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ABSTRACT  
 

The advantage of in-vehicle monitoring technology enables the collection of accurate 

and high resolution driving information. The availability of such large amount of 

information may open new possibilities to analyze behavior of small samples and even 

individual’s driving behavior in order to evaluate change over time, strengths and 

weaknesses which can be used to create personalized interventions and feedback 

massages. In this paper, we demonstrate how information from technology can be used 

for analyzing a single driver’s behavior. We analyzed individual driver’s information 

received from a novel in-vehicle technology, which identifies the occurrences of 

undesirable driving events such as extreme braking and accelerating, sharp cornering 

and sudden lane changing. During the three years measurement period, information 

about more than 5704 trips, 2107 driving hours and 6878 undesired driving events was 

recorded. The maximum likelihood estimation was used to fit the Negative-Binomial 

model for the events rate. Then, several negative binomial regression models were used 

to analyze how trip duration, daytime, and day of the week are linked to the rate of 

undesirable driving events. A generalized additive model (GAM) with the P-spline 

method for smoothing was used to evaluate how driving behavior changes over time, 

and a “before” and “after” study was performed to test the effect of providing feedback 

about driving behavior. Insurers and safety officers in commercial fleets can use driving 

information collected by technology to analyze trends in behavior and to evaluate the 

usefulness of intervention plans – even for a single driver.    
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INTRODUCTION 

 

Transportation researchers investigating driving behavior are commonly interested in 

questions such as: How can one choose useful measures for behavior? How can one evaluate 

improvements over time? How can one assess whether, and to what extent, an intervention 

plan was successful? These questions are usually raised in the context of evaluating the 

behavior of a group of drivers (e.g. large fleets or young drivers), and are rarely asked with 

regard to an individual driver. 

 

Nowadays, cars are equipped with advanced driver assistance systems (ADAS) that include 

GPS and navigation systems, sensor suites, and control systems that help people drive safely. 

For example, Intelligent Speed Adaptation (ISA) provides alerts to drivers when they exceed 

the speed limit (Rook and Hogema, 2005), and in-vehicle collision avoidance warning 

systems (IVCAWS) provide headway, time-to-collision (TTC) and lane crossing warnings to 

help drivers avoid accidents. Other devices encourage safer behavior by providing feedback 

about the occurrence of undesirable driving events as hard braking, sharp turning, swift lane 

changes, and aggressive acceleration (Lee, 2007). While the main purpose of these systems is 

to provide real-time driving feedback, researchers have found the information logged by them 

useful to model driving behavior as it is statistically correlated to crash involvement (Toledo, 

Musicant and Lotan, 2008), as well as helpful in discovering new information about behavior. 

For example, the rate of undesirable driving events was found to be higher at the beginning 

and end of trips (Musicant, Bar-Gera and Schechtman, 2010). Parental behavior was linked to 

novice driver behavior, and parental involvement was linked to a reduction in the events rate 

(McGehee, et al., 2007; Prato, Lotan and Toledo, 2009). 

 

The information from technology provides the researchers with new measures to analyze 

behavior, yet little attention has been paid to the issue of personalization. Personalization 

involves using technology to accommodate for differences between individuals. Once 

confined mainly to web applications (e.g. Facebook, LinkedIn, Google search), it is 

increasingly becoming a factor in education, health care , television, and other "business to 

business" and "business to consumer" settings. One example of "business to consumer" 

personalization in the context of traffic safety is "pay as you drive" insurance  (Litman 2009). 

The main idea is to set the insurance policy according to the driver risk, as evaluated based on 

his or her behavior, rather than relying on demographic details (e.g. age, gender) only. In 

practice, “pay as you drive” premiums focus on the number of miles driven per year (Litman 

2008), so they are actually “pay as much as you drive” policies, but personalization is 

introduced when the individual behavior index is fed into the policy scheme. The ability to 

analyze individual driving behavior and answer questions that are usually evaluated per large 

groups (e.g. was the intervention plan useful? What is the change in behavior over time?) is 

an important step toward providing drivers with feedback to encourage improvement. In this 

paper we demonstrate how information about behavior of an individual driver can be used to 

answer questions that are typically evaluated per large samples. The rest of the paper is 

organized as follows: Section 2 details the method and procedure for collection of data about 

the occurrence of undesirable driving events by the means of in-vehicle technology. Section 3 

discuses the statistical methods suitable to analyze the information about undesirable driving 

events. Sections 4 and 5 discusses a temporal analysis of the events rate including the 

analysis of changes over time, the effect of intervention, time of day and day of the week on 

the events rate. Section 6 summarizes our main findings and discusses possible 

implementations. 

 



  

METHOD 

 

This study used data gathered about a single driver. For convenience, we will refer to this 

driver as “David”. David worked as a technician in a large commercial fleet along with other 

technicians. The technicians' work involved driving to customer locations in order to install 

or repair communication equipment. They used company cars for this purpose. The fleet 

safety officer decided to equip all vehicles with an in-vehicle feedback and monitoring 

technology called "Green-Box".  

The Green-Box is an advanced driver’s assistance system (ADAS) designed to provide 

drivers with feedback on their driving behavior. The Green-Box reports commonly used 

measures of speed, travel time, distance and location. Yet, its novelty lies in the real-time 

identification of undesirable driving events such as extreme breaking and accelerating, sharp 

turning and sudden lane changing. The identification procedure implements pattern 

recognitions algorithms over the speed and acceleration profiles and reports about the 

occurrence of these events in real time. A web application supplies aggregated information 

about the occurrences of these driving events to drivers and safety officers. The frequency of 

undesirable driving events can serve as a safety surrogate as it correlates to crash involvement 

records  (Musicant, Lotan, amd Toledo, 2007; Lotan and Toledo, 2006; Toledo, Musicant, 

and Lotan, 2008). Further details about the Green-Box system can be found in Toledo, 

Musicant, and Lotan (2008). 

The Green-Box was installed in this fleet in late 2006, but feedback from the system 

(including in-vehicle feedback and reports via the web application and email) was not 

available to the drivers or mangers until the beginning of 2007 in order to create a baseline 

for driver behavior. From 2007 until the end of the measurement period in 2009 feedback was 

available to drivers and safety officers. The safety officers could not see specific driver 

information because the data was aggregated.   

The Green-Box was installed in David's vehicle for 1054 days from : from September 13, 

2006 to August first, 2009, and collected his driving information throughout that period. 

During this period, he used the vehicle on 877 days, in which he accumulated 5704 trips, 

126443.2 driving minutes, and 6878 undesirable driving events. David's rate was 0.054 

events per minute of driving. 

 

MODEL SELECTION 

 

Our variable of interest is the count of events in a trip, thus a choice of Poisson or negative 

binomial as the underlying distribution seemed appropriate. Assuming a Poisson distribution 

implies that the mean and the variance of event count are equal. Yet, we found that for each 

given trip duration the variance was larger than the average count of events (Figure 1). 

Therefore, we chose the negative binomial distribution, which allows for different mean and 

variance.  

 

In our previous study (Musicant, Bar-Gera and Schechtman, 2010) we demonstrate how a 

similar analysis performed for multiple drivers led to the selection of the negative-binomial 

as the underlying distribution for the count of events. A possible assumption was that 



  

differences between drivers were the cause for the over dispersion in the count data. From the 

analysis provided in Figure 1 we learn that the over dispersion phenomenon can be found 

even in the data of an individual driver. 

 
Figure 1: Mean and variance of event count by trip duration (minutes) 

 

While the random variable in the basic negative binomial model is the count of events, in 

cases where different entities (i.e. trips) have different exposures (i.e. trip durations) it is 

more convenient to look at the event rate given by the count of events per driving minute. A 

naïve model may assume that a change in the level of exposure automatically accounts for 

using rates (events per minute) instead of counts. This assumption is correct only if the 

expected event count is directly proportional to exposure. To check this, the following 

negative binomial model was fitted: 

 

(1) Model 1:   ( ( ))         (        ) 
 

where Y is the random variable representing the count of events in a trip, assuming a 

negative binomial distribution; and          is the trip duration in minutes. Model 1 

considers two parameters:     is the free parameter and    is the coefficient for the exposure 

term.  

 

The estimated parameters for model 1 are:           (         ) and    
     (        ), indicating that the 95% confidence interval for    does not include the 

value of 1.Thus, the events count is not proportional to the trip duration. 

(                                            (  ))  The sample size used in this 

analysis is large (5704 trips), making the hypothesis that       easy to reject by statistical 

tests. Thus, we also compared between model 1 and an alternative simpler model that 

assumes that the events count is directly proportional to the trip duration (model 2). 

 

(2) Model 2:   ( ( ))       (        ) 
 

 In model 2,    is set to be equal to 1 so the trip duration is defined as the offset term. The 

only estimated parameter is    (    2.869    0.0217). 



  

 

Figure 2 shows the events rate (events per minute) against the trip duration. The black points 

represent the observed events rate. The expected events rate by model 1 and model 2 are 

shown by the solid black lines.    

 
Figure 2: Event rate (events per minute) by trip duration 

 

The AIC fit index of model 1 is 16180 while the AIC fit index for model 2 is 16220, which 

indicate that model 1 better fits to data. To better understand how the models fit the data, 

beyond the general AIC fit index, we used the cumulative residuals (CURE) method (Hauer 

& Bamfo, 1997). This method consists of plotting the cumulative residuals for each 

independent variable. To generate a cumulative residuals plot (Figure 3), trip durations are 

sorted in ascending order along the x-axis. For each trip duration, the residual (the predicted 

number of events minus the observed number of events) is computed. The residuals are added 

up, and a cumulative residual value is plotted for each value of the independent variable (trip 

duration). For a model that fits well, the cumulative residual should oscillate around zero. If 

the cumulative residual value steadily increases, this means that the model predicts more 

events than the number that was observed. Conversely, a decreasing cumulative residual line 

indicates that more events were observed than the number predicted by the model. A frequent 

departure of the cumulative residual line beyond 2 standard deviations of a random walk, 

given by the red lines, indicates the presence of outliers or signifies an ill-fitting model. The 

fit of model 1 is satisfactory because in most cases the cumulative residual is within the ±2 

standard deviations of the random walk (red lines). Unlike model 1, model 2 drifts beyond 

the upper red line for shorter trips (<20 minutes), as it underestimates the number of events. 



  

 
Figure 3: CURE plot for model fit evaluation 

  

The results of the above analysis suggest using the negative binomial model with two 

parameters for modeling the event count in a trip for David’s data. 

 

TEMPORAL ANALYSIS 

 

To understand how David’s behavior changed over time we plotted event rate over the 

measurement period time (Figure 4). The gray points are the event rate per trip. For visual 

clarity, the Y-scale is blocked up to 0.4 events per minute, where ~98% of the trips are 

represented. To assist the visual analysis of the data, the monthly average of the event rate is 

represented by the black lines. In addition, the red line presents a fitted generalized additive 

model (GAM) with the P-spline method for smoothing (see eq. 3 for model definition) as 

implemented in the R statistical software (R Development Core Team, 2010 , Hastie, 2010). 

Generalized additive models are extensions of generalized linear models (GLM), in which the 

linear predictor is given by a sum of smooth functions of the covariates plus a conventional 

parametric component of the linear predictor. In this case, the model was defined as follows: 

 

(3)    ( ( ))         (        )   (    ) 
 

where the addition of  (    ) to the conventional negative binomial (see eq. 1) 

indicates the P-spline method used for smoothing, based on the time in days from the 

beginning of the measurement period. 

 

The solid red line in figure 4 is the estimated event rate given the average trip duration 

(22.19min), so the comparison between different points in time remains valid. The dashed red 

lines describe the confidence intervals for this estimation. 



  

 
Figure 4: Event rate by time (observed and estimated by GAM) 

 

David’s driving improved over time. At the beginning of 2007, the estimated log (events rate) 

by the GAM for the average trip duration was 1.293 (SE=0.043), while in the beginning of 

2008 the estimation was -0.395 (SE=  060.0 ). The difference between these parameters is 

significant (t statistic      ) and suggests a reduction of ~82% in the events rate. The 

estimated log (events rate) for the average trip duration in the beginning of 2009 was -0.640 

(SE= 0.058) log(events) fewer (t statistic=2.76) compared to the estimated parameter in 2008.   

 

THE EFFECT OF INTERVENTION 

 

The improvement in David’s behavior over time raises the question whether the feedback 

provided by the Green-Box contributed to this change. The feedback was disabled during 

2006, while from the beginning of 2007 feedback was enabled both in real-time and in offline 

via web applications and automated reports. A common approach is to measure outcomes 

before the intervention and compare them with outcomes measured afterward. The question 

to be addressed is whether there is evidence for a prevailing “temporal trend”. It is likely that 

many forces act on outcomes, which themselves change over time, regardless of whether an 

intervention was applied. Thus, it is important to question whether an intervention is in fact 

responsible for a change in the outcomes. In general, it can be difficult to rigorously evaluate 

a safety intervention, and to untangle whether the observed change is the result of the 

intervention, because these interventions generally occur at a system level (i.e., throughout 

the fleet, the sub-organization) and it may not be practical to obtain suitable concurrent 

controls. In David’s case, no control group was available because all drivers in the fleet were 

exposed to feedback at the same time. Moreover, when analyzing field data, the researcher 

cannot be sure that drivers in the control group and in the experiment group differ only with 

regard to the studied variable. Considering these limitations, a before and after study was 

applied to evaluate whether David's exposure to driving feedback had an effect on his 

behavior. 

 

When evaluating the effect of the intervention we must determine what the "before period" 

and the "after period" are. In general, the shorter the period is, the more certain we can be that 

no other unknown variable is "interfering" in our attempt to evaluate the effect of the 



  

feedback. On the other hand, more data enables us to develop more accurate models to 

evaluate this effect. In this case, the decision about the before period is not trivial as the 

events rate during 2006 were not stable. The events rate were increased in October compared 

to September and then events rate were reduced again during November and December 2006. 

Yet, except for the introduction of the feedback in January 2007, there was no other known 

factor for the instability of events rate during 2006. Bearing in mind that a reduction in events 

rate may start in October 2006, even before the availability of feedback, 

a conservative approach for estimating the intervention effect would be to analyze the 2006 

data starting from October 2006 while considering the trend over time in the statistical model. 

In addition, the slope of the graph became more leveled starting from March or April 2007, 

which means that the improvement trend in David’s behavior had moderated. Thus, in this 

analysis the before and after periods included three months before providing the feedback and 

three months after.  

 

To evaluate whether the availability of feedback accounted for reduction on the events counts 

beyond the general trend, we fitted several regression models described in equations 4 to 7. 

The ‘Null model’ assumes only log(trip duration) and time effect on the log of the 

expectation of event count  ( ). The effect of feedback was modeled using the segmented 

regression of interrupted time series approach (Wagner et al, 2002) to describe a change of 

level (eq. 5), a change of slope (eq. 6) and a change in level and slope (eq. 7):  
 

(4) Null:      ( ( ))         (        )         
 

(5) Level change:    ( ( ))         (        )          

                          
 

(6) Slope change:     ( ( ))         (        )          

                                     
 

(7) Level & Slope change:     ( ( ))         (        )          

                                                     
 

where Duration is the trip duration in minutes, Time is the time in days from the 

beginning of the measurement period. Intervention is an indicator for time occurring before 

(intervention 0) or after (intervention 1); and Time after intervention is a continuous variable 

counting the time since the intervention, coded 0 before the intervention and (time – 

intervention time) after the intervention.  

 

The fitted parameters for the four models are described in Table 1 

 

Table 1: Time-dependent models for event count  

 
Null model Level change Slope change Level & Slope change 

 
           

 -0.2407(0.142) -0.2827(0.1558) -0.2965(0.1776) -0.4554(0.1902)* 

 
     (        )

 0.7823(0.0406) *** 0.7824(0.0406) *** 0.7843(0.0407) *** 0.7852(0.0407) *** 

 
      

 -0.0089(0.0006) *** -0.0076(0.0012) *** -0.0077(0.0015) *** -0.0056(0.002)** 

 
              

  -0.1483 (0.1186)  -0.1825(0.1205) 

 
                         

  
 

-0.0021(0.0025) -0.003(0.0025) 

AIC 3869.5 3869.9 3870.8 3870.5 

* p<0.05, ** p<0.01, *** p<0.001 



  

 

The fitted parameters  
 
 and  

 
 are not significantly different from zero in any of the models 

proposed here. In addition, the AIC statistic is smallest (best) for the Null model. These 

results suggest that there is no justification to assume that providing feedback affected 

David’s behavior.  However, a temporal change in behavior was observed, which indicates 

that the event rate decreased over time ( 
 
               ). The CURE plot for the 

Null model suggests that the model is fairly descriptive because the residuals follow a 

‘random walk’ around the zero line and in most cases are within the control lines.  

 
Figure 5: CURE plot for the "Null model"  

 

The change in behavior cannot be explained by the feedback provided. Yet, other possible 

explanations can be considered. As we demonstrate in Figure 2, the trip duration is inversely 

linked to the event rate. Thus, the change in events rate may be a result of the fact that the trip 

durations became longer across time. Yet, this was not the case with David’s trips’ durations 

(Figure 6). 

 
Figure 6: Average trip duration by month 

 

It is likely that experienced drivers such as David are familiar with safe driving practices and 

can choose to use them if they wish, whether or not feedback from technology is available. 

The significant trend in the event rate indicates that the choice to engage in safe driving 

practices became more common in David’s behavior. This choice may prevail over other 



  

driving purposes such as "finishing work quickly", or "passing slow traffic". David was 

aware of the monitoring technology in his car and may have tried to avoid being classified as 

an unsafe driver.  

 

TIME OF DAY AND DAY OF THE WEEK 

 

This section focuses on temporal variables (time of day and day of week) that may be useful 

for explaining behavior. For this analysis all available data collected between 2006 and 2009 

were used. Because David is a company car driver, it was interesting to compare his behavior 

during and outside of working hours. Two categorical variables were defined for this 

purpose: "weekend" (No for Monday to Friday and Yes otherwise) and "leisure time" (No for 

07:00 till 18:00 and Yes otherwise). David’s formal working hours are 08:00 to 17:00. 

However, since driving to and from work can be counted as "working time", an additional 

hour was added to the beginning and end of the formal working time. The following figure 

presents the observed event rate according to working hours and working days.  

 

Table 2: Observed events rate by weekend (yes/no) and leisure time (yes/no) 

Weekday and Day time categories  Events Driving minutes Trips Events rate (SE) 

Mon-Fri & 07:00-17:59 4753 79940.35 3684 0.0595(0.00013) 

Mon-Fri & 18:00-06:59 709 15062.67 737 0.0471(0.00058) 

Sat-Sun & 07:00-17:59 1147 25264.48 991 0.0454(0.00047) 

Sat-Sun & 18:00-06:59 275 6283.80 285 0.0438(0.00185) 

 

A negative binomial model was calibrated to evaluate whether the differences in event counts 

presented in Table 2 are statistically significant while considering the driving minutes. The 

model included a free parameter (   -2.228, SE=0.097, p<0.001), an exposure parameter 

for duration (   0.824, SE=0.031,p<0.001) and additional parameters for leisure time 

(   0.341, SE=0.067, p<0.001), weekend (   -0.307, SE=0.058, p<0.001) and for the 

interaction between them (   0.214, SE=0.133, p=0.108), which was the only insignificant 

parameter. The results suggest that David’s event rate was lower on weekends by ~26% and 

in leisure time by ~29%. The reason for this may be environmental (e.g. increased traffic 

during work hours), or organizational (e.g. time pressure, many driving tasks). However, 

David’s moderate driving events during weekends and leisure time may indicate his ability to 

improve his driving.   

 

CONCLUSIONS 
 

Personalization is already a part of our daily lives, and was introduced into driving safety via 

new "pay as you drive" insurance schemes that currently focus on integrating limited 

exposure indices rather than actual behaviors. The evaluation of behavior indices over time 

for individuals' driving behaviors has not received much attention in research studies because 

researchers typically look for large samples to achieve results that can then be generalized to 

support large-scale decision-making. However, analyzing individuals' data may assist drivers, 

insurance agents, safety officers, or driving instructors who wish to understand how 

individuals' behaviors can change over time and what variables explain this change. 

Advanced driver assistance systems now enable the collection of time series indicators for 

behaviors in high resolution (per trip).To date there has not been a published analysis that 



  

assesses the feasibility of focusing on an individual's data in order to answer the types of 

questions that are typically asked in relation to large samples. 

In this study, we demonstrate how information from technology can be used to analyze the 

behavior of an individual driver. The advanced driver assistance system used in this study 

identified occurrences of undesirable driving events such as extreme braking and 

accelerating, sharp cornering, and sudden lane changing. Information about 5704 trips, 2107 

driving hours and 6878 undesirable driving events was recorded during a three-year 

measurement period. As commonly done with count data, the negative binomial model was 

used to develop regression models. Several regression models were used to analyze how 

driving behavior changed over time and how trip duration and other temporal variables, such 

as time of day and day of week, are linked to the rate of undesirable driving events. We found 

that David's event rate was lower during weekends by ~26% and during leisure time by 

~29%. The reason for this may be environmental (e.g. increased traffic during work hours), 

or organizational (e.g. time pressure, many driving tasks). However, David’s safer driving 

during weekends and leisure time may indicate that he can further improve his driving. In 

addition, the trend in behavior over time suggested that David's driving safety improved. 

These results can provide David with positive feedback and can set an example for other 

drivers in the same fleet.  

Considering the presented data, it is quite reasonable to assume that at least part of the 

reduction in events rate during the monitored period is due to the availability of feedback 

from the technology, although there seem to be other factors influencing events rate as well. 

A future study can look at other drivers in the same fleet to conclude whether this trend is 

common and thus probably relates to organizational or environmental factors. Otherwise, 

individual factors as temporal work pressure or a change of David’s driving tasks can be 

considered. 

David's individual behavior cannot be generalized to claim that drivers improve over time or 

behave differently during working versus non-working times, but the analysis methods are 

useful for practitioners (e.g. safety officers, trainers) looking to provide feedback and analyze 

intervention programs for drivers.  
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