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ABSTRACT   
 
Misallocating attention has been considered the most likely cause of crashes. The acquisition of 
incomplete or unusable information leads to insufficient comprehension of the current driving 
environment. Thus, a functional mechanism for attention allocation is a critical issue in crash 
prevention. Researchers have conducted several field studies to analyze attention allocation from 
an aggregate perspective. However, only a few characteristics of attention allocation can be 
extracted. This study proposes a driver attention allocation model from a microscopic 
perspective to explore the driver attention allocation problem and clarify how drivers allocate 
attentions. This study treats the continuous process of attention allocation as successive choices 
of their focal point, and derives the probability of choosing specific focal point using a discrete 
choice model. A set of hypothetical data was generated for numerical analysis to illustrate the 
appropriateness of the proposed attention allocation model. Although this study only adopts 
hypothetical data and simple scenarios, the results show that the proposed model can reveal the 
mechanisms of eyesight shifting for information gathering, and have the potential to be an 
effective tool for safety evaluation. 
 
Keywords: attention allocation, focal point, discrete choice model. 
 
INTRODUCTION 
 
To understand roadway crashes, researchers have worked on mining aggregated crash data to 
extract crash patterns (Chang and Yeh, 2007; Elvik, 2003; Wong and Chung, 2007a; 2007b; 
2008a; 2008b; 2010; Wong et al., 2010). However, a crash-prone driver driving in a crash-prone 
scenario with risky behavior does not always lead to crashes. In fact, most crashes are 
preventable under dangerous situations, as long as the surrounding traffic is properly observed 
and adequate maneuvers are successfully executed (Wong and Chung, 2010; Wong et al., 2010). 
This phenomenon suggests that there is still a missing link between crash patterns and crash 
occurrences. The key element seems to rely on the understanding of drivers, especially the 
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attention allocation process while driving. Thus, to illuminate the causality and the inherent 
nature of crashes, this study explores crashes from the perspective of drivers’ attention allocation. 
 
Misallocating attention has been considered as the most likely cause of crashes (Brown et al., 
2000; Chan et al., 2010; Di Stasi et al., 2009, McKnight and McKnight, 2003; Olson et al., 2009; 
Underwood, 2007; Underwood et al., 2003a). Continuous information searching is a key step in 
comprehending, anticipating, and reacting to tasks or events (Endsley, 1995). The acquisition of 
incomplete or unusable information will lead to insufficient comprehension of the current driving 
environment. To drive safely, drivers must pay attention to multiple information sources to make 
informed driving decisions. However, one’s attention resources are limited (Kahnemen, 1973). 
Each driver has a central processor that determines the policy of attention allocation and divides 
their mental resources within the limits of their mental capacity. As a result, the problem of 
divided attention may degrade one’s ability to detect potential threats (de Waard et al., 2009; 
Marmeleira et al., 2009). Misallocating attention may distract someone with useless information, 
causing them to miss important information. Thus, a functional policy for attention allocation 
without mental resource misallocation is a critical issue in driving safety.  
 
Policies for attention allocation are the keys to distinguishing experienced drivers from novices 
(Konstantopoulos et al., 2010). Experienced drivers have better knowledge of driving tasks, and 
are more likely to make better decisions (Borowsky et al., 2010; Martens and Fox, 2007; 
Nabatilan, 2007; Underwood et al., 2002). On the other hand, novice drivers, who have immature 
mental models and limited rules of attention allocation, usually fail to allocate attention to 
surrounding area, and focus only on limited targets in front of the vehicle (Chan et al., 2010; 
Martens and Fox, 2007; Underwood, 2007; Underwood, et al., 2002; 2003a; Konstantopoulos et 
al., 2010). Nevertheless, unanticipated hazards and surprising events that may seriously harm 
driving safety can appear frequently. As a result, novices may commit more driving errors due to 
attention allocation failure (Chan et al., 2010; Martens and Fox, 2007). 
 
Quantifying the policy of attention allocation is essential to evaluating driving safety. 
Researchers have conducted several field studies to observe the proportion of time that drivers 
spend on particular objects or areas under various conditions (Borowsky et al., 2010; 
Konstantopoulos, 2010; Levin et al., 2009; Nabatilan, 2007; Underwood et al., 2003a). Under 
normal conditions, the frontal areas attract the most attention (Levin et al., 2009; Nabatilan, 2007; 
Underwood, 2007; Underwood et al., 2003a). In addition to focusing on the frontal side, drivers 
occasionally allocate attention to their surrounding areas to maintain situational awareness 
(Crundall et al., 2006). However, shifting attention away from the frontal area increases driver 
uncertainty, which urges drivers to shift their attention back to the front (Brown et al., 2000; 
Underwood et al., 2003a). Instead of using single point or area as the focal point, Underwood et 
al. (2003a) analyzed driver attention allocation through scan paths, which contain multiple and 
sequential fixation points. This approach enables the in-depth study of attention allocation and 
provides more clues regarding drivers’ strategies of situational awareness.  
 
Another approach to analyze the attention allocation process is to evaluate the allocation policy 
through its overall variety and flexibility (Chapman et al., 2002; Hosking et al., 2010; Nabatilan, 
2007). A well-trained driver maintains a high variance of eyesight fixation. Rather than saccade 
eyesight randomly, experienced drivers are able to direct their eyesight around the vehicle on the 
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basis of clues obtained from the environment (Borowsky et al., 2010). This enhances their 
situational awareness and allows continuous observations for potential threats. However, 
attention allocation strategies become less variant when facing hazardous objects, which drivers 
invariably pay close attention to (Hosking et al., 2010).  
 
Other than analyzing attention allocation based on the perspective of time proportion, several 
researchers have attempted to compile computational models to predict the probability of 
choosing focal point under various conditions. The SEEV model divides the contributing factors 
of attention allocation into four constructs: salience, effort, expectancy, and value (Wickens et al., 
2003a; 2003b; Horrey et al., 2006). “Salience” represents the conspicuity of information that 
determines whether drivers can easily identify and extract those stimuli from the background 
information. “Effort” characterizes the distance (or the difference of visual angle) between 
different sources of information. Larger spans of visual angles may inhibit the scan path owing to 
the greater mental effort they require. “Expectancy” represents the expectation of information 
appearance that drivers must collect. Areas that are expected to have more wanted information 
attract higher levels of attention. Finally, “Value” symbolizes the relevance and importance of 
information. The higher the value of an information source, the more attention it will attract. 
 
The SEEV model provides a good framework for attention allocation research, as it comprises 
four major contributing factors. However, the model in Horrey et al. (2006) was originally 
designed for simple tasks containing only few information sources, such as outside the vehicle 
and in-vehicle tasks. Several difficulties appear when applying the concept of SEEV model to a 
real driving environment, which contains complex focal points. First, the SEEV model only 
utilizes four constructs which were presented in the form of ranking order (namely one to three). 
More manifest measurements of the four constructs are required to clarify how drivers shift 
attention during dynamic and complex driving tasks. Second, the obtained probability reflect 
only the probability of choosing specific focal point. Therefore, to analyze the attention 
allocation process from a more microscopic perspective, an attention allocation model that can 
reflect eyesight fixation and saccade is needed.  
 
Modeling attention allocation is a major step in identifying the external information perceived 
and driver reactions. Recognizing the critical role of attention allocation in driving safety, this 
study proposes a driver attention allocation model from a microscopic perspective. A discrete 
choice model to determine the probability of selecting focal point with specific attributes is 
developed. It will allow us to observe and represent the real-time behavior of shifting eyesight 
for driving information acquisition. Thus, a framework of the driver attention allocation model 
with its contributing factors based on the concept of SEEV model is developed firstly in the 
following section. A set of hypothetical data is then generated for a numerical analysis to 
illustrate appropriateness of the proposed model. 
 
DRIVER ATTENTION ALLOCATION MODEL 
 
Before we can develop a driver attention allocation model, it is necessary to clarify the issue of 
“where to allocate attention.” The following section classifies the complex driving environment 
into several focal points based on the concept of vehicle driver’s domain (Wong and Huang, 
2010).  
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Focal Points 
 
In real driving tasks, there are countless potential focuses that may attract drivers’ attention, 
including objects on-road, off-road, or in-vehicle. It is therefore technically unpractical to 
conduct analysis at this level of detail. From the viewpoint of operational feasibility, an 
appropriate approach is to classify the potential focal points into several groups based on their 
characteristics. Thus, objects within the area of interest, which is treated as a focal point, should 
produce similar maneuvers. This section characterizes the focal point based on two dimensions. 
The first dimension is the vertical distance between focal points and the subject vehicle, which is 
classified as the vehicle driver’s domain. The second dimension is the lateral location of the focal 
points.  
 
The vehicle driver’s domain is a driver’s conceptual area in which external objects may appear to 
interact with the subject vehicle and degrade driving safety. To prevent collisions, drivers must 
allocate their attention within the vehicle driver’s domain to gain information for driving 
maneuver. This study only discusses conscious visual attention; information is completely 
effective and successfully perceived when being attended to. In line with Underwood et al. 
(2003a), this study divides the interested area into three sub-domains from near to far. These 
domains are the critical domain, reaction domain, and perception domain. A vital aim of defining 
these three domains is to simplify the alternatives of eyesight fixations. Objects located in 
different domains should attract different levels of attention and activate different reactions due 
to varying levels of risk. Closer threats induce greater risk of collision and require more attention.  
 
The perception domain reflects the relatively distant area in which a driver has plenty of time to 
perceive stimuli there. Drivers usually only maintain situational awareness against objects 
located in the perception domain. Immediate technical tasks, such as changing speed or direction, 
are not necessarily made when objects are situated in this area. The reaction domain is the area in 
which objects are determined as threats to safety that drivers must pay close attention on and in 
which drivers must react to any stimuli appearing. Objects inside this area will attract a higher 
level of attention. Technical tasks will be activated to prevent collisions. The third domain is the 
critical domain, which represents a safety boundary; drivers must secure this area and prevent 
objects from entering it. Although drivers do allocate attention to the critical domain, crashes are 
not preventable if threats appear inside this domain. Immediate technical tasks must be 
performed if the threats to safety are close to the critical boundary or inside the critical domain. 
The development and detailed discussion of a vehicle driver’s domain is beyond the scope of this 
study. Interested readers are referred to Wong and Huang (2010). 
 
Another advantage of adopting vehicle driver’s domain is to simplify the complex interaction of 
factors in locating driver’s eyesight fixation. Different settings of contributing factors, such as a 
driver’s reaction capability under different psychological and physiological conditions, 
individual intention, weather, and speed, may create different results of attention allocation. By 
adopting the concept of the vehicle driver’s domain, it is possible to represent the complex 
interaction of various factors based on the size and shape of the three proposed domains, even 
though each domain’s size and shape may change with the driving environment and driver status. 
Therefore, in modeling attention allocation, the problem is reduced to derive the probability of 
choosing specific domain without the concern of different drivers’ characteristics. 
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The second dimension for characterizing focal point is the lateral location. This study adopts a 
simplified scenario. Drivers were assumed to drive on a divided four-lane freeway without 
interferences of intersections. In this scenario, threats would appear on either the same lane or 
the adjacent lane when looking forward. Moreover, drivers are able to observe the rear traffic by 
looking the mirror and to collect information via roadside signs. Therefore, mirror and roadside 
are two alternatives included in attention allocation. Combining the vehicle driver’s domains and 
their relative location generates eight focal points (F1 to F8). 
 
F1: The critical domain on the same lane  
F2: The reaction domain on the same lane 
F3: The perception domain on the same lane  
F4: The critical domain on the adjacent lane  
F5: The reaction domain on the adjacent lane 
F6: The perception domain on the adjacent lane  
F7: Mirror 
F8: Roadside 
 
Model Specification 
 
Driver attention allocation is a continuous process of choosing targets and information searching. 
However, the decision to select focal point is made in drivers’ sub-consciousness on the basis of 
experience and training. The purpose of this study is to capture the mechanisms of driver 
attention allocation.  
 
This study proposes a probability based model that utilizes a discrete choice model to analyze the 
attention allocation process from a microscopic perspective. Thus, the continuous process of 
attention allocation must be converted into discrete counterparts and treated as successive focal 
point choices. The resulting probability of choosing focal point must reflect the fact that a driver 
would fixate and maintain fixation on one focal point for a while, then shift eyesight to another 
focal point. Instead of allocating attention randomly, a proper policy of attention allocation 
should direct driver’s eyesight based on cues from driving tasks and the surrounding 
environment. Therefore, contributing factors of dynamic traffic and driving tasks must be 
considered. Identifying the contributing factors of attention demand and evaluating the extent of 
their effect can provide an in-depth understanding of the mechanisms involved in driver attention 
allocation. 
This study further categorizes attention into two types to make it easier to model. The first type is 
spare attention. This can be regarded as the level of attention allocated without any interference, 
such as vehicles or other objects on road. Spare attention reflects the areas of drivers’ concerns 
over safety against intended maneuvers and does not vary with dynamic traffic flow. The second 
type of attention is motivated attention. This is a feature-based attention involving the attributes 
of each object, which attract different levels of attention. Combining the spare attention and 
motivated attention, the attention demand function of each focal point is defined as 
 

kjikjikjikji MotivSpareA ,,,,,,,, ε++=        (1) 
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where Ai,j,k is the attention demand function of shifting attention from focal point i to focal point j 
at time stage k, Sparei,j,k is the attention demand resulting from spare attention related factors, 
Motivi,j,k is the one from motivated attention related factors, and εi,j,k is the error term. 
 
The “expectancy” and “effort” constructs in the SEEV model form the basis of spare attention. 
Different intended maneuvers, headings, and diverse future trajectories create distinct areas of 
interest and allocation patterns. Equation (2) define spare attention, which contains Asci,j and 
Timei,k. 
 

kiiTIMEjikji TimeAscSpare ,,,,, ⋅+= β        (2) 
 

Asc i,j is the constant term of shifting attention from focal point i to focal point j, and should 
reflect the attention demand without motivation from other vehicles on roads. The alternative 
specific constants include two dimensions of spare attention. The first dimension is the intrinsic 
attention demand, which reflects the attractiveness of each focal point under specific maneuver 
intentions. Drivers usually fixate their sight on, and pay attention to, the direction of current 
moving trajectories. This implies that a greater risk of conflicts may arise when other vehicles 
appear on future trajectories. Different maneuver intentions create different future trajectories 
and induce unique expectations of threat that drivers must pay attention to. For example, when 
driving forward, drivers allocate more attention to the far area of the current lane (Levin et al., 
2009; Nabatilan, 2007; Underwood, 2007; Underwood et al., 2003a). On the other hand, drivers 
pay attention to the adjacent lane and rear of the vehicle when attempting to change lanes 
(Salvucci and Liu, 2002; Underwood et al., 2002). This study treats maneuver intentions as 
exogenous factors that are not included in the attention demand function. Instead, the alternative 
specific variables in Eq. (2) represent the attention demand of each focal point under the given 
maneuver intention. In our current hypothetical case, the drivers’ intention is to drive forward 
and keep on lane.  Moreover, instead of shifting attention randomly, drivers allocate their 
attention based on the function of the previous focal point (Underwood et al., 2003a). In other 
words, the second dimension of the constant is the different conditions of previous focal point. 
To extract the scan path of a driver’s shifting attention around the vehicle, the proposed model 
includes eight sub-models that respectively represent the given conditions of focal point in the 
previous stage. If scan paths exist, the calibration results of alternative specific constants among 
the eight sub-models should be different and show distinct patterns of eyesight saccades from 
one focal point to another. The scan path method can also reveal the effects of “effort” on 
shifting eyesight across the field of view.  
 
The other element of spare attention is the enduring time, the number of time stages a driver 
fixating on the same focal point. The probability of choosing same focal point in the second time 
stage will be the highest among all the alternatives, and will decrease with the time that a driver 
has fixated on a particular focal point. Time j,k is the time that a driver has spent on focal point j 
before time stage k. This time should have a negative effect on the probability of the same focal 
point being chosen; that is, the probability of shifting attention away to other focal points 
increases over time.  
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The second type of attention demand is motivated attention, which reflects the “value” and 
“salience” of objects or vehicles within each area of interest. Equation (3) presents the motivated 
attention demand, which is explained in detail in the following. 
 

kjjiCokjjiSckjjiLckjjiDckjjiFkji CoScLcDcFMotiv ,,,,,,,,,,,,,,,,, ⋅+⋅+⋅+⋅+⋅= βββββ  (3) 
 
Like the construct of “value” in the SEEV model, threats that are more relevant and important to 
driving tasks and safety motivate more attention demand (Kahnemen, 1973; Martens and Fox, 
2007; Underwood et al., 2003a; ; 2003b). To minimize the likelihood of possible crashes, drivers 
tend to fix their eyesight on threats with a higher level of risk. In this study, the “value” of each 
threat is determined by the location of vehicles and their maneuver states. Fj,k is a dummy 
variable for whether the focal point j is occupied by other vehicles or objects at the time stage k. 
Threats existing within the vehicle driver’s domain imply the existence of objects that drivers 
may run into. Hence, drivers must pay more attention to threats that induce a higher risk of 
colliding with subject vehicles. For example, threats that are closer to the subject vehicle are 
expected to attract more attention due to the shorter time for crash prevention. Threats located in 
adjacent lanes induce less crash risk than those in the same lane, provided that the subject vehicle 
is not changing lanes.  
 
In addition to the existence of a threat, vehicles on road with different maneuver induce different 
levels of crash risk. The maneuvers considered in this study include deceleration and lane change 
of a vehicle within the driver’s domain. The associated dummy variables of vehicle in focal point 
j corresponding to speed decrease and lane change at time stage k are Dcj,k and Lcj,k, respectively. 
Drivers should pay more attention to threats maneuvering toward the subject vehicle’s moving 
trajectory, such as a frontal vehicle decreasing speed or vehicle in an adjacent lane changing 
lanes in the driver’s frontal area. The results of these value related variables can be treated as 
perceived risk levels for threats in specific locations and specific maneuvers.  
 
The other contributing factor of motivated attention is the “Salience” of the threat, which 
represents the demand induced by orientation reaction. This variable reflects the ease with which 
drivers can identify the stimuli from traffic flow and induce involuntary transitions of attention. 
This study analyzes two orientation reactions. The first orientation reaction is Scj,k, which 
represents an object located in focal point j changing its maneuver state in time stage k. Drivers 
perceive and store the characteristic of current traffic condition in their memory, then use the 
obtained information to allocate attention and drive (Underwood et al., 2003b). Changes in the 
maneuver states of other vehicles are events that break the current stable pattern of traffic flow 
and are therefore more easily noticed by drivers. Upon encountering new stimuli and events, 
drivers must be able to identify the latest maneuver threats, update memory, evaluate the threat 
to safety, and apply a new attention allocation policy (Kahnemen, 1973). For non-threatening 
objects, drivers still have higher chances of shifting attention to vehicles that simply brake, 
change lanes, or appear. Objects are generally ignored if they pose no significant threat. Scj,k 
contributes to the attention demand only when a maneuver is initiated. After the initial state 
changes, the additional demand disappears and the new maneuver state of corresponding vehicle 
is updated. The attention demand will be determined by Dcj,k and Lcj,k until the end of the 
maneuver.  
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The second orientation is the Coj,k, which represents the additional attention attracted by a 
complex threat located in focal point j in time stage k. A threat with unusual behavior and 
exterior can be viewed as a complex threat that is relatively easy to identify. The determination 
of the complexity depends on the traffic conditions in different situations. Provided that the 
behavior and exterior of a vehicle is different from others, it can be determined as a complex 
threat. For example, drivers will pay more attention on ambulances or aggressive vehicles, 
yielding to avoid potential conflicts. Moreover, heavy vehicles, such as trucks and buses, are 
unique in size among other vehicles and easier to be identified.  
 
By assuming the error term εi,j,k is independent and identically distributed, the probability of 
choosing focal point j at time stage k (Pri,j,k) can be derived using Eq. (4). The maximum 
likelihood method can then be used to estimate the model parameters with the likelihood 
function shown in Eq. (5) 
 

( ) ( )∑=
j

kjikjikji AA ,,,,,, expexpPr        (4) 

( )∏∏
= =

=
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j
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kj

kjL
1 1
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,Pr          (5) 

 
where K is the number of time stages (number of samples), and fj,k is a dummy variable 
indicating whether the focal point j is chosen in time stage k. 
 
The output of the driver attention allocation model is the probability of choosing a specific target 
as the focal point under certain traffic conditions and intended maneuvers. Given the driver’s 
previous focal point, this probability can be further expanded into the form of a transition matrix 
that determines the probability of shifting eyesight from one focal point to another. This makes it 
possible to analyze attention allocation from a microscopic perspective. 
 
NUMERICAL STUDY 
 
The purpose of this numerical study is not to investigate real driving behavior, but to illustrate 
the appropriateness of the proposed choice-based driver attention allocation model. Thus, a set of 
hypothetical data was generated for demonstration. To be effective, working with hypothetical 
data, which is generated based on certain rules and characteristics, can effectively show how the 
model works and how its results can be applied. The model estimation results should be able to 
recover the rules and parameters of data generation. 
 
Simulation Data Generation 
 
The basic process of shifting attention around a vehicle is to fixate on one focal point for a while, 
and then shift to another. Thus, two types of parameters must be identified. The first parameter is 
the fixation duration for each focal point. The second parameter is the probability of shifting 
eyesight from one focal point to another. This study treats the process of attention allocation as 
successive choices of next focal point. Therefore, the continuous data of attention allocation 
must be transferred into discrete counterparts for every 250 milliseconds. Figure 1 shows the 
data generation procedure, where, to make things simple, only spare attention is considered and 
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the motivated attention is ignored. The three outputs of data generation used to calibrate the 
proposed attention allocation model include the focal point chosen in time stage k (Fj,k), the 
enduring time of fixating on each focal point (Timei,k), and the focal point chosen in the time 
stage k - 1 (Prevk). 
 
 

j∀
j∀

 
Figure 1 Data generation procedure 

 
 
The duration of fixating each focal point (T) was randomly generated from normal distribution. 
Under normal conditions, the mean fixation duration of each focal point is between 400 ms to 
700 ms, which is approximately 1.5 time stages to three stages in this study (Chapman et al., 
2002; Konstantopoulos et al., 2010; Underwood, 2007; Underwood et al., 2002a; Underwood et 
al., 2002b). When driving in a demanding situation with heavy traffic, the sampling rate of each 
fixation will be higher due to psychological pressure. This means that the fixation duration 
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would be shorter than normal conditions, which is about 400 ms to 500 ms (Chapman et al., 2002; 
Underwood et al., 2002b). When driving in hazardous situations in which accidents may occur, 
the mean fixation duration would increase significantly to one second since drivers must pay 
close attention to hazardous objects (Underwood, 2007). 
 
Table 1 summarizes the mean and standard deviation of fixation duration based on previous 
research (Chapman et al., 2002; Konstantopoulos et al., 2010; Underwood, 2007; Underwood et 
al., 2002a; Underwood et al., 2002b). Since the attention attracted in different focal points is not 
identical, the mean fixation duration was set between 1.5 time stages to three time stages (375 ms 
to750 ms). Among the focal points, the perception domain of the current driving lane attracts 
most drivers’ attention (Levin et al., 2009; Nabatilan, 2007; Underwood, 2007; Underwood et al., 
2003a). Therefore, the mean duration of fixating on F3 was set as three time stages. In contrast, 
drivers pay less attention to perception domain of the adjacent lane (F6), and critical domains of 
the current driving lane (F1) and adjacent lane (F4). Drivers usually glance at these areas and 
then quickly shift their attention to other focal points. Therefore, the mean durations of F1, F4, 
and F6 were set as 1.5 time stages. In addition, glancing at mirrors and roadside signs requires 
more effort to identify the object in the mirror and the message on the sign. Previous research 
shows that drivers spend an average of 400 ms to 650 ms glancing at roadside signs and mirror 
(Crundall et al., 2006; Kiefer and Hankey, 2008; Underwood et al., 2002a). Therefore, the mean 
duration of mirror and roadside sign was set to two time stages.  
 
 

Table 1 Parameters for data generation 
Fixation Duration 

(250 ms) 
Probability of Focal Point Transition  

(%) Origin Focal 
Point 

Mean Std. F1 F2 F3 F4 F5 F6 F7 F8 
F1 1.5 0.75 0 5 70 5 5 5 5 5 
F2 2 1 7 0 50 7 15 7 7 7 
F3 3 1.5 2 30 0 2 30 32 2 2 
F4 1.5 0.75 5 5 40 0 10 5 30 5 
F5 2 1 6 20 40 7 0 6 15 6 
F6 1.5 0.75 8 8 45 8 8 0 15 8 
F7 2 1 5 5 70 5 5 5 0 5 
F8 2 1 5 5 70 5 5 5 5 0 

 
 
When drivers finish the fixation on current focal point and the enduring time reaches T, they 
choose a new focal point. Instead of shifting attention randomly, they exhibit some patterns of 
shifting attention. Table 1 illustrates the probability of shifting attention from one focal point to 
another in the data generation process. The parameters must reflect the mechanisms of attention 
allocation. The hypothetical driver in this study was assumed as an experienced driver who fits 
the “normal driving pattern.” This simulation considers no particular intention, such as looking 
for road sign. Figure 2 shows the three types of scan paths considered in this study. Each block in 
Figure 2 represents a focal point that a glance of eyesight fixation can cover. The arrows between 
two blocks represent the origin and destination focal point of scan paths. 
 
The first type of scan path confirms that the frontal area dominates attention allocation. Drivers 
usually focus on the farthest point of the current driving lane (F3). Since the driving task 
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discussed in this case study is driving forward without changing lanes, F3 dominates the attention 
allocation process. Shifting attention away from this focal point will increase the risk. Therefore, 
drivers will have higher probability to shift attention back to F3 after shifting away. Hence, seven 
paths originated from other seven focal points to F3 were created. The second type of scan paths 
shows the attention demand of neighboring transition. Considering that the invested effort 
increases with the distance between two consecutive focal points, drivers tend to allocate 
attention in neighboring areas. This study considers six neighboring transition paths. The third 
type of scan paths represents the attention allocation for roadside areas, and acquiring 
information from road signs. In this study, drivers do not have intention to search roadside 
actively for information. However, roadside areas are occasionally fixated due to neighboring 
transition. Since the driver was assumed to drive on the inner lane, the three focal points on 
adjacent lane (F4 to F6) are closer to the roadside than other focal points. Therefore, the three 
scan paths of neighboring transition from adjacent lane to roadside (F7) are generated. 
 
 

 
Figure 2 Hypothetical scan paths  

 
 
In total, 8,001 samples were generated. The first sample was removed due to data unavailability 
for the previous focal point. The average duration of one fixation is 590.1 ms, which is within the 
reasonable range obtained from previous studies.  Figure 3 illustrates the time percentage and 
frequency of the hypothetical driver’s attention allocation. As shown in  Figure 3a, the farthest 
area of current driving lane attracts the most attention. Meanwhile, drivers paid the least attention 
to the area closest to the vehicle. The proportion of time spent on each focal point, including the 
length of fixation duration and probability of transition, fits well with the general driving 
behavior.  Figure 3b shows that the number of fixation (101.67 per minute) was similar to the 
results of Underwood et al. (2003a). 
 
 

 
(a) Percentage of time of eyesight fixation       (b) Number of fixation per minute  

Figure 3 Statistics of eyesight fixation 
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Model Estimation 
 
Based on the generated data set, a multinomial logit model was calibrated by adopting NLOGIT 
3.0. Eight sub-models of shifting attention from the eight focal points were also calibrated. Each 
model contained eight alternative specific constants, where the constant of choosing same focal 
point was set to zero for parameter calibration, and one generic variable (enduring time of 
fixating on current focal point). Table 2 presents the estimation results. To illustrate the 
applicability of the proposed attention allocation model, the estimation results should be 
consistent with the hypothetical characteristics of the generated data, including the fixation 
duration and the transition probability among focal points. The two major outcomes of model 
estimation are the alternative specific constants and parameters of enduring time. 
 
 

Table 2 Estimation results of attention allocation model 
Estimated Coefficient  

Alternative Specific Constant (Asc) Generic 
Variable

Alternatives
 
Models 

F1 F2 F3 F4 F5 F6 F7 F8 Time
Model 1: F1 as the Previous Focal Point 0 -6.67 -3.35 -6.16 -6.16 -5.98 -6.38  -5.37  -2.68 
Model 2: F2 as the Previous Focal Point -5.43 0 -3.02 -4.99 -4.09 -4.96 -4.75  -5.08  -1.34 
Model 3: F3 as the Previous Focal Point -7.51 -3.94 0 -6.42 -3.86 -3.78 -6.72  -6.02  -0.77 
Model 4: F4 as the Previous Focal Point -5.33 -5.58 -3.23 0 -4.82 -5.91 -3.67  -5.73  -2.26 
Model 5: F5 as the Previous Focal Point -6.06 -4.24 -3.54 -5.80 0 -5.18 -4.29  -5.56  -1.43 
Model 6: F6 as the Previous Focal Point -5.32 -5.23 -3.34 -4.92 -4.90 0 -4.42  -5.04  -2.18 
Model 7: F7 as the Previous Focal Point -5.17 -5.62 -2.96 -5.22 -5.62 -5.62 0 -5.86  -1.40 
Model 8: F8 as the Previous Focal Point -5.82 -5.95 -3.12 -5.82 -5.60 -5.95 -5.82  0 -1.55 

 
 
A unique characteristic of the proposed model is that it treats continuous attention allocation as a 
discrete and consecutive process of focal point. To be effective, the proposed model should be 
able to reflect both eyesight fixation and saccade. Fixating on one focal point can be presented 
by the attention demand of choosing repeatedly the same focal point. Table 2 shows that the 
constants of choosing the same focal point were set to zero (such as the constant of choosing F1 
in Model 1) and other constants were all negative. This indicates that the probability of 
maintaining fixation on the same focal point was higher than transiting to other focal points. 
Hence, drivers would fixate on the current focal point in the next stage. In contrast the estimated 
parameters of time (Timei) suggest enduring time in the model has a negative effect on the 
attention demand of staying in current focal point. The probability of maintaining fixation on 
current focal point keeps decreasing with time. Eventually, a driver’s eyesight will transit to 
other focal points.  
 
In addition to eyesight fixation, the scan paths of shifting attention around the driving 
environment can be extracted through the model estimation. The estimated coefficients of 
constants represent the relative level of attention demand for each focal point. In Model 1, in 
which F1 was chosen in the previous stage, the constant of F3 is higher than those of other focal 
points. In other words, there is a scan path of shifting attention from F1 to F3. Table 2 shows that 
the model is able to capture the three types of hypothetical scan paths hypothesized in Figure 2. 
Consistent with the first type of scan path, the estimation results show that the attention of 
choosing F3 as the new focal point is the highest despite the attention demand of choosing to stay 
at the current focal point. This indicates that F3, the farthest area ahead, dominates the attention 
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allocation. Drivers tend to shift attention to F3 after shifting eyesight to other focal points. The 
second type of scan path represents the neighboring transition. Take Model 3 for example, the 
demand of shifting attention from F3 to F2, F5 and F6 are the highest despite of F3 itself. The 
third type of scan path is the attention allocated to roadside areas, searching for signs. Estimation 
results show that the attention demands shifting from F3, F2 and F5 to F7 are higher than the 
minimum level of respective models.  
 
Model Performance 
 
Based on the model estimation, Table 3 presents the transition probability of simulated attention 
allocation policy, the probability of focal point transition after different durations. Take F3 for 
example; the probability of maintaining fixation on the same focal point is 87 %. After paying 
attention to F3 for 1.25 seconds (five time stages), the probability of maintaining attention on the 
current focal point drops to 24 percent. At the same time, the probability of shifting attention 
away to F2, F5, and F6 increases. The lowest part of Table 3 shows the transition matrix when the 
enduring time is infinite and the probability of focusing attention on the current focal point is 
close to zero. It shows the scan paths in which higher probability of shifting attention from 
specific focal pointcan be identified. For example, the probability of shifting attention from F1 to 
F3 is 71 %, which is higher than those of other focal points when enduring time is infinite. This 
suggests that the scan path of shifting attention from F1 to F3 exists. 
 
 

Table 3 Focal Point transition matrix for various enduring durations (%) 
Timei = 1 F1 F2 F3 F4 F5 F6 F7 F8 

F1 58 1 30 2 2 2 1 4 
F2 1 73 14 2 5 2 2 2 
F3 0 4 87 0 4 4 0 0 
F4 3 2 21 54 4 1 13 2 
F5 1 5 9 1 77 2 4 1 
F6 3 3 18 4 4 59 6 3 
F7 2 1 16 2 1 1 76 1 
F8 1 1 16 1 1 1 1 77 

Timei = 5 F1 F2 F3 F4 F5 F6 F7 F8 
F1 0 3 71 4 4 5 3 9 
F2 4 1 49 7 17 7 9 6 
F3 1 21 24 2 23 25 1 3 
F4 6 4 45 0 9 3 29 4 
F5 3 20 40 4 1 8 19 5 
F6 6 7 45 9 9 0 15 8 
F7 7 5 67 7 5 5 1 4 
F8 5 4 71 5 6 4 5 1 

Timei = ∞ F1 F2 F3 F4 F5 F6 F7 F8 
F1 0 3 71 4 4 5 3 9 
F2 4 0 49 7 17 7 9 6 
F3 1 28 0 2 30 33 2 3 
F4 6 4 45 0 9 3 29 4 
F5 3 20 40 4 0 8 19 5 
F6 6 7 45 9 9 0 15 8 
F7 7 5 68 7 5 5 0 4 
F8 5 4 71 5 6 4 5 0 
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The duration that drivers spend on one focal point at each fixation is an important measurement 
of attention allocation. Equation (6) derives the mean duration by observing the probability of 
maintaining fixation on current focal point.  
 

( )∑
∞

=
− −⋅=

1
,1,

Timej
TimejjTimejjjj PPTimeT        (6) 

 
Tj is the estimated duration of focal point j. Timej is the number of time stages during which 
drivers remain fixated on current focal point. Pj,Timej is the probability of maintaining fixation on 
focal point after continuously fixating on the current focal point for Timej time stages. Pj,Timej - 
Pj,Timej is the percentage of samples that shift attention away from  focal point j at the instance of 
Timej. Table 4 shows the probability of maintaining fixation on focal point j after different 
enduring times. Take F1 for example; the initial probability of fixating on F1 is 100 % when 
Time1 equals zero, and the probability of fixating on F1 is 58.15% when Time1 equals one. Thus, 
41.85 % of the samples fixate on F1 for one time stage before shifting to other focal points. 
 
 

Table 4 Probability of maintaining fixation on focal point j under different enduring time 
Enduring Time Spend on Focal Point j Focal 

Point 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Estimated
Duration

F1 100.0 58.15 8.71 0.65 0.04 0 0 0 0 0 0 0 0 0 0 0 1.68  
F2 100.0 72.65 41.01 15.39 4.54 1.23 0.32 0.09 0.02 0.01 0 0 0 0 0 0 2.35  
F3 100.0 87.02 75.73 59.21 40.32 23.91 12.76 6.37 3.07 1.45 0.68 0.32 0.15 0.07 0.03 0.01 4.03  
F4 100.0 54.40 11.07 1.28 0.14 0.01 0 0 0 0 0 0 0 0 0 0 1.67  
F5 100.0 76.80 44.11 15.84 4.29 1.06 0.25 0.06 0.01 0 0 0 0 0 0 0 2.42  
F6 100.0 58.79 13.85 1.78 0.20 0.02 0 0 0 0 0 0 0 0 0 0 1.75  
F7 100.0 76.35 44.38 16.47 4.65 1.19 0.30 0.07 0.02 0 0 0 0 0 0 0 2.43  
F8 100.0 77.38 42.07 13.36 3.17 0.69 0.15 0.03 0.01 0 0 0 0 0 0 0 2.37  

 

 

Table 4 summarizes the estimated duration of each focal point. In line with the hypothesis of 
data generation process, F1, F4, and F6 are the focal points with the shortest duration, which are 
between 1.67 to 1.75 time stages. The second groups of focal points includes F2, F5, F7, and F8, 
which have estimated durations ranging from 2.35 to 2.43 time stages. F3 is the focal point with 
the longest duration, and has an estimated duration of 4.03 time stages. These estimated duration 
results are slightly higher than the parameters in data generation due to rounding generated 
fixation duration away from zero in data generation. 
 
The most important advantage of the proposed approach is its ability to evaluate an attention 
allocation policy from multiple dimensions in a single model. Previous studies used fixation 
duration (Chapman et al., 2002; Konstantopoulos et al., 2010; Underwood, 2007; Underwood et 
al., 2002a; Underwood et al., 2002b), proportion of time spent on a particular target (Borowsky 
et al., 2010; Konstantopoulos, 2010; Levin et al., 2009; Nabatilan, 2007; Underwood et al., 
2003a) and scan path (Brown et al., 2000; Underwood et al., 2003a) to present an attention 
allocation model. However, those measurements are usually analyzed and discussed separately. 
This study analyzes attention allocation by adopting discrete choice analysis and providing a 
transition matrix of shifting eyesight from one focal point to another. The probability of choosing 
focal point is a function of previous focal point and duration. Providing only the proportion of 
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time spent on a specific object cannot reflect fixation and saccade simultaneously. Same value of 
average percentage of attention may be the results from very different behaviors and induce 
different level of crash risks. For example, short glance with high frequency and less frequent 
glance with long duration can produce same average time spent on one target. The two scenarios 
imply different strategies and may result in different risk of crashes. Therefore, analyzing 
attention allocation from a microscopic perspective can help gain deep insight into driving 
behavior and crash occurrence. 
 
CONCLUSIONS 
 
Although researchers have conducted many studies on crash pattern analysis, the nature of 
crashes remains unclear without a further exploration of driver involvement in crashes. Driving 
is a continuous process of collecting information and making decisions. The frequent occurrence 
of crashes caused by failing to note road conditions indicates a serious problem in attention 
misallocation. Malfunction of attention allocation may result in improper information collection, 
increasing the risk of crashes. Hence, understanding the mechanisms of driver attention 
allocation is a key step in exploring the nature of crashes and preventing them from happening. 
 
Rather than using a macroscopic approach, such as the proportion of time spent on a particular 
target, this study proposes a microscopic driver attention allocation model that treats continuous 
attention allocation as a discrete and successive process of choosing next focal point. A major 
characteristic of the proposed model is that it presents the behavior of fixating eyesight on 
specific object and the saccade process. Fixation duration and focal point transition probability 
are the two major indices of attention allocation. Considering either one of these measurements 
provides only partial insights into driver attention. Besides, using a macroscopic approach cannot 
reflect the heterogeneity of focal point under a variety of  conditions. This study illustrates the 
microscopic transition process of shifting attention from one focal point to another under 
intended maneuver and driving tasks.  
 
Since the proposed approach is statistically based, various contributing factors can be adopted to 
derive the probability of choosing specific target as the focal point. This study utilizes the SEEV 
model while incorporating dynamic changes of traffic flow. The original SEEV model analyzes 
the process of shifting attention between a few targets by adopting salience, effort, expectancy, 
and value as measurements of attention demand. However, more measurements of the four 
construct are required for complex driving environments. This study classifies the numberless 
potential focal points into eight alternatives. Moreover, two major types of attention, which are 
spare attention and motivated attention and their related measurement are adopted in the driver 
attention allocation model. 
 
By using a hypothetical dataset, the appropriateness and performance of the proposed model is 
tested. The hypothetical driver in this study drives in a divided four-lane highway without 
interference from other vehicles, objects, or intersections. That is, only spare attention is 
considered for illustration. Results show that the proposed model can successfully reproduce the 
attention allocation process hypothesized in the simulated data. In addition, the results also can 
reveal a driver’s potential scan paths. Even though the results are derived from the simulated data, 
outcomes of the attention allocation policy indicate that exploring attention allocation from a 
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microscopic perspective can provide greater insights into driving behavior. It allows a deeper 
analysis by evaluating the contribution of each factor to attention demand. Nevertheless, further 
research using field data is necessary to validate the proposed model.  
 
Constructing the attention allocation model could clarify the mechanisms of shifting eyesight for 
information gathering. The proposed model can be an effective tool to compare different 
attention allocation strategy under different situations, such as novice drivers versus experienced 
drivers, various intended maneuvers, or different levels of external information availability. 
However, attention misallocation does not always induce crashes. There is currently no clear 
linkage between attention allocation and crashes. Several research used variance or standard 
deviation of focal point as an safety index of an attention allocation model (Chapman et al., 2002; 
Hosking et al., 2010; Nabatilan, 2007). For example, Borowsky et al. (2010) suggested that 
experienced drivers maintain high variance of eyesight fixation and are able to observe 
surrounding traffic in a more flexible pattern. However, this approach can only explain the 
pattern diversity of one’s attention allocation policy without clarifying the connection between 
flexibility and safety. Even though the high variance of an attention allocation strategy means 
more information sources can be observed, it may imply wasting time on unnecessary focal 
points. Meanwhile, low flexibility suggests that only a few focal points are observed, and several 
important focuses are ignored. Therefore, a risk index that connects attention allocation policy 
and risk of crash is necessary to evaluate the effects of an attention allocation policy on safety. 
The issue of building the connection between attention allocation policy and safety is vital and 
worthy for future research.  
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