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ABSTRACT   

 

In this study, a traffic equilibrium analysis conceptual framework is proposed along with related 

modeling components pertaining to stochastic capacity due to probabilistic incidents, with a 

specific focus on crashes.  This paper deviates from empirical, regression-based methods to 

predict crashes.  Crash probabilties are first estimated with a conceptual logit model, and the 

commuters in the network are catagorized into two classes: (1) travelers with some degree of 

knowledge of average travel time and incident conditions across different days, and (2) travelers 

with access to perfect pre-trip traffic information every day. Within a gap function framework 

for describing the user equilibrium under different information availability, a static traffic 

assignment framework is first presented  to describe the route choice behavior of the perfect 
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information (PI) and expected travel cost (ETC) user classes under stochastic day-dependent 

travel time under probabilistic incident traffic conditions. The model is applied to a simple 

corridor to illustrate the effectiveness of varying safety improvement strategies. A more realistic 

dynamic traffic assignment framework is further proposed for incorporating safety prediction for 

large-sclae networks with multipler user classes.  

Keywords: Crash prediction, route choice behavior, stochastic link capacity, traffic assignment 

 

INTRODUCTION 

 

Traffic accidents result in high human and economic losses and lead to traffic congestion.  

Traffic congestion leads to a wide variety of adverse consequences such as traffic delays, travel 

time unreliability, increased noise pollution, as well as deterioration of air quality.  To combat 

these inherent consequences of roadway vehicular traffic, safety has emerged as a priority in the 

transportation planning process.  Safety conscious planning, which is based on the idea that 

safety should be considered as an explicit part of the transportation planning process, is gaining 

momentum in transportation practice, particularly as a result of requirements in recent 

transportation funding legislation.  Considerable research has already been devoted to crash 

prediction modeling, which could be adaptable to planning activities (Hauer 1986, 1997, and 

2001; Abdel-Aty and Radwan 2000; Ulfarsson and Shankear 2003; Kweon and Kockelman 

2000; Lord and Persaud 2000; Lord et al. 2005; Ma and Kockelman 2006; Karlaftis and Rarko 

1998; Shankar et al. 1998; Khattak et al. 2006; HSM 2009; NCHRP Report 546 2006). 

 

Policy, planning, and design have historically taken a more nominal approach to safety.  The real 

implications of policy and project decisions made in an effort to improve safety have often been 

subjectively, qualitatively, or relatively defined.  Likewise, the response to an incident aimed at 

mitigating the impact of that incident on traffic has also been difficult to quantify ahead of time.  

If outcomes of implementing safety strategies, including the outcomes on incident-induced 

traffic congestion, could be accurately predicted prior to construction or implementation of a 

mitigation strategy, then their level of cost effectiveness could be more thoroughly considered by 

decision makers.   

 

Review of crash estimation models  

 

The evolution of crash estimation methods that are adaptable to a traffic equilibrium analysis 

conceptual framework has included crash estimation using observed crash frequencies and crash 

rates, indirect safety measures such as surrogate measures, and statistical analysis techniques to 

predicted the expected number of crashes (a long-term property of a road segment or 

intersection) (HSM Part A pg 3-17).  For many years, the staple in the crash prediction analysis 

has been statistical models estimated using cross sectional data.  Such models are developed by 

obtaining a database of historical accident and roadway characteristics, selecting an appropriate 

model, and using regression analysis to estimate the values of the coefficients in the model.  

These models have used various forms of regression techniques including; multiple linear 

regression, Poisson, negative binomial, and others (see Lord and Mannering 2010 and 

Savolainen, Mannering, Lord and Quddus 2011 for a comprehensive review of modeling crash 

frequency data).   
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Count regression models such as the Poisson and the negative binomial have been used to 

observe the link between crash frequency and other relevant factors such as traffic volume, ramp 

spacing, speed limit, and number of lanes (Miaou et al. 1993; Miaou and lum 1993; Miaou 1994, 

1996 and 2001; Fridstrom et al. 1995; Johansson 1996; Vogt and Bared 1998; Vogt 1999; Balkin 

and Ord 2001; Zegeer et al. 2002; Pernia 2004;Lord et al. 2005; Shankar et al. 1997; Garber and 

Wu 2001; Lee and Mannering 2002; Kumara and Chin 2003; Miaou and Lord 2003; Rodriguez 

et al. 2003; Shankar et al. 2003; Noland and Quddus 2004; Qin et al. 2004; Xie and Zhang 2008; 

Liu et al. 2008; Li and Zhang 2008; Naderan and Shahi 2009; Turner et al. 2011; Aguero-

Valverde and Jovanis 2010; Quddus et al. 2010; Anastasopoulos and Mannering 2011; Naveen et 

al. 2010; Schultz et al. 2010; Lord 2010; Savolainen 2011).  The models have been taken even 

further to account for unobserved factors, injury counts and types, as well as links to safety 

improvements (Kweon and Kockelman 2000; Karlaftis and Rarko 1998; Shankar et al. 1998; 

Chin and Quddus 2003; Ladron de Guevara and Washington 2004; Bijleveld 2005; Ma and 

Kockelman 2006;  Li et al. 1999; Christiansen et al. 1992; MacNab 2003; Miaou and Song 2005; 

Liu et al. 2005; Pawlovich et al. 2006; and Washington and Oh 2006; Milton et al. 2007; Tarko 

et al. 2008; Elvik 2008; Golob et al. 2008; Ma et al. 2008; Jonsson et al. 2009; Elvik 2009; Davis 

and Morris 2009; Ossenbruggen et al. 2010; Lord 2010; Jo et al. 2011; Savolainen 2011).   

 

Regardless of the regression model used, parameter estimates represent statistical correlations 

between specific roadway or traffic characteristics and crashes.  An inherent problem is that this 

correlation may not necessarily have a cause-and-effect relationship.  Additionally, if an 

independent variable has a strong correlation with another variable, then it will be difficult to 

separate out their independent effects.  Likewise, if a variable in the model is correlated with 

another unseen or unknown variable, then the coefficient in the model may represent something 

entirely other than what it is intended (i.e., ommitted variable bias).  Thus, the value of a 

coefficient in the model may be a good representation of a specific roadway characteristic, or it 

may be modeling some other unintended variable. 

 

Before-and-after studies have been used for many years to evaluate the effectiveness of highway 

improvements in reducing crashes.  What has become known as the naive before-and-after 

design studies have flaws such as regression to the mean (HSM pg 3-15) leaving decision makers 

unsure of whether the results of the treatment were a result of a random fluctuation in traffic 

crashes or a direct result of the treatment itself. Hauer (1997) has proposed the Empirical Bayes 

technique as a way to address the problem of regression to the mean.  If this bias can be 

overcome then the before-after evaluation is a good method for analyzing the safety effect of a 

specific treatment on a roadway, and may get closer to a cause-effect relationship than 

multivariate regression models of cross sectional data.  

 

Needs for incorporating crash prediction in an equilibrium analysis framework 

 

A recent road safety modeling synthesis and strategic planning document characterized count 

regression models, estimated using aggregated accident data combined with roadway inventory 

data, as limited in terms of the insights gained from modeling results (Transportation Research 

Circular in press; Lord and Mannering 2010).  This paper deviates from the typical statistically 

based regression methods for crash prediction models and combines the statistical measures 

obtained for roadway safety with user equilibrium equations.  General stochastic user 
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equilibrium traffic assignment models have been developed where travel times are predicted 

based on varying traveler information and time-variant road capacity (Yang 1998; Yang, et. al. 

2001; Yin and Yang 2003).  De Palma and Picard (2005) further developed a graphical user 

equilibrium model that was able to consider two types of user classes.  Li et al. (2011) further 

proposed a deterministic static traffic assignment model under stochastic capacity conditions, in 

which traffic capacity variations are assumed to be given externally, in order to provide a multi-

day analysis framework for evaluating ATIS strategies.  

 

Our research builds on various models that have evolved, such as stochastic capacity analysis 

and dynamic traveler behavior modeling, within the classical user equilibrium analysis.  This 

paper expands the analysis technique proposed by Li et al. (2011) to examine how roadway 

safety can be examined through the gap function-based formulation for user equilibrium.  The 

proposed model specifically considers the stochastic nature of network capacity for two different 

scenarios while considering the impact of crash probabilities and facility specific attributes.  

After establishing a conceptual logit model for predicting incident probabilities, we examine the 

effect of three safety improvements; (1) Reduce incident probability through improved geometric 

design, (2) Reduce capacity reduction due to incidents thought the use of a shoulder lane or 

quick response, and (3) better information provided to drivers by way of real-time traveler 

information, on a theoretical network and the impact that each has on the equilibrium of the 

system.  The proposed model is able to provide a link between the statistical crash prediction 

methodology and crash mitigation techniques in a user equilibrium model.  

 

CONCEPUTAL EQUILIBIRUM ANALYSIS FRAMEWORK   

 

The conceptual modeling framework is illustrated in Fig. 1 using a simple corridor with a single 

origin-to-destination pair and two paths p=1 for the primary path, p=2 for the alternative path, 

where p is the path index. As each path only has one link, path 1 is denoted as link a=1 with a 

free-flow travel time of 20 minutes, and path 2 is denoted as link a=2 with a free-flow travel 

time of 30 minutes, where a is the link index. Following a similar analysis setting in the study by 

De Palma and Picard (2005) and Li et al. (2011), this example considers two different 

conditions: “bad” days with one incident (d=1), and “good” days with zero incidents (d=0). and 

the peak hour demand is Q=8000 vehicles per hour on each day.  

 

“Bad” days have a reduced capacity due to the incident for the primary route, and “good” days 

have their full capacity available. As detailed in Table 1, the primary path has the following 

capacity values: 

 On bad days it is 3,000 vehicles per hour (vph) per link. 

 On good days it is 4,500 vph per link. 

The alternative path is assumed to have a fixed capacity of 3,000 for all days. The probability of 

incident is included as a function of the V/C ratio with a specific risk, to be discussed later.  

 



5 

 

O D

Primary path: 1

Alternative path: 2

Free-flow travel time = 20 min

Capacity = 4500 (veh/h) on good days (without incidents)

              or 3000 (veh/h) on bad days (with incidents)

Free-flow travel time = 30 min

Capacity = 3000 (veh/h) on all days  
Figure 1. Simple network used as an illustrative example 

 

To setup a mathematical programming model for steady-state traffic equilibrium, the non-

negative flow variables      is considered as the traffic flow using path p on day d. Obviously, 

the path flow distribution should ensure the total demand constraint on each day:  

                    (1) 
Let Tp,d be defined as the travel time on path p on day d,  which can be calculated from the BPR 

function such as   

               
    

    
 
 

 

 

(2) 

Where FFTTa  is the free-flow travel time of link a. Coefficients α and β are set to commonly 

used default values 0.15 and 4, respectively.  
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Table 1  Day-dependent capacity values 

    

  

Bad Day 

(with 

incidents) 

Good 

Day 

(without 

incidents) 

Day Dependant 

Capacity 

Daily Capacity on 

Path/Link 1 (veh/h)  

1,a dc   

Path 1 3000* 4500 

Daily Capacity on 

Path/Link 2 (veh/h)  

2,a dc   

Path2 3000 3000 

Base Case:  

Flow (veh/hour/link) 
Path 1 5322 5322 

Path 2 2678 2678 

Travel Time: 32.9 min 

 

Scenario I   (Reduce 

Probability of 

Incident through 

Design) 

Flow (veh/hour/link) 
Path 1 5669 5669 

Path 2 2331 2331 

Travel Time: 31.6 min 

 

Scenario II  

(Increased Post-

Incident Capacity) 

Flow (veh/hour/link) 
Path 1 5920 5920 

Path 2 2080 2080 

Travel Time: 31.0 min 

 

Scenario III 

(Consider ITS and 

15% PI Conscious 

Users) 

Flow (veh/hour/link) 
Path 1 4926 5962 

Path 2 3074 2038 

Travel Time for ETC Users: 34.8 min 

Travel Time for PI Users: 32.2 min 

Travel Time for all Users: 34.4 min 

*reduced capacity 

Now the two different degrees of traveler knowledge can be examined.  

 
Expected travel cost (ETC) knowledge-based user equilibrium 
 

As there are different realized capacity values      due to incidents on different days, the travel 

times on different links can be viewed as a set of stochastic variables. In reality, most travelers 

rely on their expected travel times and their knowledge and experience on incident occurrence 

probability over different days to make route choices. The expected travel time can be 

considered as the long-run average, or more precisely, the probability-weighted sum of the 

possible travel time values from different days. Under a user equilibrium condition with ETC 

users, the expected travel times on used routes in the network are assumed to be the same, and 
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accordingly, an ETC user selects the same route every day, regardless the actual traffic 

conditions. 

 The expected travel time for link a with random capacity  over different days can be 

represented as travel time on each day d for link a.                 is a function of the prevailing 

flow and capacity on that particular day. For link a=1 in the illustrative example,  

 

                    
                     

    (3) 
 

Where    is the probability of having an incident on link a,    
  and   

 corresponds to the reduced 

and full capacity on link a. 

In this study,  we consider incident rate as a function of flow volume and capacity  

 

   
    

      

  
      

      
      

  
      

 (4) 

 

Where    is the average volume on link a across different days.     is the coefficient associated 

with the volume-over-capacity (V/C) ratio in the logit model , and link volume         under no 

incident conditions and full capacity are used to calculate the V/C ratio.   is link-specific risk 

constant (default 0), associated with different link type, # of lanes and other related geometric 

design features.     

 

             
 

      
      

  
      

      
    

  
  

 

   
    

      

  
      

      
      

  
      

      
    

  
  

 

  

 (5) 

 

This research aims to generalize Wardrop’s first principle to describe the equilibrium conditions 

for travelers relying on their expected travel time to make route decisions: travelers with the 

same origin-destination pair experience the same and minimum expected travel time along any 

used paths on different days, with no unused path offering a shorter expected travel time. 

Obviously, when there is a single capacity value without incidents, then the above conditions are 

consistent with the standard user equilibrium with deterministic capacity, as the expected travel 

time devolves to the travel time on the single day. 

 

The corresponding Karush-Kuhn-Tucker optimality conditions can be re-written as  

 

1 1 2 2( ) ( ) 0ETC ETC ETCgap f T f T          (6) 

 

where   is the least expected travel time between the given OD pair over a multi-day horizon 

(with and without incidents) satisfies 

 

1 2min( , )T T    (7) 

 

ac
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When ETCgap  = 0, it can be shown that if 0ETC

af  , then 
 aT  . That is, the selected routes by 

expected travel time information users between an OD pair have equal and minimum costs. On 

the other hand, if 0ETC

af  , then
aT  , which indicates that all unused routes by ETC users 

have greater or equal costs (compared to the used path costs). These two conditions further imply 

that no individual trip maker with expected travel time information can reduce his/her expected 

path costs by switching routes on any given day, under a user equilibrium condition. 
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29%×TTFRC+71%×TTFFC

 A: 49.72

B= 25.87

G: 32.85=29%×49.7+71%×25.9

5332/2678

Crash Probability 29%

 
Figure 2. Solutions with 100% ETC information users and        and     , incident 

probability = 29.3% 
 
Figure 2 graphically demonstrates the travel time of each path at full capacity (green line for path 

1 and black line for path 2) and path 1 at reduced capacity due to an incident (red line).  The 

expected travel time function (TTF) is generated by assigning a 29.3% weight to TTF with 

reduced-capacity (RC) days and an 70.7% weight to TTF with full-capacity (FC). The ETC-

based user equilibrium corresponds to the intersection (in orange) of expected TTF on path 2 and 

path 1. 5322 vehicles are using link 1 and 2678 vehicles are using link 2 each day.  

Point A: travel time = 49.72 min on link 1, reduced-capacity days,  

Point B: travel time = 25.87 min on link 1, full-capacity days.  

Point G: travel time = 32.85 min on link 2 every day, and the expected travel time on link 1 is the 

same 32.85 min. 

 

If it is assumed that all users rely on ETC information in the simple corridor, then the ETC-based 

user equilibrium assigns about 5322 vehicles (66.5%) on path 1, and about 2678 vehicles on path 

2, leading to different travel time on good and bad days. As both paths carry positive flows, their 

average travel times over multiple day horizon are the same at 32.9 min. 
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Perfect Information (PI) based user equilibrium 

 

Every day, perfect travel time estimates with zero prediction error for all links are available for 

the traveler to make route decisions, and travelers can switch routes every day in response to an 

incident and its resulting non-recurring delay. According to Wardrop’s first principle of user 

equilibrium, for a specific origin-destination pair, travelers with perfect information experience 

the same and minimum travel time along any used paths on each day d, with no unused path 

offering a shorter travel time.  

 

To construct the objective function in the optimization model, the following gap function (for 

each day d) can be used to characterize the KKT optimality conditions (Wiki, 2010) required for 

reaching the user equilibrium for perfect information users.  

1, 1, 2, 2,( ) ( ) 0,PI PI PI

d d d d d d dgap f T f T d           (8) 

Where 1,

PI

df  and 2,

PI

df  are path flow rate of PI users on paths 1 and 2, respectively, on day d, where 

d  is minimum path travel time on day d  

1, 2,min( , ),d d dT T d    (9) 

 

EVALUATING SAFETY IMPROVEMENT STRATEGIES USING STATIC TRAFFIC 

ASSIGNMENT METHOD 

 

Now that the base case has been established, the travel times obtained from the modified BPR 

function could be easily calibrated.  Following the steps lined out by Huntsinger and Rouphail 

(2011), one can calibrate and validate a BPR function using available sensor data.  Because the 

proposed network is only hypothetical, there was no way to calibrate it, but in a real world 

application, the model would need to be validated.  After the crash prediction model is 

calibrated, the inputs to the modified function can be altered to reflect proposed changes 

resulting from safety enhancing methodologies.  The results from the enhanced methodologies 

can be compared to the base case and give meaningful results about how the safety enhancing 

features will improve the actual travel time within the link or network. 

 

Alternative 1: Reducing incident probability through improved geometric design 

 

The first safety performance enhancement we considered was reducing incident probability 

through improved geometric design.  Theoretically the methodology used here can represent any 

improvement made to the roadway beyond simply improved geometric design.  We changed the 

mode constant from -1 to -2, meaning that, incident probability is reduced for the same V/C ratio 

(1.183).  The probability of incident dropped from the base case of 29.3% to 13.2%.   

 

After traffic equilibrium in this case, more flow switches to route 1, from 66.5% to 70.9%.  

Because of the increased travel time, the V/C ratio is increased to 1.26 which in turn results in a 

slightly higher incident rate from the base case (1.26).  Despite the increase in incident rate, the 

average travel time is reduced to 31.6 min.   

 

Alternative 2: Reducing capacity reduction due to incidents thought the use of a shoulder lane 

or quick response 
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The second safety performance enhancement we considered was reducing capacity reduction due 

to incidents thought the use of a shoulder lane or quick response.  In this alternative, the lane 

capacity reduction on day 1 is increased to 1300 veh/lane/hr instead of 1000 veh/lane/hr in the 

other scenarios.  The same mode constant was used as in the other scenarios and the resulting 

probability of incident was 29.6%.   

 

After traffic equilibrium in this case, more flow switches to route 1, up 7.5% over the base case 

(66.5% to 74%).  Because of the increased incident flow, the V/C ratio on route 1 is increased to 

1.32 which is consistent with the slightly increased probability of crashes.  Again, despite the 

increase in incident rate, the average travel time is again reduced to 31.0 min. 

  

 Alternative 3:  Real-time traveler information provision  

 

The third safety performance enhancement we considered was better information provided to 

drivers by way of real-time traveler information.  The market penetration rate we considered for 

these PI drivers was 15%.  The benefit of having drivers with perfect information is that they can 

help the equilibrium of the system by being aware of congestion conditions on both routes and 

adjusting their route choice in response to the current conditions.   

 

In this alternative, and on good days, more flow switches to route 1 due to the lower travel time.  

This increased the flow on route 1, up 8% over the base case (66.5% to 74.5%).  Similarl to the 

other scenarios, the increase in V/C ratio on route 1 led to an increased probability of incident, 

29.6%.  When incidents occurred, the PI drivers were lured to route 2 by the lower travel time 

which helped lower the average travel time.  The helpfulness of the PI drivers under incident 

conditions was not enough to overcome the damage they had done by using route 1 when it was 

incident free which resulted in a high incident rate.  Interestingly, the overall average travel time 

was increased over the base case to 34.4 min, up from 32.9 min. This additional system-wide 

average travel time is contributed by the increased link volume        in Eq. (4) on “good” days 

due to “smart” PI drivers, as higher V/C ratios lead to higher probabilities of traffic breakdown 

and incidents as well as additional delays. On the other hand, thanks to real-time traffic 

information, PI drivers still enjoy lower travel time (32.2 min) than ETC drivers (34.8 min). 

 

GENERAL MATHEMATICAL PROBLEM FORMULATION AND SOLUTION 

ALGORITHM 

 

This section extends the above conceptual framework and the mathematic programming model 

proposed by Li et al. (2011) to a general network with with endogenous crash prediction 

functions and with variable road capacity, under different safety improvement strategies.  
 
Formulation 
 

The sets and subscripts, parameters and decision variables in the proposed flow assignment 

model are introduced as follows: 

Indices: 

 = index of origins, i = 1, …, I, where I is the number of origins i
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 = index of destinations, j = 1, …, J, where J is the number of destinations 

 = 
index of paths, p=1, …, P, where P is the number of paths between an OD pair i 

and j 

 = index of links, a=1, …, A, where A is the number of links in networks 

 = index of days, d=1, …, D, where D is the number of days over analysis horizon 

 

Input Parameters: 
F

ac  = Full capacity of link a 

R

ac  = Reduced capacity of link a 

,i jq  = OD demand volume between an OD pair i and  j 

,p a
 

= 
path-link incidence coefficient, ,p a =1, if path p passes through link a, and 0 

otherwise 

  = 
market penetration rate of the perfect information (PI) users as a function of the total 

OD demand 

 

Decision variables: 
, ,

,

PI i j

p df
 

= flow of PI users on path p for OD pair (i, j) on day d 

, ,ETT i j

pf
 = 

flow of ETC users on path p for OD pair (i, j) (flow rates are the same across 

different days) 

,a dv
 = total flow on link a on day d 

a  = Probability of having incidents on link a  

,a dc
 = capacity of link a on day d 

,a dT
 = Travel time on link a on day d 

,a dU
 = 

generalized disutility on link a on day d, which is a function of capacity 
,a dc  and 

link flow 
,a dv  

,

,

i j

p dU
 = generalized disutility of path p between OD pair (i, j) on day d 

,i j

pU
 

= expected disutility of path p between OD pair (i, j) over the multi-day horizon 

,i j

d  = day-dependent least path disutility between OD pair (i, j) on day d 

,i j  
= Least expected disutility between OD pair (i, j)  over the multi-day horizon 

 

The proposed model incorporates the two user classes into a traffic assignment framework under 

stochastic capacity due to incidents that varies on a daily basis during the peak hour. The 

objective function aims to minimize the total gap for users with perfect traffic information and 

users with imperfect information based on expected travel time. 

 

Objective function: 

j

p

a

d
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   , ,
, , , , , ,

, ,min
i j i j

PI i j i j i j ETC i j
pp d p d d p

d i j p

Gap f U f U       
  

  (10) 

PI flow constraints: 
, , ,

, , ,i j PI i j

p d

p

q f i j d   
 (11) 

ETC flow constraints 
, , ,(1 ) ,i j ETC i j

p

p

q f i j     (12) 

Path - link flow balance constraints 

   , , , ,

, , , , ,PI i j ETC i j

a d p d p a p p a

i j p i j p

v f f a d        (13) 

Path- link cost connection 

, , , ,( , ) ,a d a d a d a dU T v c a d   (14) 

 ,

, , , , , ,i j

p d a d p a

a

U U i j d p  
 (15) 

Crash/capacity reduction probability constraint:  

, ,( , , ) ,F R

a d a d a ac v c c a d   (16) 

Average disutility definitional constraint:  

, ,

,

1
, ,

i j i j
p p d

d

U U i j p
D

   (17) 

Least disutility definitional constraints:  
, ,

, , , , ,i j i j

d p dU i j p d  
 (18) 

, ,

, ,
i j i j

pU i j p    (19) 

 

Constraints (11) and (12) show the relationship between OD demand and path flows for each 

information class. Eq. (13) aggregates path flows from two different user classes to link flows. 

Eqs. (14-15) calculate the path disutility for each path on day d. Function          
    

   in Eq. 

(16) represents a generic crash prediction probability based on prevailing link volume on day d, 

and the prediction results could be either full capacity F

ac  and reduced capacity R

ac  due to a 

crash.     

 

  Eq. (17) defines the average disutility for each path across different days, which will be used in 

the gap function for ETC users in objective function (10).   The solution algorithm executing the 

above steps is depicted in Figure 3.   
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3. Perform multi-day traffic simulation 

runs

Avg link travel time 

across different days 

1. Use crash prediction model to 

generate stochastic capacity Cd for all 

links on day  d=1,2,…, D 

Yes

2. Assign all vehicles of each OD pair 

to the shortest path 

Least expected travel time path

7. Check convergence of traffic assignment 

using gap functions
Traffic Volume Aggregation

d=1

C1

d=2

C2

d=D

CD
...

Link travel time T1

Least Travel Time 

Path on day 1

LTP1 
LTP2 

T2

LTPD 

...

T2

Assignment 

for PI users on 

day 1

Assignment 

for PI users on 

day 2

Assignment 

for PI users on 

day D

...
Assignment 

for ETC users

4. Find descent direction

Link flow 

pattern on day 

1

Link flow 

pattern on day 

2

Link flow 

pattern on day 

D

6. Link flow aggregation

5. Path 

Assignment

T

Inner Loop:

Traffic 

Assignment with 

Reduced 

Capacity

Outer Loop: Crash 

Prediction based on 

Traffic Assignment 

Results

Figure 3. Solution algorithm for integrated crash prediction and traffic assignment with 

both PI and ETC users 

 

In order to iteratively reduce the overall gap in the proposed optimization problem for a general 

network with multiple origins and destinations and with variable capacity due to incidents, we 

extend a descent search solution framework developed by Lu et al. (2009), which used a path-

based gap function to describe the dynamic traffic equilibrium pattern. Figure 4 presents the 

iterative procedure for solving the multi-class static traveler assignment problem under stochastic 

and endogenous capacity conditions. The proposed procedure adds day-dependent simulation, 
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path finding and assignment dimensions to the existing static traffic assignment algorithm that 

typically assumes deterministic road capacity conditions. In this study, we implement the 

proposed algorithm within  a mesoscopic traffic assignment framework, which represents flow as 

vehicles with origin, destination and path attributes. Recall that, in conventional assignment 

programs, a vehicle is associated with a single path. In the proposed multi-day traffic assignment 

algorithm, an ETC vehicle still follows a single path across different days, but a PI vehicle can 

use and store different (day-dependent) paths on different days.  

The main steps of the solution procedure are described as follows: 

Step 1: Outer Loop: Use crash prediction model to generate day-dependent capacity. 

Generate road capacity vector Cd = ,a dc    for all link a=1, 2, …, A, on day d=1, 2, …, D , 

according to a given crash prediction models and stochastic capacity distributions. The outer 

loop stops after a pre-specified number of iterations.  

Step 2: Inner Loop: Traffic assignment with given stocahtic capacity 

For each OD pair, compute the shortest path (in travel times) and assign both PI and ETC 

vehicles to the corresponding shortest path. 

Step 3: Multi-day traffic simulation with stochastic capacity.  

On each day d =1, 2, …, D, for given link flow patterns, generate day-dependent link travel times 

according to stochastic capacity vector Cd.  The simulation results generate link travel time ,a dT  

for link a=1, 2, …, A, on day d=1, 2, …, D.  

Step 4: Find descent directions  

Find the Least Travel time Path (LTP) using day-dependent link travel time ,a dT   on each day d, 

for  link a=1, 2, …, A. 

Find the Least Expected Travel time Path (LETP) using average link travel time 
,a d

d

a

T

T
D




, 

for link a=1, 2, …, A.  

Step 5: Path assignment for PI and ETC vehicles 

For each day d, a certain percentage of PI vehicles are assigned to the least travel time path 

according to the Method of Successive Average (MSA). 

Step 6: Link flow aggregation 

For each day d, calculate the aggregated link volume ,a dv  using PI flow volume on day d and 

ETC flow (across every day).  

Step 7: Convergence checking for traffic assignment  

Calculate the gap function as shown in Eq. (10), if Gap <  convergence is achieved, where  

is a pre-specified parameter. If convergence is attained, go back to Step 1 for crash prediction 

stage. Otherwise, go to Step 3. 

 

 

EXTENSION TO DYNAMIC TRAFFIC ASSIGNMENT FRAMEWORK 

 

With the goal of integrating improved transportation safety impacts into the region-wide 

planning process, this section aims to develop and articulate the specific method for representing 

both the propensity for crashes and the effects of these crashes on congestion. We will first 
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explore several approaches to modeling crash probabilities , ,( , , )F R

a d a d a ac v c c in a dynamic 

traffic network simulation environment including: probability distributions, conditional 

probabilities, time sequential models, and liner regression models.   

 

Approach 1: Introduce link-specific incident probability functions, which can be 

calibrated from historical crash record GIS databases, typically maintained by state DOTs. 

Approach 2: Estimate incident rates based on traffic conditions and underlying geometric 

design characteristics through quantitative crash probability and regression models.  For 

example, one potential tool that can be integrated in the proposed framework is the macroscopic 

PlanSafe model that forecasts the safety impacts of socio-demographic changes and safety 

countermeasures.  

Approach 3:  Provide an external crash/incident probability input interface for a subarea 

study that focuses on high crash locations. State DOT engineers can first identify potentially 

hazardous roadway locations and designs, and key in crash probability changes (based on expert 

knowledge) for strategies to reduce the contributing factors that lead to crash occurrences under 

given roadway and/or environmental characteristics. 

Approach 4: Integrate the mesoscopic simulator in dynamic traffic assignment models 

with fine grained microscopic simulation tools for evaluating new design proposals. For 

example, SSAM can derive surrogate measures of safety from existing microscopic traffic 

simulation models for intersections.  This is a more computational challenging method and the 

feasibility of this hybrid micro-mesoscopic simulation approach will be examined in this project, 

but the corresponding implementation subtask remains as optional due to limited time and 

resources in this project.    
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and Incident  

Duration 
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Strategies

Better Road

 Design

Mode/Route Shift,  Reduce Speed, etc...

Congestion 

Mitigation 

Strategies

Network-wide, corridor-level traffic 
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Figure 4. Incorporating Safety Prediction in DTA Framework 

 

In addition to capacity reduction severity, we also need to predict incident duration that 

corresponds to the time period of capacity reduction. To enable an effective project selection 

processes that respond to various safety improvement strategies, a proposed modeling framework 

is shown in Figure 4. 

 

The approach relies on an integrated feedback loop that will allow planners to evaluate different 

safety enhancement strategies for reducing the frequency and effects of events that cause travel 
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times to fluctuate in an unpredictable manner. Because crashes and resulting incidents are small-

probability events, it requires the dynamic traffic assignment program to perform simulation for 

multiple weeks or multiple months, in order to obtain the statistically sound measures for 

evaluating safety improvement strategies, include but not limited to: enhancing work zone safety, 

improve intersection and interchange safety. To generate reliable traffic condition measures for 

crash probability prediction, the traffic data (e.g. speed and volume at different times of day) 

need to be aggregated over a period of time covering several weeks or several months 

(depending on the data resolution requirement from the crash prediction model). The traffic 

condition statistics are further fed into the crash prediction model to predict the locations, time 

stamps and severity of crashes, as well as the resulting capacity reduction magnitude and 

duration in the traffic network system.   

 

EXPERIMENTS ON MEDIUM-SCALE NETWORKS 

 

The following numerical experiments are performed on two medium-scale network data sets. 

The proposed algorithm is implemented in C++ on the Windows Vista 64-bit platform and 

evaluated on a computer with an Intel Xeon CPU with 4 2.33 GHz processors and 9 GB 

memory. The proposed algorithm has been incorporated into an open-source traffic assignment 

package available at https://sites.google.com/site/dtalite.  

 

Table 2. Test network characteristics and computational performance with 30 day samples, 

20 iterations and 10% PI vehicles. 

 Anaheim, 

California 

Chicago Sketch 

Network 

# of nodes 416 933 

# of links 914 2950 

# of OD zones 38 387 

Total OD Volume 
104K 1,261K 

 

As shown in Table 2 and Figure 5, the Anaheim, California network contains about 38 zones, 

and 0.1 million vehicles, and the Chicago sketch network, an aggregated representation of the 

Chicago region, has 387 zones with 1.2 million vehicles. Under a setting of 10% PI users, 20 

assignment iterations and 30 days of random road capacity, the Anaheim network uses about 30 

minutes, and the Chicago sketch network takes about 8 hours of CPU time and 2.6G memory.  

  

The original data sets use the BPR function to describe travel time performance, and a single 

valued mean capacity is specified for each link. To evaluate different incident 

response/management strategies with different degrees of random road capacity reduction due to 

incidents, we consider the impact of two alternative schemes with low and high capacity 

reduction variation values. In particular, improved geometric design, the use of a shoulder lane or 

quick response can reduce the variations of capacity reduction due to incidents.  

 
 

 

https://sites.google.com/site/dtalite
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Table 3. Evaluating safety improvement strategies: unit (min) 

Peak-hour Capacity 
Approximation 
Scheme 

Anaheim network Chicago Sketch Network 

 
ETC 
Travel 
Time  

PI 
Travel 
Time 

Average 
Relative 
Travel Time 
Saving (%) 

ETC 
Travel 
Time 

PI 
Travel 
Time 

Average 
Relative 
Travel time 
Saving (%) 

Low Capacity 
Reduction Variations 
with CV= 6.4% 

12.903 12.864 0.302% 17.348 17.242 0.611% 

High Capacity 
Reduction Variations 
with CV= 12.8% 

13.233 13.157 0.574% 17.794 17.469 1.827% 

 

CONCLUSIONS 

 

In this document, an equilibrium-oriented conceptual framework is proposed along with related 

modeling components pertaining to stochastic capacity due to incidents, travel time performance 

functions and different degrees of traveler knowledge. Within a gap function framework (for 

describing the user equilibrium under different information availability) a mathematical 

programming model is formulated to include crash probability as a function of the V/C ratio as 

well as a facility specific safety constant.  The model was applied to a simple 2-link corridor to 

illustrate the ability of the model to provide a basis for comparing different safety enhancing 

strategies.  This comparison allows the user to systematically predict and evaluate the cost / 

benefit of a proposed strategy and compare the results to other scenarios.  The user is thus able to 

have a foundation on which to decide the best locations and types of safety investments to make. 
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