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ABSTRACT 

 

Road safety is a critical issue for transportation systems. The use of crash data-based 

methodologies to analyze traffic safety problems has been problematic due to shortcomings such 

as unavailability and low quality of historical crash data. Other than crash data-based analysis, 

development of micro-simulation models in conjunction with surrogate safety measures has been 

shown to complement traditional safety analysis. However, for the adopted simulation model to 

achieve high fidelity, it is important to calibrate and validate it before use. This paper proposes a 

numerical optimization approach to calibrate a traffic simulation model for rear-end traffic 

conflict risk analysis on highways. The proposed calibration approach is developed based on the 

stochastic gradient approximation algorithm to find optimal parameters of stochastic traffic 

simulation models. The calibration methodology accounts for multiple calibration criteria and is 

implemented on a selected traffic simulation platform to test its performance. Simulated 

operational measurements and traffic conflict risk in terms of surrogate safety measures are 

quantified and compared with observations derived from real-world vehicle trajectory data from 

the Next Generation Simulation (NGSIM) program. The calibrated traffic model has been 

validated by using independent vehicle trajectory data saved as a hold-out sample. The results 

show that the fine-tuning of parameters using the proposed calibration approach can significantly 

improve the performance of the simulation model to describe actual traffic conflict risk and 

operational performances. 

 

Keywords: simulation model, safety, traffic conflict risk, calibration, surrogate safety measures 
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I
TRODUCTIO
 

 

Micro-simulation models have been developed primarily for analysis, evaluation, and 

optimization of traffic operations. The concept of using micro-simulation models for traffic 

safety evaluation is still a challenging and relatively unexplored topic. Nevertheless, a number of 

researchers have recently proposed the potential of using a micro-simulation approach for safety 

evaluation. Since the initial recognition by Darzentas et al. (1980), this approach has gained 

increasing attention. Several studies (e.g., Young et al., 1989; Algers et al., 1997; Archer & 

Kosonen, 2000) have revealed that micro-simulation models can capture driver behavior and 

individual interactions of vehicles to be studied, and many parameters used in the models have 

some implications on the safety issues of vehicle-to-vehicle interactions.  

 

Using micro-simulation models for safety assessments can be thought of as employing traditional 

traffic conflict techniques (TCT) in conjunction with the same simulation models used for 

operational performance analysis of traffic. Traditional TCTs are extended to use simulated 

vehicle trajectory information to automate conflict analysis based on traffic simulation data. The 

overall level of safety under certain operational conditions can then be determined by using 

surrogate safety measures. The simulation-based approach using surrogate safety measures 

provides a proactive safety evaluation technique to diagnose traffic safety problems to select and 

quantify appropriate remedial measures. It requires less human involvement to extract conflict 

information and therefore avoids one of the main sources of error encountered when using 

traditional TCT. The simulated surrogate safety measures and driver attributes have potential to 

be associated with the likelihood of a conflict or collision (Sayed et al., 1994; Muchuruza, 2006). 

Among many simulation-based safety studies conducted in recent years are intersection safety 

evaluation studies by Sayed and Zein (1999) and Saccomanno et al. (2008), freeway safety 

analysis by Fazio et al. (1993), safety of truck-lane restrictions by Liu and Garber (2007), and 

safety of ramp merging sections by Barceló et al. (2003). 

 

Although great effort has being made toward using microscopic simulation models for safety 

assessment, questions related to the use of this approach still exist. One major concern is the 

calibration of the micro-simulation models. In a microscopic simulation model, driver behaviors 

are captured via sub-models representing car-following, gap-acceptance, and lane-changing 

behavior of each driver in the simulation. These models are in turn dependent on input 

parameters deemed to represent relevant aspects of driver behavior. Thus one of the major steps 

in using simulation models is to ensure that input parameters are determined based on 

observational data, so that the models replicate safety performance of a given facility under a 

given operational condition, and can be verified from field observations (as described by Cunto 

& Saccomanno, 2008). In fact, it has recently been recognized that input parameters can have a 

direct effect on the resulting safety measures from simulations (Klunder et al., 2006). These 

realistic input parameters can be determined through a robust calibration process that 

incorporates safety-related aspects of traffic through the use of relevant observed safety data, 

such as observed conflicts and accidents. Unfortunately, there is limited simulation calibration 

experience with an emphasis on safety evaluation. In fact, the calibration process can even be 

more demanding, expensive, and time-consuming, when the objective of safety evaluation is 

combined with the traditional operational performance-related objectives.  
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The main objective of this paper is to develop a novel procedure for calibrating traffic model 

input parameters based on both operational and safety performance measures, to analyze 

highway rear-end conflict risks. Multicriteria optimization and stochastic approximation 

approach are used to estimate optimal parameters, and NGSIM (FHWA, 2005) vehicle trajectory 

data are used as major sources of observed data. The calibration approach is further validated by 

comparing simulated results with the actual observations using additional trajectory data. 

 

METHODOLOGY 

 

Simulation Calibration Problem 

 

Calibration of a micro-simulation model can be defined as finding a set of parameters to 

optimize the difference between simulation output and corresponding observations. The 

simulation output can be a set of measurements such as flow, speed, and travel time, etc. The 

difference between each simulated measurement and its observation can be used to quantify a 

performance criterion. Essentially, calibration is a multi-objective optimization problem, though 

a single performance criterion is frequently used as calibration target in practice. Mathematically, 

the calibration problem can be described as finding the parameter set * * * *

1 2[ , ,..., ]T

nθ θ θ θ=  that can 

optimize the objective function set ( )z θ : 

1 2( ) [ ( ), ( ),..., ( )]T
mz z z zθ θ θ θ=  (1) 

Here, “optimize” means that the optimal parameter set *θ can yield the solution of each 

performance criterion ( )iz θ at a defined acceptable level. For example, one criterion is to find *θ
to minimize the difference between simulated and observed traffic counts, and another is to 

reduce the difference of simulated and observed travel times to less than 5 percent. Specifically, 

the objective function defined as ( )z θ in this paper consists of both safety and operational 

performance criteria. It should be noted that these performance criteria may be in conflict with 

each other. In other words, it is rarely the case that a single set *θ can simultaneously optimize 

all the performance criteria. Therefore, it is necessary to search for the “trade-offs” among the 

safety and operational performance criteria. In this paper, we use the idea of multicriteria 

optimization approach to achieve the goal. Specifically, the point estimate weighted-sums 

method (Steuer, 1986) is used to simplify the typical calibration problem in terms of minimizing 

differences between simulated output and observations.  

 

The point estimate weighted-sums method can be described as follows: 

1 1 2 2min ( ) ( ) ( ) ... ( )

. .

m mz z z z

s t

θ ω θ ω θ ω θ

θ

= + + +

∈Θ  

(2) 

where iω is a user defined non-negative scalar weight of the 
thi  performance criterion ( )iz θ . 

( )z θ becomes the aggregated objective function. Θ  is the possible domain of parameters to be 

calibrated. If there is no interest to calibrate ( )kz θ , one can set 0kω = . Otherwise, a positive 

scalar weight has to be assigned to each performance criterion. Without loss of generality, we 

can assume that 1 2 ... 1mω ω ω+ + + = . This method is straightforward to aggregate safety and 

operational performance measures. By using the scalar weights, the multi-objective of the 

optimization problem is converted into a single criterion problem that is easier to analyze. 



4 

 

Moreover, each iω  
can be modified to reflect the priority corresponding to this individual 

criterion by decision makers. In this method, the optimal solution of the target function is 

controlled by the selected weighting vector. Depending on the information available, some 

subjective and objective approaches have been proposed to determine the weights (e.g., Saaty, 

1980; Hwang & Yoon, 1981; Gass, 1987). The selecting of optimal weighting vector, however, 

is usually difficult given the different units, scales and numbers of observations that various 

objectives may have (Steuer, 1986). If there is no such difficulty, a solution obtained with equal 

weights may offer least objective conflict among all criteria. 

  

Parameter Estimation Algorithm  

 

To efficiently solve the problem defined in equation (2), it is necessary to resort to numerical 

optimization methods. In this paper, we use the simultaneous perturbation stochastic 

approximation (SPSA) algorithm because of the highly stochastic nature of the underlying 

microscopic traffic simulation models. SPSA algorithm was first introduced by Spall (1987, 

1988 & 1992) and expanded in subsequent work (e.g. Fu and Hill, 1997; Sadegh, 1997; 

Bhatnagar and Borker, 2003). The algorithm, developed based on the iterative form of generic 

stochastic approximation (SA), is shown in equation (3): 

1
ˆ ˆ ˆ( )k k k k ka gθ θ θ+ = −

 
(3) 

where ˆ( )k kg θ is the gradient of objective function when parameter vector ˆ
kθ θ= , and ka is a 

positive gain sequence of step sizes.  

 

SA approach attempts to mimic the gradient search method used in deterministic optimization. 

Based on equation (3), the recursive procedure must obtain the gradient of the objective function 

in order to update the parameters in the k
th

 iteration. The Robbins-Monro algorithm (Robbins and 

Monro, 1951) can be used to perform parameter updates when the gradient of the objective 

function is available. However, our simulation model does not allow the computation of ( )g θ
because there is no clear mathematical expression of an objective function as a response of 

simulation parameters. Thus, it is necessary to approximate ( )g θ . When a finite-difference (FD) 

method (Dennis and Schnabel, 1989) is used to approximate the gradient, the well-known form 

of SA called Kiefer-Wolfowitz algorithm (Kiefer and Wolfowitz, 1952) is obtained. The general 

form of the algorithm takes the following iterative form: 

1
ˆ ˆ ˆˆ ( )k k k k ka gθ θ θ+ = −

 
(4) 

where ka is a positive gain sequence of step sizes, and ˆˆ ( )k kg θ  is the approximation of ( )g θ at 

each iteration.  

 

According to Spall (1998), SPSA uses the following formula to obtain the approximation of

ˆˆ ( )k kg θ : 
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1
1

1 1
2

1

ˆ ˆ( ) ( )

2
ˆ ˆ( ) ( )ˆˆ ( ) ...

2 ...
ˆ ˆ( ) ( )

2

k k k k k k
k

k k

kk k k k k k
k k

k
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z c z c
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z c z c

g
c

z c z c

c

θ θ

θ θ
θ

θ θ

−

−

−

 + ∆ − − ∆  ∆ 
 ∆ 
∆+ ∆ − − ∆   = =   
  + ∆ − − ∆    ∆ ∆  

 (5) 

where kc  is gain sequence at k
th

 step. k∆ is perturbation vector at k
th

 step. p is the number of 

parameters. 

 

At iteration step k we take a random perturbation vector: 

1 2[ , ,..., ]
T

k k k kp∆ = ∆ ∆ ∆
 (6) 

 

Common gain sequence of ka and kc are positive with the form of power functions shown in 

equations (7) and (8): 

(1 )
k

a
a

A k α=
+ +  

(7) 

(1 )
k

c
c

k γ=
+  

(8) 

where ki∆ denotes a sequence of independent identically distributed, symmetrically distributed, 

bounded random variables satisfying certain conditions (Spall, 1992). A standard perturbation 

can be a sequence ki∆ of Bernoulli 1±  distribution with probability ( 1) 1/ 2kiP ∆ = + = and

( 1) 1/ 2kiP ∆ = − = . a , c ,α , γ , and A  are the coefficients. a and c control the noise setting. A is 

a constant introduced to stabilize the optimization process. The exponents α andγ control the 

speed of the convergence, and Li et al. (2006) presented the typical constraints for α andγ . For 

more practical use, these coefficients can be determined based on some guidelines provided by 

Spall (1998). For instance, 0.602α = and 0.101γ =  are shown to yield good results in several 

cases. 

 

As the numerator in equation (5) is the same for each component of ˆˆ ( )k kg θ , the number of 

function evaluations needed to estimate the gradient in SPSA is only two. This property of SPSA 

provides the potential for a large improvement of the overall efficiency of the optimization 

analysis. The convergence of the gradient approximation has been proved in many cases (e.g., 

Spall, 1992, Kushner & Yin, 1997). 

 

Step-by-step implementation of the proposed calibration algorithm which makes use of the above 

SPSA technique can be summarized as follows: 

 

Step 1: Initialization and Parameter Selection 

Set the iteration index 0k = . Pick initial guess 0θ̂  for equation (4). In our simulation model, we 

can use the default configuration values as an alternative. Select the nonnegative algorithmic 

coefficients a , c ,α , γ , and A . 
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Step 2: Generation of Simultaneous Perturbation Vector 

Generate a p -dimensional random perturbation vector k∆ , where each of the p components of 

k∆ is independently generated from a Bernoulli 1±  distribution with probability of 0.5 for each 

1± outcome. 

 

Step 3: Loss Function Evaluations 

Run the traffic simulation model with perturbed parameters ˆ
k k kcθ ± ∆  based one kc and k∆ from 

Step 1 and Step 2. Obtain two measurements of the loss function: ˆ( )k k kz cθ + ∆ and ˆ( )k k kz cθ − ∆ . 

 

Step 4: Gradient Approximations 

Compute the simultaneous perturbation approximation to the unknown gradient ˆˆ ( )k kg θ
according to equation (5). 

 

Step 5: Update Parameter Estimation ˆ
kθ  

Use the recursive equation (4) to update ˆ
kθ to a new value 1

ˆ
kθ + . Check for constraint violation 

and modify the updated θ if necessary. 

 

Step 6: Check Convergence 

Check whether the maximum number of iterations has been reached or the predefined 

convergence criteria are satisfied. If not, return to Step 2 with iteration 1k + . Otherwise, 

terminate the algorithm and report optimal values of parametersθ . 

 

To make the SPSA algorithm more suitable for the analysis in this study, several enhancements 

have been made:  

(1) original simulation parameters have been normalized to 0 to1.0 for perturbation in step 3 and 

inverse scaling of the perturbed parameters have been performed when running simulation  

(2) multiple simulation runs with different random seeds have been conducted to obtain the 

average gradient in step 4  

(3) multiple initial parameters for the simulation were tested and compared to obtain better 

parameters. 

 

CASE STUDY 

 

Data Collection 

 

A field vehicle tracking dataset namely “I-101 Dataset” generated by the NGSIM program was 

obtained to demonstrate the implementation of the proposed methodology. The dataset is 

“specifically collected to improve the quality and performance of simulation tools, promote the 

use of simulation for research and applications, and achieve wider acceptance of validated 

simulation results (FHWA, 2005).” The data were collected at a segment of southbound direction 

of U.S. highway 101 in Universal City neighborhood of Los Angeles, California. The schematic 

illustration of the location is shown in Figure 1. The length of the segment used for data 
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collection was approximately 2100 feet and the length of the auxiliary lane for on-ramp vehicle 

merging and vehicle diverging is about 698 ft. About 6,000 vehicle trajectories were collected 

based on video data with a 0.1-second time increment. This amount of detailed trajectory data is 

unique compared with previous traffic studies and provides a better basis to objectively 

investigate real-world traffic conflicts. The dataset was also separated into three 15-minute 

periods representing transitional and congested flow conditions on the morning of June 15, 2005. 

Data between 08:05 AM and 08:20 AM are retrieved for model calibration and data between 

08:20 AM and 08:35 AM are used for validation.  

 
Figure 1 Study area schematic of I-101 

 

Measuring Traffic Conflict Risk 

 

A number of surrogate safety measures have been developed to identify potential conflicts 

through the use of simulation models. Generally, these measures fall into four categories: time-

based, distance-based, deceleration-based, and other composite measures. Some of the most 

frequently used time-based measures are the time-to-collision (TTC) and post-encroachment 

time (PET), developed in the 1970s (Hayward, 1972; Allen et al., 1978). TET (time exposed 

time-to-collision) and TIT (time integrated time-to-collision) extended from TTC are also 

introduced by Minderhoud and Bovy (2001). Ozbay et al. (2008) introduced a modification of 

the time-to-collision (MTTC). Deceleration rate to avoid the crash, (DRAC), has been 

recognized as a typical deceleration-based safety indicator (Gettman and Head, 2003; Archer, 

2005). Crash potential, proposed by Saccomanno and Cunto (2006), can also be an indirect use 

of such a measure. One important example of a distance-based indicator could be the possibility 

index for collision with urgent deceleration (PICUD) proposed by Uno et al. (2003). Besides the 

aforementioned measures, several other studies have also proposed specific measures such as 

unsafe density (UD) and J-value in support of safety evaluation (Barceló et al., 2003; Pham et al., 

2007). There is no unique measure to describe all types of traffic conflicts. For instance, PET is 

more appropriate for intersecting conflicts (Songchitruksa & Tarko, 2006) while TTC is for 

measuring rear-end conflicts (Gettman and Head, 2003).   

 

In this paper, we use the concept of conflict probability (CP) introduced by Yang and Ozbay 

(2011) as the surrogate measure to describe the potential rear-end conflict risk. It is derived from 

the modification of the time-to-collision (MTTC) index introduced by Ozbay et al. (2008). 

Considering the fact that the shorter MTTC is the higher probability of conflict is, CP adopts an 

exponential decay function as an alternative of defining single threshold value of MTTC to 

identify potential risk of the conflict. The function of the potential conflict probability (CP) 

578 ft 698 ft 824 ft 

Ventura Blvd on-ramp Cahuenga Blvd off-ramp 



8 

 

associated with a subject vehicle is shown in equation (9). CP is a continuous monotone 

decreasing function of MTTC such that as MTTC ∈ [0, +∞), CP ∈ [1, 0). When MTTC is 0, two 

consecutive vehicles definitely conflict with each other. When MTTC is relatively large, conflict 

probability will be small. The same MTTCs may not indicate the same chance of conflict under 

different traffic conditions. So a parameter λ is used for adjusting the impact of MTTC at 

different cases, such as a freeway versus a local road.  

-
Pr( | ) ( )

MTTC
CP Conflict MTTC Exp

λ
= =

 
(9) 

Depending on the objective, CP of subjective vehicles can be aggregated by time and space to 

describe the conflict risk of the target facility. In this study, the conflict risk mC is represented by 

aggregating the simulated CPs over the thm section (100-ft) and simulation time period (15-

minute). 

 

Simulation Modeling 

 

Previous studies (e.g., Gettman & Head, 2003; Archer, 2005) have given some insights into the 

strengths and weaknesses of various simulation software packages that can be used to support 

safety analysis. However, there are still no definitive conclusions as to which simulation package 

is a better tool to conduct safety analysis. Paramics simulation tool is selected as our test 

platform to model the study section mainly because of its relatively superior customization 

potential. The simulated trajectory information obtained through the Application Programming 

Interface (API) facility of Paramics provides vehicle’s position, speed and acceleration for a 

user-defined small time resolution. The simulated data provide sufficient information needed to 

numerically compute the surrogate safety measure and other operational measures. Major global 

and local parameters of the simulation model have been summarized in Table 1. Though each 

parameter may affect operational and/or safety performances, calibration of the last three discrete 

parameters are beyond the scope of this study. The search space defined by factors ranging A to 

H consists of an eight-dimensional hyperplane. It is difficult to enumerate all possible parameter 

sets on the hyperplane and to run the simulation model with all the sets. The SPSA based 

approach is then used to search acceptable parameter sets in a faster manner. 

 

Table 1 Major Parameters in Paramics  

Factor Parameters Default Value Feasible Range Low Level (-1) High Level (+1) 

A Mean Target Headway (s) 1.0 0.5 to 3.0 0.5 3.0 

B Mean Driver Reaction Time (s) 1.0 0.5 to 2.0 0.5 2.0 

C Minimum Gap (ft) 5.00 1.0 to 9.0 1.0 9.0 

D Queue Gap Distance (ft) 32.81 5.0 to 40.0 5 40 

E Queue Speed (mph) 4.47 1.0 to 8.0 1.0 8.0 

F Link Headway Factor 1.0 0.5 to 2.0 0.5 2.0 

G Link Reaction Factor 1.0 0.5 to 2.0 0.5 2.0 

H Signpost (ft) 696..2 1.0 to 1500.0 1.0 1500.0 

I Driver Aggressiveness 4 1 to 8 1 8 

J Driver Awareness 4 1 to 8 1 8 

K Speed Memory 5 1 to 20 1 20 
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To calibrate the simulation model, the following objective functions in terms of root mean square 

percentage error (RMSPE) namely, ( )iz θ , have been defined: 

2

1

1

1
min ( )

s oM
m m

o
m m

C C
z

M C
θ

=

 −
=  

 
∑  

(10) 

2

2

1

1
min ( )

s o4
n n

o
n n

L L
z

4 L
θ

=

 −
=  

 
∑  

(11) 

2

3

1

1
min ( )

s oI
i i

o
i i

F F
z

I F
θ

=

 −
=  

 
∑  

(12) 

2

4

1

1
min ( )

s oJ
j j

o
j j

V V
z

J V
θ

=

 −
=  

  
∑  

(13) 

Based on the point estimate weighted-sums method we defined the aggregated objective function 

( )z θ as follows: 

1 1 2 2 3 3 4 4

22 2 2

1 2 3 4

1 1 1 1

min ( ) ( ) ( ) ( ) ( )

1 1 1 1
s os o s o s oM 4 I J
j jm m n n i i

o o o o
m n i jm n i j

z z z z z

V VC C L L F F

M 4 I JC L F V

θ ω θ ω θ ω θ ω θ

ω ω ω ω
= = = =

= + + +

 −     − − −
= + + +       

        
∑ ∑ ∑ ∑

 

(14) 

where ( )z θ quantify the overall error of the simulation; 1( )z θ , 2 ( )z θ , 3( )z θ and 4 ( )z θ are 

criteria that quantify the performance of traffic conflict, lane change, traffic count and speed, 

respectively. o

mC , o

nL , o

iF and o

jV  are an observation of traffic conflict risk, lane change, traffic 

count, and speed value, respectively. s

mC , s

nL , s

iF and s

jV  are the corresponding simulated values. 

, ,M 4 I and J are total numbers of observations. We assume that equal weights are assigned to 

individual performance criterion. Calibrations based on each single objective function and the 

aggregated objective function have been implemented. 

 

SIMULATIO
 RESULTS & DISCUSSIO
 

 

Calibration Results 

 

NGSIM provides summarized lane change and speed information for each sub-section (100-ft) of 

the entire segment (2100-ft) in their summary reports (FHWA, 2005). These values are used as 

baseline data when computing 2 ( )z θ and 4 ( )z θ , respectively. The simulated throughput and the 

reported 15-minute throughput are compared to obtain 3 ( )z θ . To obtain 1( )z θ , traffic conflict 

probability is calculated using the original trajectory data and the simulated trajectories. Only 

one percent of the car-following scenarios are sampled. This is equivalent to screen the status of 

an individual vehicle every 10 seconds. The conflict probability of each sample is then calculated 

using equation (9) and aggregated by sub-section. ( )z θ  is computed based on equation (14).  
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To confirm the need for adequate model calibration, initial runs with default input parameters 

and 13 sets of guessed input parameters were also conducted. The simulation results based on 

these input parameter sets are presented in Table 2. No matter which performance measure is 

used, simulation results are not stable. For instance, 1( )z θ  ranges from 0.176 to 0.706 and 2 ( )z θ
varies from 0.261 to 1.820. Large variance of these performance measurements suggest that 

neither default values nor guessed parameter sets can definitely yield optimal results. It is thus 

necessary to calibrate the parameters. 

 

Table 2 Simulation Results based on Different Parameter Guesses 

Initial 

Inputs 

Value of Parameters ( )θ
 Simulation Results 

A B C D E F G H 1( )z θ  2( )z θ  3( )z θ  4( )z θ  ( )z θ  

Default 1.00 1.00 5.00 32.81 4.47 1.00 1.00 696.20 0.353 0.261 0.054 0.140 0.202 

Guess 1 0.90 1.60 6.00 10.00 2.80 1.50 0.70 700.00 0.364 0.309 0.184 0.230 0.272 

Guess 2 1.45 0.75 7.30 27.00 7.50 1.20 1.10 800.00 0.176 0.416 0.179 0.144 0.229 

Guess 3 0.90 0.90 6.20 15.00 7.00 1.70 1.70 1450.00 0.529 0.508 0.239 0.123 0.350 

Guess 4 0.70 0.70 4.50 22.81 4.90 1.50 1.50 570.00 0.292 0.300 0.053 0.102 0.187 

Guess 5 1.80 1.50 6.60 29.00 6.40 1.20 1.20 1350.00 0.571 1.029 0.397 0.168 0.541 

Guess 6 1.68 1.45 3.30 24.00 6.50 1.20 1.20 570.00 0.595 1.111 0.349 0.154 0.552 

Guess 7 1.60 1.30 7.70 40.00 5.00 1.00 1.00 800.00 0.302 0.264 0.256 0.212 0.259 

Guess 8 1.70 1.30 4.20 36.00 5.20 1.35 1.85 1000.00 0.706 1.820 0.456 0.143 0.781 

Guess 9 1.25 1.05 4.30 28.00 3.15 1.30 0.50 630.00 0.194 0.440 0.099 0.153 0.222 

Guess 10 1.75 1.35 5.20 15.00 4.75 1.40 0.70 300.00 0.324 0.360 0.307 0.177 0.292 

Guess 11 0.75 1.70 6.00 10.00 2.80 1.50 0.75 720.00 0.592 0.301 0.171 0.225 0.322 

Guess 12 1.50 1.50 7.30 32.00 5.90 1.20 1.00 900.00 0.417 0.340 0.314 0.197 0.317 

Guess 13 2.40 1.70 6.00 19.00 5.50 1.00 1.00 1200.00 0.555 1.187 0.457 0.283 0.621 

 

The SPSA based calibration approach described in the previous section of this paper is employed 

to calibrate the input parameters. Initially, the simulation model is calibrated just using a single 

objective function in terms of the measurements of conflict risk, lane change, throughput or 

speed (shown in equations 10-13). After calibrating simulation model using a single performance 

criterion, the model is then calibrated based on the aggregated multicriteria objective function 

shown in equation (14). Figure 2a illustrates an example of the convergence diagram using the 

measurements of conflict risk as the calibration based objective function, 1( )z θ . Despite using 

different initial guessed parameter sets, the fitted values of 1( )z θ  converged after a number of 

iterations using SPSA. Similarly, Figure 2b (right) shows the convergence diagram of the fitted 

value of ( )z θ . The converged value of ( )z θ  is about 0.15. 
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Figure 2 Calibration convergence diagram: a) single criterion (left), b) multicriteria (right) 

 

Table 3 presents an example of the final calibrated results when running simulation with the 

initial input parameters of guess vector 4 (listed in Table 2). Similarly, Table 4 summarizes the 

results of guess vector 5. The parameter set is either calibrated by minimizing a single objective 

function, ( )iz θ
 
(i=1, 2, 3, and 4) or the multicriteria objective function, ( )z θ . When an objective 

function is minimized, the corresponding measurements of other four performance functions are 

also obtained. For instance, the first row in Table 4 shows that 1( )z θ is the objective function and 

its minimized value is 0.137. In the meanwhile, the measured 2 ( )z θ , 3 ( )z θ , 4 ( )z θ , and ( )z θ are 

calculated as 0.403, 0.117, 0.143, and 0.200, respectively, for this specific calibration scenario.  

 

Table 3 Calibration Results Using Different Objective Functions (Initial Inputs: Guess vector 4) 

Objective 

Function 

Calibrated Value of Parameters ( )θ  Simulation Results 

A B C D E F G H 1( )z θ  2( )z θ  3( )z θ  4( )z θ  ( )z θ  

1min ( )z θ  0.50 0.50 6.72 17.47 4.08 1.40 1.06 522.73 0.210 0.273 0.051 0.079 0.153 

2min ( )z θ  0.72 0.52 5.83 15.10 5.26 0.69 1.27 934.07 0.216 0.269 0.051 0.088 0.156 

3min ( )z θ  0.50 0.58 4.33 20.37 5.04 1.35 1.32 551.50 0.177 0.322 0.051 0.077 0.157 

4min ( )z θ  0.50 0.53 4.27 23.85 5.37 1.40 1.47 599.39 0.204 0.288 0.052 0.077 0.155 
min ( )z θ  0.50 0.50 3.38 18.36 3.86 1.19 1.22 769.03 0.174 0.290 0.051 0.076 0.148 

 

Table 4 Calibration Results Using Different Objective Functions (Initial Inputs: Guess vector 5) 

Objective 

Function 

Calibrated Value of Parameters ( )θ  Simulation Results 

A B C D E F G H 1( )z θ  2( )z θ  3( )z θ  4( )z θ  ( )z θ  

1min ( )z θ  1.28 0.63 8.27 13.81 6.40 1.21 0.75 1452.26 0.137 0.403 0.117 0.143 0.200 

2min ( )z θ  1.96 0.80 3.39 35.97 5.98 1.75 0.57 536.59 0.426 0.330 0.332 0.152 0.310 

3min ( )z θ  0.58 0.92 7.15 27.13 6.37 0.87 1.03 1036.37 0.196 0.299 0.051 0.087 0.158 

4min ( )z θ  1.51 1.13 7.59 31.94 5.82 1.54 1.40 1239.80 0.520 0.331 0.376 0.125 0.338 

min ( )z θ  0.50 0.99 8.50 35.80 5.98 1.61 0.71 1137.27 0.191 0.271 0.052 0.091 0.151 
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The difference between the final calibrated parameters across the tables suggests that there are 

multiple solutions for simulation models and SPSA is still a local optimization algorithm that can 

find one of the many possible solutions. To obtain optimal results, use of multiple initial input 

parameter sets is recommended. The calibrated results in both tables also suggest that 

minimization of safety performance function cannot guarantee the minimization of the 

operational performance functions, and vice versa. For instance, when safety criterion 1( )z θ
 
is the 

selected objective function, the corresponding value of lane-change criterion 2 ( )z θ  is 0.403 in 

Table 4. However, lower values of 0.330 can be obtained if 2 ( )z θ  was selected as the objective 

function. By comparing two tables we found that when ( )z θ  is the objective function, the 

measurement of each performance function is more stable than that of using a single objective 

function ( )iz θ . The minimized values of ( )z θ  are about 0.15 in both tables. The corresponding 

1( )z θ  is about 0.19, 2 ( )z θ
 
is about 0.29, 3 ( )z θ  is about 0.05, and 4 ( )z θ  is about 0.09. Though not 

all the criteria are simultaneously minimized, ( )z θ  avoids the cases of minimizing a single 

criterion by deteriorating the performance of other criteria. Therefore, ( )z θ
 
is preferred because 

when minimizing ( )z θ  all the four performance functions can be equally considered. 

 

Validation  

 

To evaluate the performance of the calibration model, optimized input parameters are tested 

using NGSIM trajectory data collected between 08:20 AM and 08:35 AM. The simulated 

conflict risk, lane changes, speed and throughput are then compared with the computed results 

using the actual trajectory data. Figure 3 illustrates validation results when using calibrated input 

parameters. Simulated results can accurately capture observed conflict risk, lane-change, and 

speed along the 2100-ft segment. Both simulated results using the calibrated parameter set and 

actual results show that: (a) conflict risks are higher for the upstream of the weaving section; (b) 

the majority of lane changes occurred at the weaving section; and (c) speed when approaching 

the weaving section is lower, whereas the speed of the downstream section is higher. Table 5 

compares simulation results based on the calibrated parameter set and its original guessed set. 

RMPSE of traffic conflict risk is reduced from 0.566 to 0.123. Similarly, RMSPE of other 

measures are also greatly reduced. Observed traffic throughput is 1915 and simulated throughput 

using calibrated parameter set is 1847. These findings suggest that the calibrated model shows 

generally good performance in comparison with actual observations.  

 

Table 5 Validation Results Using Calibrated Parameter Set 

Parameter 

Set 

Parameters ( )θ  RMSPE 

A B C D E F G H 1( )z θ  2( )z θ  3( )z θ  4( )z θ  ( )z θ  

Guess 0.90 1.60 6.00 10.00 2.80 1.50 0.70 700.00 0.566 4.165 0.350 0.094 1.294 

Calibrated 0.50 0.96 5.80 14.56 2.18 1.49 0.51 730.67 0.123 0.582 0.035 0.054 0.199 

Difference (%)     78.27 86.03 90.00 42.55 84.62 
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Figure 3 Simulation results using uncalibrated parameters and calibrated parameters versus 

observations: conflict risk (top), lane-change (middle), speed (bottom) 

 

CO
CLUSIO
S 

 

This study develops a numerical approach to calibrate stochastic micro-simulation models for 

traffic conflict analysis. It has been found that neither default parameters in the simulation model 

nor randomly guessed parameters can guarantee the accuracy of the simulation model. Moreover, 

calibration of simulation models using a single criterion may cause deterioration of other 

important criteria. When simulating traffic conflict risk, the accuracy of safety performance is of 

great interest. However, calibration solely based on safety criteria can be in conflict with other 

operational performance criteria such as speed and traffic counts. Instead of solely calibrating to 

optimize the models estimates in terms of safety performance and ignoring operational criteria, 

this study adopted the concept of multicriteria optimization by simultaneously considering all of 

these criteria together. The weighted-sums method is then used to simplify the calibration 

problem by developing an aggregated objective function. Since there are many input parameters 

that need to be calibrated, it is impossible to enumerate all possible combinations and run the 

simulation model for all these combinations. To efficiently find the optimal parameters of the 

highly stochastic simulation model, SPSA approach is used to perturbate and update all 

parameters in the searching process. The approach has been shown to be able to find the 

acceptable parameter set in a relatively fast manner. The proposed SPSA-based multicriteria 

calibration approach is implemented using Paramics traffic simulation platform for a study 

network, for which vehicle trajectory data are available through NGSIM program (FHWA, 
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2005). In the case study, this stochastic and gradient-based calibration approach is shown to be 

able to identify input parameters that make the aggregate objective function - quickly converge 

to a stable, almost optimal, value. The consistency of the calibrated parameters has been further 

validated by using additional vehicle trajectory data not used for calibration. The results show 

that the fine-tuning of parameters can greatly improve the performance of simulation models to 

describe traffic conflict risk, as well as the operational measures quantified using the field data. 
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