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Abstract 

 

Current research on secondary crash identification links the likelihood of secondary 

crashes occurrence to primary incidents using pre-defined spatial and temporal 

criteria. This paper extends past research on secondary crash detection by defining 

dynamic thresholds of the influence area of a primary incident using detailed real-time 

collected traffic data from upstream loop detectors on a freeway. Results suggest 

influence curves of different characteristics with respect to the prevailing traffic 

conditions before the occurrence of the primary incident, as well as the crash 

characteristics such as the number of vehicles involved or the number and type of 

blocked lanes. The results of the proposed approach are compared to those of two 

prevailing methods for detecting secondary accidents and similarities and differences 

are identified.  

 

Keywords: secondary accidents, dynamic thresholds, ASDA/FOTO model, freeway 

operations 
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INTRODUCTION 

 

Incidents impose social and personal costs on drivers, passengers and generally on the 

users of the urban networks. Severe incidents that cause delays are also associated 

with secondary accidents. Secondary crashes are generally defined as crashes that 

occur within a predefined spatiotemporal region of a primary incident and reduce 

roadway capacity (Moore et al. 2004, Zhang and Khattak 2010). Secondary crashes 

have increasingly been recognized as a major source of freeway incidents and their 

occurrence causes extra traffic delay. Compared with the primary ones, secondary 

accidents are much more severe, and are more significant with respect to the traffic 

management resource allocation implications; as a consequence, their identification 

may help maintain and increase the safety and operability levels of freeways. 

 

Most research links secondary crashes to primary incidents according to some pre-

defined spatial and temporal criteria without considering prevailing traffic flow 

conditions and incident characteristics. Raub (1997) proposed a methodology for the 

temporal and spatial analysis of incidents on urban arterials in order to identify the 

secondary crashes. For his analysis, Raub (1997) assumed accident effect duration of 

15 minutes plus clearance time. He also set a distance of effect of less than 1,600 

meters (1 mile). In other words, if an accident occurred within these fixed 

spatiotemporal thresholds, the accident was considered to be secondary. Moore et al. 

(2004) developed and applied a method for identifying secondary accidents on Los 

Angeles freeways that relied on special data resources, and finally estimated 

secondary accident rates. Specifically, secondary accidents were defined as those 

occurring upstream of the initial incident, in either direction, within or at the boundary 

of the queue formed by the initial incident. A static threshold of 3,218 meters (2 

miles) and 2 hours was used for forming this boundary.  

 

Zhan et al. (2008) described a method for identifying secondary accidents and their 

contributing factors using incident and traffic data. Their method is based on a 

cumulative arrival and departure traffic model for estimating the maximum queue 

length and traffic delay for incidents with lane blockages. Using these data they define 

the spatial and temporal boundaries in contrast with previous studies which used pre- 

defined thresholds. Still they don’t take into consideration the evolution traffic 

conditions during the primary incident. Zhang and Khattak (2010) proposed a 

dynamic queue based methodology to identify the influence area of a primary 

accident; if a spillback is observed, the queue length is estimated by a deterministic 

D/D/1 model with estimated arrival and departure flow rates based on Highway 

Capacity Manual methodologies. Sun and Chilukuri (2010) presented a methodology 

in order to improve upon the existing method of static thresholds by formulating 

dynamic boundaries based on video based reported queue data. An incident 

progression curve is used to indicate the evolution of the queue throughout the entire 

incident period, related to the severity of the accident, and for different values of the 

volume over capacity ratio.  



 

3 

 

As for the modeling of secondary accidents, various attempts can be traced in the 

literature. Karlaftis et al. (1999) examined the primary crash characteristics that 

influence the likelihood of secondary crash occurrence. The authors suggested that 

clearance time, season, type of vehicle involved, and lateral location of the primary 

crash were the most significant factors. Later, Vlahogianni et al. (2010) proposed an 

advanced Bayesian framework for combining crash and queue information on 

freeways in order to reveal the traffic and crash related determinants for secondary 

crashes occurrence with respect to different distance ranges of secondary crashes from 

primary freeway incidents. Finally, Zhang and Khattak (2010) developed an ordered 

logit model to address the interrelations between the secondary crash probability 

occurrence and the primary accidents characteristics. The duration of a primary 

accident, the number of vehicles involved, the lane blockage, the segment length but 

not curvature, were found influential. 

 

In this paper we extend past research on secondary crash detection by defining 

dynamic thresholds of the influence area of a primary incident using detailed real- 

time collected traffic data from upstream loop detectors in a freeway. The proposed 

detection methodology relates the propagation of the influence of the primary incident 

with the secondary crash occurrence and is based on continuously tracking the 

upstream and downstream fronts of an induced bottleneck. If within the defined 

influence area another accident occurs, then it is considered as a secondary. The 

proposed approach will result in determining a set of secondary accidents that will be 

contrasted to prevailing methods for detecting secondary accidents. Moreover, a 

preliminary analysis of the relationship between queue evolution and incident 

duration is provided with respect to the different initial – just before the primary 

accident occurrence - traffic conditions, as well as the characteristics of the primary 

accident. 

 

METHODOLOGY 

 

In order to evaluate whether an incident that occurred both temporally and spatially 

adjacent to a primary one is secondary, a methodology for identify the spatio-

temporal evolution of traffic flow upstream of the primary incident is required. 

Literature indicates three prevailing methods for tracking and defining the spatio-

temporal influence of traffic disturbance in freeways: cumulative plots, speed 

threshold algorithm and the ASDA model. A comparative analysis of the three 

approaches can be found in Li and Bertini (2010). 

 

Cumulative plots may be used for visually comparing transformed curves of 

cumulative vehicle arrival number versus time measured at neighboring loop detectors 

(Cassidy and Windover 1995, Cassidy and Bertini 1999, Munoz and Daganzo 2002). 

Through the curves’ observation it is possible to study the traffic flow propagation 

over time and space and to identify the detectors affected by the incident occurrence. 

By definition, the horizontal distance between two cumulative curves indicates the 

vehicular trip time between the corresponding detectors while the vertical distance 



 

4 

 

indicates the number of vehicles present on the segment between the two detectors at 

some time t.  
 

The second method, speed threshold algorithm developed by Chen et al. (2003), uses 

observed speed drop for defining the influence area. Speed differentials between two 

detectors and maximum speed for the upstream detector are used to identify 

bottlenecks. The algorithm sets a speed differential between the two detectors of 

20mph and a maximum speed of 40mph for the upstream detector.  The identification 

of the influence area is based on identifying the last pair of detectors at which the two 

above criteria are fulfilled. Despite the fact that the above two methods reveal the 

traffic flow evolution and changes due to the primary incident occurrence, they don’t 

estimate accurately the start and the end point of the formulated bottleneck. It can be 

said that are more visual methods. Therefore the spatiotemporal boundaries of the 

influence area cannot be accurately defined.  

 

The ASDA model (Kerner et al., 1998; Kerner and Rehborn,2000) is a robust 

approach to perform automatic tracking of the propagation of moving traffic jams. 

More specifically, ASDA may be used to track a moving jam at all times (Kerner et 

al., 2004). Let (Qo, Qn) be two consecutive loop detectors on a freeway road section 

and let L be their respective distance. After the moving jam has been observed at the 

detector Qn at time to, the ASDA model starts to calculate continuously the positions 

of the upstream front, xup
(jam)

 (t). After the downstream front of the moving jam is 

registered at the detector Qn at the later time t1, the ASDA model starts to calculate 

continuously the positions of the downstream front, xdown
(jam)

 (t) (Kerner et al., 2004). 

 

In freeways, where several detectors following one another, the positions of both the 

fronts of the formulated wide moving jam caused by the primary incident are 

determined by using the following two equations:  
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where index “i” and “j” represent detectors, whose time values at time t have to be 

used, Li+1, Lj are the coordinates of the corresponding detectors; t0
(i+1)

 indicates the 

time when the upsteram front of the moving jam has been observed at the detector 

“i+1”; t1
(j)

indicates the time when the downstream front of the jam has been observed 

at the detector “j”; q0 
(i)

(t) and w0
(i)

(t) are the measured flow rate and the average 

vehicle speed at the detectors “i” upstream of a wide moving jam; qout
(j)(jam)

 and wmax
(j)

 

are the measured flow rate and the average vehicle speed at the detector “j” 

downstream of the wide moving jam (Kerner et al., 2004).  



 

5 

 

In the present analysis, where the ASDA model is applied, the time when the 

upstream and the downsteram front are observed at each detector is estimated based 

on the speed threshold algorithm.Due to the fact that in Attica Toll way high speeds 

are observed, a maximum speed threshold equal to 60kph was set. Additionally, the 

speed differential between two successive detectors was selected equal to 20kph.  

 

More specifically, the upstream front of the moving jam is considered to have reached 

one detector at some time if the three following criteria are fullfilled: 

1. The speed at the detector is below the maximum speed threshold, 

2. The speed drop at the detector is greater than 35%, 

3. The difference between the speeds at the detector and the next downstream 

detector  is greater than the speed differential.  

 

If the traffic conditions within the primary incident occurred are congested, only the 

speed drop criterion is applied since in such cases the speeds are already below 60kph 

and the speeds between successive detectorsrange at the same levels.  

Using the two equations, presented above, it is possible to calculate accurrately the 

position of the upstream and the downstream front of the wide moving jam at any 

time. Consequently, it is also possible to estimate the jam width  Ls= xdown
(jam)

-xup
(jam)

 

at any time, the queue duration and the maximum queue length caused by the primary 

incident occurrence. Therefore the spatiotemporal boundaries of the influence area are 

fully defined. Any accident falling within this area is considered as secondary.  

 

In the next step a preliminary analysis will be conducted in order to try to model the 

relationship between the spatial distance from the primary incident and the duration of 

an incident. For this purpose different statistical distributions are fitted to the various 

primary accident influence areas. Fitting was conducted based on the Levenberg-

Marquardt algorithm, a robust nonlinear least-squares curve-fitting procedure, usually 

met in transportation problems as a neural network learning optimization method 

(Vlahogianni et al. 2007). Evaluation is based on: (a) the square of the correlation 

between the response values and the predicted response values R-square(a value 

closer to 1 indicates that a greater proportion of variance is accounted for by the 

model), (b) the adjusted R-square statistic, and (c) the root mean squared error. 

 

DATA ANALYSIS 

 

The Study Area 

 

The available data come from Attica Toll way (http://www.aodos.gr), an urban 

motorway which connects 2 major interurban motorways, the Athens international 

airport and the city center. Attica Toll way features hundreds of CCTV cameras 

connected to the Traffic Management Centre (TMC). Apart from the cameras, traffic 

monitoring and management is conducted via inductive loop detectors placed every 

500m in open road and every 50 m in tunnels, overheight detection system at entrance 

points and electronic variable message signs. This equipment helps in automatically 

http://www.aodos.gr/
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detecting any incidents occurring on the motorway, informing the intervention and 

maintenance patrol units and providing assistance and estimating queues and travel 

time.  

 

For the present analysis, the data consists of 856 accidents records for the year 2007 

along with volume and speed data from all the available loop detectors upstream of 

the accident. The accidents are described by the following information: 

 Location of the accident including the post mile and the lane where the 

accident occurred, 

 Start/end time of the accident and thus its duration, 

 Severity of the accident (damages, injuries, fatality), 

 Type of vehicle(s) involved, 

 Number of vehicles involved, 

 Season (month), 

 Type of day(weekday, weekend), 

 Time period (peak, off- peak). 

 

Moreover, for each accident record, draft information on the maximum queue length 

induced by the accident is also provided by the operators of the Attica Tollway TMC 

using the installed video cameras. This information may have several shortcomings, 

for example missing maximum queue estimations in some accident records, 

inaccuracies stemming from the cameras positioning with respect to the accident’s 

location, as well as lack of “dense” temporal and spatial information on the evolutions 

of the queue. However, this information will assist the comparison of the proposed 

approach for identifying the dynamic evolution of the accidents traffic impacts.  

 

Defining the spatiotemporal influence area of a primary incident 

 

A primary analysis of the available dataset, in order to define the spatial and temporal 

thresholds of the influence, was conducted by using cumulative plots. Figure 1 

depicts (a) the cumulative N(x,t) curve and (b) the temporal evolution of travel speed 

for an incident with duration more than 30 minutes. As can be observed, at some point 

in time, cumulative curves diverge indicating the spatiotemporal evolution of 

upstream traffic caused by the primary incident.  

 
Figure 1: (a) Cumulative count curve and (b) temporal evolution of the travel speed for an incident with 

duration equal to 58 min.  
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Based on the above approach, the influence area of a primary accident can be 

quantitatively determined as seen in Figure 2. The boundaries of the influence area of 

a crash on the spatiotemporal evolution of traffic over time, defines two areas. 

Accidents falling within the curve’s boundaries are considered as secondary.  

 

 
Figure 2: Boundaries of the influence area of an incident with duration equal to 58 min using as method of 

analysis a) the cumulative plots and b) the ASDA algorithm. 

 

Using the cumulative plots and the speed - time diagram, the influence area of the 

crash is approximately defined, as the specific method doesn’t provide any 

information about the start and the end point of the formulated bottleneck as well as 

the accurate location of the upstream and downstream fronts at some time during the 

incident. On the other hand, the equations formulated by the ASDA model, provide 

enough information about the spatiotemporal evolution of traffic flow and the 

propagation of the traffic disturbance upstream of the incident. They calculate 

accurately the position of both fronts of the moving jam and consequently it is 

possible to estimate the jam’s width, Ls= xdown
(jam)

- xup
(jam)

 at any time. Plotting the 

jam’s width versus time the boundaries of the influence are determined as seen in 

Figure 2. These spatiotemporal boundaries define two areas; accidents falling within 

the curve’s boundaries are considered as secondary.  

 

Observing the two curves (Figure 2), it is found that both spatial and temporal 

boundaries are quite different using the above two methods. Specifically, according 

to the cumulative plots’ method the last detector influenced by the primary incident is 

located 2.6 km upstream from the point of the incident and the influence duration was 

approximately 80 minutes. By using the ASDA model the spatiotemporal boundaries 

of the influence area are 2.3 km and 70 minutes respectively.  

 

Calculating the jam’s width and formulating the curve for the 856 accidents of the 

available database, using the equations provided by ASDA model, a set of 30 

secondary accidents was identified. This equals to the 3.5% of the total accidents 

observed during the year. 

 

We also attempt to compare the secondary crashes detected via the proposed 

approach with those that may be detected using other approaches previously issued in 
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literature; the static spatiotemporal thresholds of Raub (1997) who proposed a 

temporal fixed threshold equal to accident effect duration of 15 minutes, plus 

clearance time and spatial fixed threshold equal to 1,600 meters (1 mile) and 

Moore’sfixed boundaries of 2 hours and 3,218 meters (2 miles) from the primary 

crash (Moore 2004).According to Raub (1997) only 14 accidents, out of the 856 

analyzed, can be considered as secondary that equals to the 1.6% of the total 

incidents observed. Moore’s fixed boundaries result in detecting 28 secondary 

accidents that equals to the 3.27% of the available total set of incidents. 

 

Comparing the above results with the results of the proposed dynamic spatiotemporal 

thresholds methodology, it is found out that Raub’s methodology underestimates the 

number of secondary crashes; however, all of the secondary accidents detected using 

Raub’s approach are also identified as secondary by the proposed dynamic approach. 

This significant underestimation is probably due to the fact that the spatiotemporal 

boundaries Raub proposes, are limited enough to conclude accidents occurring within 

a broader spatiotemporal region. 

 

This does not apply to the case of Moore’s secondary crash detection method (Moore 

2004); Moore’s approach slightly diverges from the detected number of secondary 

crashes using the proposed approach since the spatiotemporal thresholds define a 

bigger influence area. However, only 22 out of 28 secondary crashes could be 

identified using the proposed method. This can be possibly explained by the fact that 

the spatiotemporal influence of a primary incident may be less than 3.2 km and 2 

hours. As a consequence Moore’s approach identifies as secondary accidents, crashes 

occurring out of the primary’s spatiotemporal influence area but within the fixed 

thresholds he proposes. The existing slight diversion, corresponding to the number of 

secondary accidents detected, is due to the fact that this approach does not include 

accidents occurring within a much broader region. 

 

Analysis of the Observed Influence Areas 

 

Analysis as described in the previous section results in a set of influence areas seen in 

Figure 3; these influence areas refer to a vast range of primary incident durations, 

accidents with different characteristics, as well as to different initial traffic conditions. 

As can be observed, there is a significant dispersion with respect to the maximum 

queue length observed, as well as the total time for queue dissipation. The intense 

dispersion observed is evident that there are certain factors influence the manner a 

traffic disturbance, occurring due to a primary incident, is propagating upstream of an 

incident.  

 

The incidents were then classified in three categories with respect to their duration: 

incidents with duration (a) less than 30 min,(b) from 30 to 60 min and (c) larger than 

60 min. The curves fitted to data of each category are shown in Figure 4.  
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Figure 3: Influence evolution for all accidents. 

 

 
Figure 4: Influence evolution for accidents with duration (a) less than 30 min (b) ranging from 30 min to 60 

min and (c) more than 60 min. 

 

The curve (a) is best described by Weibull distribution (Appendix, Equation 1), for 

curve (b) Pearson IVdistribution (Appendix, Equation 2) provides the best fit and, 

curve (c) is described by SDS distribution (Appendix, Equation 3). 

 

Because of the low values of the statistical diagnostics, indicating an insufficient fit, 

the incidents of each category were further classified with respect to the initial 

prevailing traffic conditions before the incident occurrence. Similar to previous 

research, this classification was done according to three criteria (Li and Bertini, 

2010): 

1. If the speed is high, the traffic flow is free, 

2. If the speed is middle, the traffic flow is synchronized, 

3. If the speed is low, the traffic flow is congested. 

 

Incidents with duration less than 30 minutes 

 

Analysis showed that classifying the incidents related to the initial traffic conditions 

results in an improved fit as shown in Figure 5 where the fitted influence curves for 

accidents with duration less than 30 min under (a) free flow, (b) synchronized and (c) 

congested initial traffic conditions are depicted. 
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Figure 5: Influence evolution for accidents with duration less than 30 min under (a) free flow, (b) 

synchronized and (c) congested initial traffic conditions. 

 

In free flow and synchronized traffic conditions the spatio-temporal evolution of 

traffic flow upstream of an incident is described by Weibull distribution with different 

parameters (Appendix, Equations 4 and 5 respectively). Congested traffic conditions 

are described by Complementary Error Function Peak distribution (Appendix, 

Equation 6). 

 

Incidents with duration ranging from 30min to 60 min 

 

Figure 6 depicts the fitted curves for incidents with duration ranging from 30 min to 

60 min under free flow, synchronized and congested initial traffic flow conditions. 

Similarly to the previous category, the fit is improved as indicated by the statistical 

diagnostics when compared to the fit depicted in Figure 5. 

 

 
Figure 6: Influence evolution for accidents with duration ranging from 30 min to 60 min under (a) free flow, 

(b) synchronized and (c) congested initial traffic conditions. 

 

For accidents with duration ranging from 30min to 60 min under free flow conditions, 

Pearson IV distribution best fits the data (Appendix, Equation 7). The curve (b), 

depicting synchronized conditions, is described by Weibull distribution (Appendix, 

Equation 8), whereas for curve (c) Beta distribution provides the best fit (Appendix, 

Equation 9).  

 

Incidents with duration more than 60 minutes 

 

For accidents with duration more than 60 minutes, free flow conditions were not 

observed. For incidents under synchronized and congested initial traffic flow 

conditions, the fitted curves are shown in Figure 7. For incidents with duration more 

than 60 min, Beta and Asymmetric Double Gaussian Cumulative distributions 
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describe best the data for synchronized and congested traffic conditions respectively 

(Appendix, Equations 10 and 11 respectively). 

 

 
Figure 7: Influence evolution for accidents with duration more than 60 min under (a)synchronized and 

(b)congested initial traffic conditions. 

 

A critical look to the approximation curves in Figures 5 to 7 shows that there is still 

some unaccounted dispersion, due to other influential factors that have not been taken 

into consideration. An attempt to improve fit is undertaken by considering factors 

such as the number of blocked lanes during the primary accident, as well as the 

number of vehicles involved. As shown in Figure 8, curves (a) show that for the same 

number of vehicles involved, the number of blocked lanes is important for the 

influence evolution of a primary incident causing larger influence areas. Specifically, 

increased number of blocking lanes causes higher values of jam’s width at any time as 

well as larger influence duration, i.e. total time of queue dissipation. 

 

 

 
Figure 8: Influence evolution for incidents (a) with 2 vehicles involved for different numbers of blocked 

lanes and (b) occurring in one lane with different numbers of vehicles involved 

 

Similarly, curves (b) indicate that for the same number of blocked lanes, increased 

number of vehicles involved has larger effects. The value of max queue length is 

much higher (in this case a double value is observed)whereas the influence duration is 

slightly larger. Both cases also reveal that for increased number of blocked lanes and 

number of vehicles involved respectively, the wave speed for the upstream evolution 

of traffic is higher causing faster formation of the queue. 
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CONCLUSIONS 

 

The present paper extended past research on secondary crash detection and presented 

a methodology for defining dynamic thresholds of the influence area of a primary 

incident using detailed real- time collected traffic data from upstream loop detectors 

in a freeway. For defining the boundaries of the influence area, the ASDA model was 

used providing adequateanalytical information on the spatiotemporal evolution of 

traffic flow and the propagation of the traffic disturbance upstream of the incident. 

Using this approach, it was possible to accurately calculate the position of the 

upstream and downstream front of the moving jam and, consequently, to estimate a 

crash’s influence propagation with time. The findings indicated that the set of 

secondary accidents that were identified using the proposed approach differs from 

those that were detected by previous approaches using fixed spatiotemporal 

boundaries;the use of fixed boundaries led to either an underestimation of the number 

of secondary accidents,or to false consideration of some crashes as secondary, 

whereas some truly secondary accidents were not identified. 

 

Moreover, the modeling of the relationship between queue evolution and duration of 

the influence of a primary accident resulted in revealing the effect of various 

determinants of the primary accident, such as the initial traffic conditions, the number 

of blocked lanes and vehicles involved in the crash; these determinants significantly 

alter the form and magnitude of the spatio-temporal effect of a primary accident, and, 

consequently, the likelihood of a secondary crash occurrence. 

 

From a conceptual view, the proposed approach enables the analytic estimation of the 

dynamic boundaries for detecting secondary accidents using real - time traffic data 

from loop detectors located upstream of the incident. The analytical consideration on 

the manner the traffic propagates through a disturbance enables to accurately estimate 

queue formation and dissipation. Further research is needed towards two distinct 

directions. First, the research should be extended to the identification of the prevailing 

traffic, geometric and accident related determinants that may increase the likelihood 

of secondary incident occurrence. Second, the extension to a real-time application for 

dynamic secondary incident detection should be further investigated. The proposed 

approach that may operate with historical data, in cases of data collection system 

malfunctions and encompass no computationally demanding calculations, may be 

considered as an efficient candidate for real-time applications. 

 

ACKNOWLEDGEMENTS 

Research in this paper was supported by the Basic Research fund of the National 

Technical University of Athens (Greece). 

  



 

13 

 

 

REFERENCES 

 

Bertini,  R. L., Fernandez, R.  Wieczorek, J.  and Li, H. Using Archived ITS Data to 

Automatically Identify Freeway Bottlenecks in Portland, Oregon. In Proc., 15th 

World Congress on ITS, New York, 2008. 

 

Cassidy, M.J. and Windover, J.R. (1995), “Methodology for assessing dynamics of 

freeway traffic flow,” Transp. Res. Rec. 1484, pp. 73-79. 

 

Cassidy, M.J. and Bertini, R.L. (1999), “Some traffic features at freeway 

bottlenecks,” Transp. Res., vol. 33B, no. 1, pp. 25-42. 

 

Chen, C., Skabardonis, A.  and Varaiya, P. Systematic Identification of Freeway 

Bottlenecks. In Transportation Research Record: Journal of the Transportation 

Research Board, No. 1867, Transportation Research Board of the National 

Academies, Washington, D.C., 2004, pp. 46–52. 

 

Garib, A., Radwan, A.E. and Al-Deek, H. (1997). Estimating Magnitude and Duration 

of Incident Delays.Journal of Transportation Engineering 123.6: 459–466. 

 

Giuliano, G. (1989). Incident Characteristics, Frequency, and Duration on a High 

Volume Urban Freeway.TransportationResearch23A.5: 387–396. 

 

Karlaftis, M.G., Latoski, S.P.  Richards, N.J. and Sinha, K.C. (1999). ITS Impacts on 

Safety and Traffic Management: An Investigation of Secondary Crash Causes. ITS 

Journal 5: 39–52. 

 

Kerner, B.S., Rehborn, H., Kirschfink, H. “Method for the automatic monitoring of 

traffic including the analysis of back- up dynamics”, German Patent DE 196 47 127 

C2, Dutch Patent: NL1007521C, USA Patent US 5861820, 1998. 

 

Kerner, B.S., Rehborn, H., (2000). German patent publication DE 198 35 979 A1, day 

of notification: 08.08.1998, day of publication: 10.02.2000. 

 

Kerner, B.S., Rehborn, H., Aleksic, M., Haug, A. “Recognition and Tracing of 

Spatial-Temporal Congested Traffic Patterns on Freeways”, Trans. Rec. C, Vol. 12, 

2004, pp. 369-400. 

 

Lee, C., Hellinga, B. and Saccomanno, F.(2003). Proactive Freeway Crash Prevention 

Using Real Time Traffic Control.Canadian Journal of Civil Engineering 30: 1034–

1041. 

 



 

14 

 

Li, H., and Bertini, R.L. (2010).Comparison of Algorithms for Systematic Tracking of 

Patterns of Traffic Congestion on Freeways in Portland, Oregon."Transportation 

Research Record,  2178, 101–110. 

 

Lindley, J. (1987). Urban Freeway Congestion: Quantification of the Problem and 

Effectiveness of Potential Solutions. ITE Journal, 57(1), 27–32. 

 

Moore, J.E., Giuliano, G. and Cho, S.(2004). Secondary Accident Rates on Los 

Angeles Freeways.Journal of Transportation Engineering 130.3: 280–285. 

 

Morales, J. (1987) .Analytical Procedures for Estimating Freeway Traffic 

Congestion.ITE Journal, 57(1), 45–49. 

 

Munoz,  J.C. and Daganzo,  C.F. (2002).“ Fingerprinting Traffic from Static Freeway 

Sensors,” Cooperative Transportation Dynamics, 1, 1-11.  

 

Raub, R.A. (1997). Secondary Crashes: An important component of Roadway 

Incident Management. TransportationQuarterly51.3: 93–104. 

 

Skabardonis, A., Petty, K., Noeimi, H., Rydzewski, D. andVaraiya, P.(1996). I-880 

Field Experiment: Database Development and Incident Delay Estimation Procedures. 

Transportation Research Record 1554: 204–212. 

 

Smith, B., Qin, L. and Venkatanarayana, R.(2003). Characterization of Freeway 

Capacity Reduction Resulting from Traffic Accidents.Journal of Transportation 

Engineering 129.4: 362–368. 

 

Sullivan, E. (1997).New Model for Predicting Freeway Incidents and Incident 

Delays.Journal of TransportationEngineering123.4: 267–275. 

 

Sun C. and Chilukuri V. Secondary Accident Data Fusion for Accessing Long – Term 

Performance of Transportation Systems, Proceedings of the 2005 Mid-Continent 

Transportation Research Symposium, August 2005, Ames , Iowa. 

 

Sun, C. and Chilukuri V. (2010).Dynamic Incident Progression Curve for 

ClassifyingSecondary Traffic Crashes, Journal of Transportation Engineering,Vol. 

136, No. 12, 1153-1158. 

 

Vlahogianni, E., Karlaftis, M., Golias, J. Halkias, B. (2010). Freeway Operations, 

Spatiotemporal Incident Characteristics and Secondary Crash Occurrence, 

Transportation Research Record: Journal of the Transportation Research Board, 2178, 

1-9. 

 

http://web.pdx.edu/~bertini/papers/10-2688.pdf
http://web.pdx.edu/~bertini/papers/10-2688.pdf


 

15 

 

Vlahogianni, E.I., Karlaftis, M.G., and Golias, J.C. (2007), Spatio-Temporal Short-

Term Urban Traffic Volume Forecasting Using Genetically Optimized Modular 

Networks, Computer-aided Civil and Infrastructure Engineering, 22(5), 317-325. 

 

Zhan, C.J., Shen, L. O., Hadi, M., Gan, A. Understanding the Characteristics of 

Secondary Crashes on Freeways,  in 87
th

 Annual Meeting of the Transportation 

Research Board, TRB CD-ROM, January, 2008, Washington DC. 

 

Zhang  H. and Khattak  A. (2010). What Is the Role of Multiple Secondary 

Incidentsin Traffic Operations?, Journal of Transportation, Engineering, Vol. 136, No. 

11, November 1, 986-997. 

 

APPENDIX: DISTRIBUTIONS 

 

   (
   

 
)

   

    
   

 
 (

   

 
)  ⁄ +

     

      (
   

 
 (

   

 
)  ⁄ )

 

 
   

 
]     (1) 

a = - 1.677,b =4.765, c =27.649, d =53.960 

 

 

   
 

(  
 (   ) ( 

 
 ⁄   )

  ) 

      (2) 

a= - 1.068, b= 4.857, c= 25.947, d= 11.877 

 

   
 *     ( 

 

   
)+*     (

 

  
)+    ( 

   

 
)

[     ( 
     

 ⁄

 
)][     ( 

     
 ⁄

 
)]

(3) 

a=-21.682, b=25.850, c=108.790, d=319.200 

 

   (
   

 
)

   

    
   

 
 (

   

 
)  ⁄ +

     

      (
   

 
 (

   

 
)  ⁄ )

 

 
   

 
]     (4) 

a = - 0.451,b =2.382, c =16.520, d =25.958 

 

 

   (
   

 
)

   

    
   

 
 (

   

 
)  ⁄ +

     

      (
   

 
 (

   

 
)  ⁄ )

 

 
   

 
]      (5) 

a = - 1.251, b =4.419, c =24.132, d =42.098 

 

 

          ( 
   

 
)          (6) 

a=-0.080, b=4.314, c=32.459  

 

 

   
 

(  
 (   ) ( 

 
 ⁄   )

  ) 

        (7) 



 

16 

 

a= - 11.147, b= 14.926, c= 32.226, d= 25.966 

 

 

   (
   

 
)

   

    
   

 
 (

   

 
)  ⁄ +

     

      (
   

 
 (

   

 
)  ⁄ )

 

 
   

 
]   (8) 

a= - 1.068, b= 5.193, c= 27.329, d= 45.709 

 

 

  
   

    
 (   )
     
 

     (  
    

 (   )
     
 

)   

(
   

     
)    (

   

     
)   

       (9) 

a= - 0.005, b= 4.708, c= 32.856, d= 97.734, e= 2.391 

 

 

  
   

    
 (   )
     
 

     (  
    

 (   )
     
 

)   

(
   

     
)    (

   

     
)   

       (10) 

a= - 4.428, b= 7.569, c= 60.025, d= 164.061, e= 1.702 

 

 

   
 

 
       ( 

     
 ⁄

√  
)    

 

 
 

 

 
   (

     
 ⁄

√  
)     (11) 

a= - 42.154, b=48.267, c= 159.653, d= 470.438 

 

 


