

-0.226 -0.182 - - 
(1 if rear-end, 0 otherwise) 
Manner of collision (1 if angle, 0 otherwise) 0.716 0.576 0.133 0.132 
Ambient light condition (1 if dawn time, 0 
otherwise) 0.909 0.583 0.107 0.108 

Surface condition (1 if wet, 0 otherwise) 0.472 0.551 - - 
Weather condition (1 if foggy, 0 otherwise) - - -0.211 -0.26 
Weather condition (1 if rainy, 0 otherwise) -0.732 -0.815 - - 
Traffic median barrier (1 if divided highway with 
traffic barrier, 0 otherwise) -0.23 -0.229 -0.036 -0.05 

Time of the day (1 if 5 pm in the evening, 0 
otherwise) 0.888 0.738 0.136 0.143 

Time of the day (1 if 6 pm in the evening, 0 
otherwise) 0.797 0.789 0.162 0.18 

Trailing unit (1 if two trailing unit, 0 otherwise) -0.482 -0.505 -0.081 -0.099 
Vehicle maneuver (1 if going straight, 0 otherwise) 0.172 0.388 - - 
State specific crash information (1 if Texas, 0 
otherwise) 0.356 0.489 0.091 0.106 

Month of the year (1 if month is August, 0 
otherwise) 0.426 0.406 - - 

Month of the year (1 if month is December, 0 
otherwise) - - -0.062 -0.097 

Day of the weekend (1 if Friday, 0 otherwise) - - 0.076 0.061 
Crash related human factors (1 if driving too fast, 0 
otherwise) 0.732 1.139 0.171 0.217 

Driver's license type (1 if license is valid, 0 
otherwise) 0.328 0.39 - - 

Number of vehicles involved in the crash 0.29 0.428 0.074 0.006 
Number of persons not fatally injured in the crash 0.233 0.24 0.039 0.084 

 
 
Fatalities per Million Truck-miles Traveled Model 
 
Two parameters were found to be random with statistically significant standard deviations for 
their assumed distributions. Also, for the parameters whose standard deviations were not 
statistically different from zero, the parameters were fixed to be constant across the observations. 
The estimation results shown in Table 2 indicate that the number of vehicles involved in the 
crash, and the number of persons not fatally injured in the crash were found to produce 
statistically significant random parameters.  
 

With regard to the parameters found to be random, the exposure to injury severity 
variable the more vehicles involved in a crash resulted in a random parameter that is normally 
distributed, with mean of 0.293 and standard deviation of 0.409. The positive sign indicates that 
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an increase in number of vehicles involved in a crash per million trucks-mile traveled increases 
the likelihood of fatalities (less than 23.7 percent of the distribution would have a negative 
value). On possible explanation for this finding is that crashes with many cars (e.g., pile ups) 
varies in severity (may not always lead to fatalities) due to some unforeseen pile up dynamics 
and preventive technologies present in vehicles (Chakravarthy et al., 2009). With respect to 
marginal effects, Table 4 shows that a unit increase in the number of vehicles involved in the 
crash results in an average 0.29 increase in the number of fatalities per million truck-miles 
traveled. This variable was also found to be significant by Chen and Chen (2011) for multi-
vehicle collisions.  
 

Similarly, the exposure to injury severity variable for the number of persons not fatally 
injured in the crash was also found to be random and normally distributed, with mean of 0.236 
and standard deviation of 0.247. Given the distributional patterns, an increase in the number of 
persons not fatally injured in a crash increases fatalities per million truck-miles traveled but with 
varying magnitude—that is, less than 16.9 percent of the distribution (less than zero) would have 
a negative value (would increase fatalities).  A possible reason for this finding may be due to 
under reporting by police because persons dying sometime later due to injuries sustained during 
the crash may not be updated later on the police reports themselves. Marginal effects show that a 
unit increase in persons not injured in the crash results in an average 0.23 increase in the number 
of fatalities per million truck-miles traveled. More broadly, Islam and Mannering (2006) also 
indicate that the likelihood of fatality increases when one or more occupants travel with the 
driver. 
 

The indicator variable representing rear-end collisions decreases fatalities per million 
truck-miles traveled. This may be due to most occupants being in the front seats of their vehicle 
(trucks) and are afforded more full body protection from the rear seats (trailers) and head 
restraints (airbags) upon collision. In addition, the direction of the impact and the resulting 
relative movement of the occupants minimizes’ the chance of more serious injuries of striking 
more lethal objects in the vehicle (Duncan et al., 1998). The average marginal effect for this 
variable is -0.226 (and only a decrease of -0.182 for the fixed parameter model) 

 
 The angle collision indicator variable increases fatalities per million truck-miles traveled. 
In contrast to rear-end collisions, angled collisions lead to more severe injury outcomes (e.g., 
fatalities) especially when large trucks are involved. This may be due to the structural dynamic 
makeup of vehicles especially when struck in an angle—not as energy absorbing as the front or 
rear of vehicles (Abdel-Aty and Abdelwahad, 2004). Marginal effect for this variable is 0.716 
compared to 0.576 for the fixed parameter model.  
 

With regards to the temporal variables, all the indicator variables increase fatalities per 
million truck-miles traveled. First, the dawn variable (before the sunrise) increases the likelihood 
of fatalities. This may be a result of driver experiencing drowsiness and maybe capturing, among 
other factors, the effects related to long hours of driving. Next, the times from 5 to 6 pm 
increases fatalities per million truck-miles traveled. This maybe also capturing some driver 
related factors (as in the dawn variable) with regards to the level of alertness and fatigue.  During 
the summer periods, in particular, August increases fatalities per million truck-miles traveled. 
This may be reflecting vehicular interactions on highways due to preferable weather condition 
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for outdoor activities especially during this time of year. A marginal effect of 0.426 for the 
August indicator variable is observed for the random parameters tobit model compared to 0.402 
for the fixed parameter tobit model.  
 

Crashes occurring in the state of Texas indicator variable increases fatalities per million 
truck-miles traveled. It is interesting that this variable was found to increase the fatalities per 
million truck-miles traveled, a possible explanation may be the number truck related freight 
movements in the State of Texas due to it sharing a border with North American Free Trade 
Agreement (NAFTA) member Mexico. This variable may be capturing the driving complexities 
related to the diverse geographical nature of the State of Texas.     
 

With respect to weather, the indicator variable for rain was found to be significant and 
decreased the fatalities per million truck-miles traveled. A possible explanation is that truck 
drivers are more cautious while driving through rain. This result is supported by Zhu and 
Srinivasan (2011) and Chen and Chen (2011) based on the risk-averse behavior of the drivers in 
the adverse weather conditions. On one hand, the indicator variable for surface condition being 
wet increases fatalities per truck-miles traveled. This is possibly capturing, among other factors, 
vehicular conditions (e.g., tire wear leading to hydroplaning). Chen and Chen (2011) also show 
for wet surface conditions due to snow/slush, increases the likelihood of collisions.  
 

The presences of median barriers (or not) separating the opposing traffic flow decreases 
fatalities per million truck-miles traveled. As shown in Anastasopoulos et al. (2008) median 
barrier potentially reduces head-on collisions and may lower injury severity, which significantly 
reduces the likelihood of fatalities.  
 
  The indicator variable for a truck hauling two trailers decreases the likelihood of fatalities 
per million truck-miles traveled.  A possible reason is that these large trucks are primarily driven 
by professional truck drivers with practical safety training especially for hauling more than one 
trailer unit. 
  

Driving the truck in the straight in a traffic lane as a crash avoiding maneuver (or not) 
increases fatalities per million truck-miles traveled. This may be due to, among other factors, the 
kinematics revolving around large truck involved crashes. Akin, driving too fast was identified 
as increasing the fatalities per million truck-miles traveled. Speed (being the top factor identified 
in the FARS data) has been shown to increased fatalities rates due to due higher energy transfer 
between colliding bodies (Craft, 2010).   
 

The indicator variable for a truck driver who poses a valid license (or not) increases 
fatalities per million truck-miles traveled. This variable may be capturing factors related to the 
level of experience or years of driving.    
 
Fatalities per Ton-miles of Freight Model  
 
To avoid repetition in the explanation of the specified estimates found in the two models, only 
variables specific to the fatalities per ton-miles of freight will be explained in this section. 
Turning to the model specification, three parameters were found to be random with statistically 
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significant standard deviations for their assumed distributions. Also, for the parameters whose 
standard deviations were not statistically different from zero, the parameters were fixed to be 
constant across the observations. The estimation results shown in Table 3 indicate that the 
constant, the number of vehicles involved in the crash, and the number of persons not fatally 
injured in the crash were found to produce statistically significant random parameters.  
 

The constant for fatalities per ton-miles of freight is found to be random and normally 
distributed with mean of 0.696 and standard deviation of 0.025. With these distributional 
patterns, the constant term is less than zero for 0% and more than zero for 100% of the large 
truck involved fatalities per ton-miles of freight. This variability is likely capturing the 
unobserved heterogeneity in the severity outcomes that could include factors such as traffic 
condition, among other factors, which was not directly measured in the dataset for this model.  
  

With regards to the significant temporal variables, the indicator variable for December 
was found to be significant and decreased fatalities per ton-miles of freight. The significance of 
this variable may stem from the lower activity of freight movements due to winter (the 
possibility of adverse weather conditions such as snow), and seasonal effects (e.g., Christmas 
holidays). Typically, freight movements are at their highest in the early fall for the winter 
holiday season. In addition, the day of the week the Friday indicator variable increases fatalities 
per-ton miles. Although freight movements are made pretty uniformly from Monday thru Friday, 
this variable may be capturing, among other factors, some week-end effects. 
 

Consistent to Zhu and Srinivasan (2011) we find that the presence of foggy weather 
conditions has a negative effect on fatalities per ton-miles of freight. As was the finding with the 
rain indicator variable earlier, truck drivers are more cautious while driving through foggy 
conditions. Additionally, this variable may be capturing some risk-averse behavior of drivers.   
 
SUMMARY AND CONCLUSIONS 
 
This study provides a demonstration of the random parameters tobit regression as a viable 
methodological approach to gain new insights into factors that significantly influence fatalities 
per million truck-miles traveled and fatalities per ton-miles of freight.  The random-parameters 
tobit regression modeling framework is an important approach because it allows us to account 
and correct for heterogeneity that can arise from factors such as human (i.e., drivers and 
passengers), vehicle, road-environment, weather, variations in police reporting, temporal and 
other unobserved factors not captured.  
 
 Using four years of data for fatalities per million truck-miles traveled and three years of 
data for fatalities per ton-miles of freight our estimation results provide some interesting 
findings, respectively. For example, factors related to the type of collision were found to be 
significant including rear-end and angled crashes as was driving too fast. Temporal factors were 
also found to be significant such as the effects of dawn, evening times between 5 and 6 pm, and 
the months of August and December. In terms of locational variables the State of Texas was 
found to be a contributing factor for both models. Also, factors related to weather which included 
rain, foggy, and wet surfaces were significant. With regards to road geometry, the presences of 
traffic medians impacted both models. The hauling of two trailers by a truck was also found to be 
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significant for both models. And, exposure variables number of vehicles involved in a crash and 
the number of persons not fatally injured were significant.  Although traffic data such as AADT 
has not been incorporated in the dataset for the developed models, there are variables in both 
models representing the time of the day (dawn time, between 5 pm to 6 pm), day of the week 
(Friday) and month of the year (August, December) serve as a proxy for traffic conditions on the 
highway system.  
 
 Although this study is exploratory in nature, the modeling approach presented in this 
paper offers a flexible methodology that has considerable potential to analyze fatalities per 
million truck-miles traveled and fatalities per ton-miles of freight. Applying this approach to 
state specific datasets with available AADT (average annual daily traffic) data and for more 
years, would potentially provide more information on the effects of contributing factors present 
and new on fatalities per million truck-miles traveled and fatalities per ton-miles of freight.  
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