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ABSTRACT 

The main objective of this paper is to compare two statistical techniques kernel density 

estimation (K) and Getis-Ord Gi* statistic using a Geographic Information System (GIS) for 

hotspot identification. The standardized Gi* is essentially a Z-value associated with statistical 

significance.  The two statistical techniques were compared using seven years of crash data 

(2000-2006) on I-630 (7.4 miles) in Arkansas. The highway had very high rate of crashes; 457 

crashes per mile were observed during the analysis period. I-630 is located in only one county 

and, therefore, assumed that the demographic effect will be minimal and mainly local spatial 

autocorrelation will be observed. Results indicated that the estimation by K and Gi* including 

three conceptualization of spatial relationships (CSR) for hotspots (high; categorized as high and 

low) were almost similar. Additionally, the three CSR methods (fixed distance, inverse distance, 

and inverse square distance) identified the same hotspots (high). Also, the range of Z values for 

Gi* for the hotspots (high) were similar for the three CSR‘s for years 2000 and 2001. For 2002 

and 2003, range of Z values for Gi* for the hotspots (high) were similar for inverse distance and 

inverse square distance CSR. Another data set, aggregated from 2004 to 2006 was used to 

identify hotspots by K and Gi* (inverse square distance, CSR). Results indicated similar hotspots 

identified by both methods. The reason may be due to the mathematical functions of K and G*i.  

Some of the key contributing factors in this paper are also discussed. 

INTRODUCTION  

“Hotspots,” “black spots,” or high crash locations are sites on a section of a highway that have 

an accident frequency significantly higher than expected at some threshold level of significance 

(Hakkert and Mahalel, 1978). The estimated highway crash cost to society in 2000 was a 

staggering $230 billion a year according to NHTSA, 2006. To reduce the highway crash cost, a 

plausible solution is the accurate identification of hotspots. Some of the commonly used hotspot 

identification methods are empirical Bayes (EB) (Hauer et. al., 2002), crash rate (CR) (Powers 

and Carson, 2004), and equivalent property damage only (EPDO) (Campbell and Knapp, 2005).  

Among the existing methods, EB method is considered to the best hotspot identification method. 

However, many cities and departments of transportation (DOTs) still use crash counts and rates 

to identify and rank high crash segments (Mitra, 2009). The crash rate and counts are simpler and 

straightforward to use, but not superior than the EB method. For methods like the EB method, 

special training and skills in statistical analysis are required; one of the reasons why DOTs still 

rely on simple methods (Mitra, 2009).  

Past studies have used crash data to identify high spatial concentrations of crashes (Norden et. 

al., 1956; Hakkert and Mahalel, 1978; McGuigan, 1991; Depue, 2003; Songchitruksa and Zeng, 

2010) using GIS. Though GIS-based methods may or may not be as superior as the EB method, 

they are at least better than methods that use crash counts or crash rates. Moreover, when 

overlaid with other layers, GIS-based mapping could help to associate high-crash locations with 

spatial factors. GIS have been widely used to geocode accident locations and develop maps of 

crashes using database queries (Levine et. al., 1995a; Levine et. al., 1995b; Affum and Taylor, 

1995; Kin and Levine, 1996; Austin et. al., 1997; Miller, 1999). McMohan (McMohan, 1999) 

used GIS to analyze pedestrian crash risk using buffering, cluster analysis, and spatial queries. 

Peled et al. (1996) used a GIS to generate maps of the distribution of crash concentrations. Some 
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of the other methods used are kernel density estimation (Flahaut et. al., 2003; Pulugurtha et. al., 

2007) and local spatial autocorrelation (Flahaut et. al., 2003) to identify hotspots.  

Point pattern analyses have been widely examined by scientists and a variety of methods were 

developed for detecting hotspots. The point pattern methods can be classified broadly into two 

categories (O‘Sullivan and Unwin, 2002, i) methods which examine first-order effects, which 

measure the variation in the mean value of the process like kernel density estimation, quadrant 

count analysis etc, and ii) methods which examine second-order effects which measure the 

spatial dependency of points for spatial patterns like Moran‘s I, Getis-Ord G statistic (Xie and 

Yan, 2008). 

The main objective of this paper is to compare two statistical techniques, kernel density 

estimation (K) and Getis-Ord Gi* (Getis and Ord, 1992; Ord and Getis, 1995) statistics using a 

GIS for hotspot identification. The choice of choosing K and Gi* statistic is discussed in the later 

sections of the paper. Additionally, three conceptualization of spatial relationships (CSR) were 

used to determine Gi* namely fixed distance band, inverse distance and inverse square distance 

and the best CSR for hotspot identification is recommended. Also, this paper identifies that 

though these two methods have different conceptualizations, both produce similar results under 

specific conditions of the selected parameters. Further investigations into these methods (K and 

G*i), when the mathematical forms are considered, shows a relationship that leads to similar 

identification of hotspots. Some of the contributing factors for the occurrence of crashes are 

considered and explained further in the results.  

The data and the choice of the methods used are explained next. Followed by the spatial 

autocorrelation index Getis-Ord Gi* and kernel density estimation (K) and the methodology. 

Later the results are explained and the paper ends with conclusions and recommendations for 

future research. 

DATA USED AND CHOICE OF METHODS 

Crash data for seven years (2000-2006) on I-630 in Arkansas have been used in this study, 

provided by the Arkansas Highway and Transportation Department (AHTD). I-630 is 7.4 miles 

in length and is located in only one county. I-630 has an average of 457 crashes per mile during 

the analysis period, AADT with an average of 94,921 vehicles/year. I-630 is located in Pulaski 

County, where the state capital of Little Rock is located. Little Rock has a population of 183,133 

and an area of 116.8 square miles (US Census, 2008).Other major highways like I-40, I-30, I-

430, I-440 and I-530 are also located in Pulaski County.  Figure 1, illustrates the location of I-

630 and the several highways surrounding it. It is assumed that the demographic effect will be 

limited to local conditions and may not vary widely in space. Therefore, local spatial 

autocorrelation, Getis-Ord G*i, is preferred for hotspot identification. Further specific details of 

Gi* statistic are discussed in the next section of the paper. The purpose of K is to produce a 

smooth density surface of point events (crashes) over space by computing event intensity as 

density estimation (Xie and Yan, 2008). K is one of the most popular methods for identification 

of hotspots, as it is easy to understand and implement (Bailey and Gatrell, 1995; Silverman, 

1986). Further, specific details of K are discussed in the next section of the paper. 
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Figure 1. Location of I-630  

Spatial autocorrelation 

The first law of geography states that ―everything is related to everything else, but near things 

are more related than distant things‖ (Tobler, 1970). The basic principle of spatial 

autocorrelation (SA) is similar and is defined as the correlation of a variable with itself through 

space. SA measures the strength of spatial autocorrelation and tests the assumption of 

independence (or randomness). If there are any systematic patterns in the spatial distribution of a 

variable, that variable is said to be spatially autocorrelated. If nearby areas are alike, the SA is 

positive. Negative autocorrelation applies to neighboring areas that are unlike, and random 

patterns exhibit no SA. SA also permits the examination of co-variations in properties observed 

in a two-dimensional geo-surface. SA indices do not explain why locations that have clusters of 

statistically significant crashes have higher incidence of crashes than other locations; therefore, 

SA methods cannot identify factors that cause crashes (Mitra, 2009).  

Getis-Ord Gi* Statistic  

G-statistics, developed by Getis and Ord, analyze evidence of spatial patterns (Getis and Ord, 

1992; Ord and Getis, 1995). They represent a global SA index. The Gi* statistic, on the other 

hand, is a local SA index. It is more suitable for discerning cluster structures of high or low 

concentration. A simple form of the Gi* statistic is (Songchitruksa, 2010): 
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where: Gi* is the SA statistic of an event i over n events. The term, xj, characterizes the 

magnitude of the variable x at events j over all n; the CSI at a particular location. The 

distribution of the Gi* statistic is normal when normality is observed in the underlying 
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distribution of the variable x. The threshold distance (i.e., the proximity of one crash to another) 

in this study was set to zero to indicate that all features were considered neighbors of all other 

features. This threshold was applied over the entire region of the study. The standardized Gi* is 

essentially a Z-value and can be associated with statistical significance as: 
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Positive and negative Gi* statistic with high absolute values correspond to clusters of crashes 

with high- and low-value events, respectively.  A Gi* close to zero implies a random distribution 

of events.  

Kernel Density Estimation (K) 

The kernel density method is a non-parametric method that uses a density estimation technique. 

It enables the observer to evaluate the local probability accident occurrence and degree of danger 

of a zone. For a given set of observations from an unknown probability density function, the 

Kernel estimator can be defined as: 
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where: h is called the smoothing parameter or bandwidth, K is called the kernel and 

^

f  is the 

estimator of the probability density function f . Thus, the kernel estimator depends on bandwidth 

(h) and kernel density (K). For a given kernel K, the kernel estimator critically depends on the 

choice of the smoothing parameter h. An appropriate choice of the smoothing parameter should 

be determined by the purpose of the estimate. 

Categorization of the Hotspots 

The hotspots were categorized based on the Z-value of the Gi* statistic. Categorization can based 

be on six classification schemes: equal interval, defined interval, quartile, natural breaks, 

geometric interval, and standard deviation. In the natural breaks scheme, the classes are based on 

natural categorizing inherent in the data. The break points are identified by the class breaks that 

best group similar values and maximize the differences between the classes. The features are 

divided into classes of the boundaries which correspond to relatively big jumps in the data 

values. This classification scheme was best suited to the present study (Krygier, 2010; ArcGIS).  

In this paper, hotspots were categorized using natural breaks and based on the Jenks‘ algorithm. 

This algorithm is a common method of classifying data in a choropleth map, a type of thematic 

map that uses shading to represent classes of a feature associated with specific areas (e.g., a 

population density map). This algorithm generates a series of values that best represent the actual 

breaks observed in the data, as opposed to some arbitrary classificatory scheme; thus, it preserves 
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true clustering of data values. Further, the algorithm creates k classes so that the variance within 

categories is minimized (Lewis, 1996). In this study, the categorization was carried out in two 

categories i.e., high and low. 

METHODOLOGY 

Initially, four years of crash data (2000-2003) was used to identify the hotspots using Gi* and K 

density estimation. Three conceptualization of spatial relationships (CSR) of the Gi* statistic 

namely; fixed distance, inverse distance and inverse square distance were used. The results were 

obtained for each year and matched with the hotspots identified by K. The differences in the 

identification of hotspots based on these three CSR were studied. Later, crash data aggregated 

from 2004 to 2006 were used to determine the hotspots using inverse square distance for the Gi* 

statistic and K. Results were compared in both cases. To understand the similar identification of 

hotspots using these methods, some of the crash contributing factors were considered. Further, 

the mathematical forms of the two methods (K and G*i), were considered to identify if a 

relationship exists between them. 

RESULTS 

This section presents the description of crashes which occurred during the analysis period. Next, 

the results of the identification of hotspots by the three CSR for Gi* statistic and K are presented 

and discussed. This is followed by examining the mathematical forms of the two methods (K and 

G*i) to understand the reason for identification of similar hotspots. Finally, this section ends with 

presentation of some of the key reasons for crash contributing factors.   

Table 1 presents the summary statistics of the crash frequency by year for I-630 from 2000 to 

2006. Some of the major contributing factors are presented in terms of the percentage of 

crashes. From Table 1, for column 4, the remaining percentage of crashes represents straight 

roadway alignment i.e., for year 2000 among 500 crashes, 15% occurred on curve and 85% 

occurred on straight roadway profile. Similarly for column 5, the other factors include level 

roadway profile and unknown.  

Table 1. Summary of crash statistics 

Year  

(1) 

CF 

(2) 

AADT 

(vehs/yr) 

(3)  

Curve*

(4) 

Grade*

(5)  

Types of Collisions* (6) 

Weekends* 

(7) 

DUI- 

Yes*  

(8) 

Rear-

end 

(a) 

Sideswipe 

Same 

Direction(b)  

Single 

Vehicle 

Crashes  

(c) 

2000 500 90563 15 19 50 10 23 19 4 

2001 523 93073 13 31 55 14 18 15 9 

2002 443 93528 12 27 49 16 23 12 5 

2003 537 97250 10 20 60 14 19 15 5 

2004 423 98667 8 22 55 14 26 17 5 

2005 446 90833 12 22 56 17 17 11 5 

2006 511 100533 12 19 53 13 23 18 4 
* indicate the percentage of crashes  
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(a)                                                            (b) 

 

 

    (c) 

Figure 2. Hotspot identification by three CSR for Gi* statistic and K for year 2000 
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(a)                                                               (b) 

 

                            (c) 

Figure 3. Hotspot identification by three CSR for Gi* statistic and K for year 2001 
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(a)                                                                      (b) 

 

(c) 

Figure 4. Hotspot identification by three CSR for Gi* statistic and K for year 2002 
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(a)                                                                           (b) 

 

      (c) 

Figure 5. Hotspot identification by three CSR for Gi* statistic and K for year 2003 
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Figures 2 to 5 indicate hotspot identification using Getis-Ord Gi* statistic and the Kernel density 

estimation (K) by each year from 2000 to 2003. From Figures 2 to 5 (a) represent the use of fixed 

distance, (b) represent the use of inverse distance, and (c) represent the use of inverse square 

distance, as the CSR for Getis-Ord Gi* statistic for the identification of hotspots. In the figures 

presented above, design (boxes, triangles, etc.) represent the hotspots identified by the Gi* 

statistic and dots shaded represent hotspots identified by K. It should be noted in the current 

study that only high values (among high and low) were compared between Gi* statistic and K. 

The analysis was carried out by projecting the crashes in ArcGIS (ver. 9.2), and the tools for K 

and Gi* were used. For the fixed distance band, a threshold value (proximity) of 100 feet was 

chosen. For inverse distance and inverse squared distance, the proximity was set to ‗zero‘ to 

indicate that all features were considered neighbors to all other features. Additionally, the 

crashes were given weights of 542, 29, 11, 6 and 1 based on the severity level. The weights are 

based on the crash costs for each crash type (Highway Safety Manual, 2010). They are the ratios 

of different crash costs with respect to property damage only crashes. The costs are $4,008,900 

for fatal crashes (S1); $216,000 for major injury (S2); $79,000 for minor injury (S3); $44,900 for 

complain of pain (S4) and $7,400 for property damage only crashes (S5), i.e., weight for fatal 

crash is 4008900/7400 = 542. Similarly, the other weights were computed and rounded to whole 

numbers. 

 

Results from Figures 2 to 5 indicate that the identification of hotspots by K and Gi* including 

three CSR for hotspots (high) were similar. Additionally, the three CSR methods identified 

similar hotspots (high). Further, the range of Z values for Gi* for the hotspots (high) were same 

for the three CSR‘s used for years 2000 and 2001. For 2002 and 2003, range of Z values for Gi* 

for the hotspots (high) were identical for inverse distance and inverse square distance CSR‘s. 

The identification of hotspots by inverse distance and inverse square distance CSR were similar 

and higher than the fixed distance CSR. These results show that the inverse distance and inverse 

distance square identified hotspots accurately and they were similar to K. Additional testing on 

the threshold distance was not carried out for the fixed distance CSR.  

 

The crash data was aggregated from 2000 to 2003 and 2004 to 2006, and the hotspots were 

identified by inverse square distance CSR of Gi* and K. This was carried out to check if the 

aggregation of crash data would affect the results of hotspot identification. The additional data 

i.e., 2004 to 2006 was used to check if the hotspots are identified similarly for Gi* and K. 

Though the results presented and discussed in this paper are limited to hotspots with high level, 

the results should be similar for hotspots with low level. The authors did not perform and present 

this analysis as the identification of hotspots with higher concentrations is of more interest to the 

safety community. 
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   (a)      (b)  

Figure 6. Hotspot identification by three CSR of Gi* statistic and K for 2000-2003 and 2004-

2006 

Figures 6(a) and (b) indicate that the identification of hotspots were the same for K and Gi*, 

when inverse square CSR was used for Gi*. Two possible reasons for similar identification may 

be i) the factors contributing to crashes and ii) existence of a functional relationship between 

these two functions. However, it can be noted that for the two methods, the crash contributing 

factors like alignment, profile, atmospheric conditions like rain, clear, driver behavior like DUI 

were not considered. For both of these methods, only the spatial location of the crash and the 

effect of the severity were considered. To understand the mathematical relationship between the 

two functions, consider the following: 

Density = (mass)/(volume)         (4) 

Density = (mass)/(area*length)        (5) 

If this is summed over an entire section; considering sections are very small: 
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Σ Density (D) = Σ (mass/area) * Σ (1/length)       (6) 
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From Equation (11), it can be stated that Gi* depends on density. In this case, Kernel density 

estimation is a special case of density function. Therefore, Gi* statistic can be used for point 

pattern analysis for kernel density. The distance chosen is inverse squared distance and this is 

similar to choosing inverse distance. This indicates a plausible explanation for similar 

identification of hotspots by the Getis-Ord Gi* and the Kernel density estimation.  

Crash Contributing Factors 

Though the crash contributing factors do not affect the identification of hotspots by Gi* and K, 

some of the key factors can be discussed. From Table 1, it can be inferred that on an average 

12% of crashes are due to curved alignment, and 23% are due to grade roadway profile 

conditions. These may be related to improper sight distance, inadequate signage, etc. When types 

of collisions were considered, rear-end crashes contribute to 54% of the crashes, followed by 

single-vehicle crashes with 23% and sideswipe-same-direction with 14% of the crashes. The 

reason can be the higher AADT with an average of 94,921 vehs/yr. I-630 is located in the 

Arkansas state capital of Little Rock with a population of 183,133 and an area of 116.8 square 
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miles (US Census, 2008). High occurrence of rear-end and sideswipe same direction crashes are 

common in major cities with high volume of traffic. The higher AADT indicates higher crash 

frequency but when traffic flow becomes very high, and speeds decrease a lot, crashes 

(especially fatal) may decrease. This was observed in the current study as there were only five 

fatal crashes through the analysis period out of which four cases included DUI, light conditions 

were dark, and single vehicle crashes, including three on the weekends. Though the detailed 

analyses of the crash contributing factors were not analyzed, elaborate information based on the 

frequency of crashes in specific cases were listed for additional information of interested readers.  

CONCLUSIONS AND RECOMMENDATIONS  

The main objective of this paper is compare two statistical techniques, kernel density estimation 

(K) and Getis-Ord Gi* statistic using a GIS for hotspot identification. These methods identified 

similar hotspots. These results are similar to the findings from Flahaut et al. (2003). However, 

they used different autocorrelation index, local indicator of spatial autocorrelation (LISA) and 

different roadway and crash characteristics. A possible explanation for similar identification of 

hotspots is the mathematical forms of the two functions Gi* and K. However, this is under 

specific parameters considered. These methods require strong statistical foundation and accurate 

positioning of each crash. In specific cases, the use of Gi* is sufficient to identify hotspots. 

Additionally, three conceptualization of spatial relationships (CSR) were used to determine Gi* 

namely, fixed distance band, inverse distance and inverse square distance and the best CSR for 

hotspot identification is recommended. Results indicate that the inverse distance and inverse 

distance square identified hotspots accurately and similar to K than the fixed distance CSR. 

Additional testing on the threshold distance was not carried out for the fixed distance CSR.   

 

Some of the contributing factors for the occurrence of these crashes include higher percentage of 

rear-end crashes, sideswipe same direction which may be due to higher AADT. Other factors 

include curved roadway and graded roadway profile which may be due to improper sight 

distance, inadequate signage, etc. Though analysis of the crash contributing factors is not the 

scope of the present study, based on the data presented only some of the factors were discussed.  

 

This paper is limited to one highway, 7.4 miles long along a single county. The categorization of 

the hotspots was carried out in only two levels (high and low). Further analyses should include 

longer road sections and more than two levels. It should be noted that this paper is limited to 

exploratory data analysis of crashes. Further research aims in identifying the hotspots by 

developing models and including the effects of spatial autocorrelation.  
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