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ABSTRACT 
 
Historical data confirm that rural roadways carry less than half of America’s traffic but account 
for the majority of the nation’s vehicular deaths. According to NHTSA, Wyoming has the 
highest crash fatality rate in the nation with a reported 2009 road death rate of 24.6 per 100,000 
population, more than twice the national average of 11.0. High speed two-lane rural roads are 
believed to contribute to the fatal crash occurrence in rural states, such as Wyoming.  An urgent 
need exists to systematically examine historical data to better understand contributing factors and 
develop countermeasures to improve traffic safety in rural settings.  
 
The paper discusses the development of a methodology that utilizes available data from 
Wyoming (crash records, traffic volume, speed, etc) for crash prediction on rural roads. 
Prediction models were developed by using regression analysis techniques and data from three 
counties. Two methods were used in the building process, namely the Negative Binomial 
Regression (NBR) and the Poisson regression methods. The paper describes the process for 
selection of candidate roads, data collection and processing, methods employed in model 
development, and findings and conclusions.  Overall, the analysis showed that the NBR method 
better fitted the over-dispersed crash data available in the study. The proposed model 
demonstrated that high speed, in conjunction with high volume result in higher crash rates 
(number of crashes per mile in this study) at high risk locations. The results from the case study 
can be used to classify rural road segments according to crash risk as well as provide the 
foundation for similar crash prediction analyses in other states in the future. 

 
Keywords: Rural roads safety, Low volume roads, Crash prediction, Wyoming. 
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BACKGROUND 
 

Compared to urban roads, rural roads are overall less safe. Historical data confirm that rural 
roadways carry less than half of America’s traffic but account for over half of the nation’s 
vehicular deaths (USDOT, 2008). For example, in the year of 2008, 23 percent of U.S. 
population lived in rural areas whereas rural fatalities account for 56 percent of all traffic 
fatalities.  In 2008, nearly sixty two percent of passenger vehicle occupant fatalities occurred in 
rural areas (Insurance Institute for Highway Safety, 2008).  The fatality rate per 100 million 
vehicle miles traveled (MVMT) on rural roads was 2.21 compared to urban areas at 0.88 
(NHTSA, 2008).  
 
Rural roads face many unique safety challenges that result in higher crash rates. First, roadway 
design and the presence of roadside hazards (such as utility poles, sharp-edged pavement drops-
offs, and trees located close to roadways) create additional safety risks. Second, compared to 
urban crashes, rural crashes are more likely to be at higher speeds, a contributing factor to higher 
severity. Third, it often takes longer time for emergency vehicle response to the scene of a rural 
crash (TRIP, 2005) which affects the survival rate of those injured. 
 
The “Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users” 
(SAFETEA-LU), contains language indicating that State Departments of Transportation will be 
required to address safety problems on local and rural roads. The legislation states that it is 
important for state, county, and city officials to cooperate in producing a comprehensive safety 
plan to improve safety statewide. This legislation provides an opportunity to implement a more 
cohesive and comprehensive approach to address rural road safety problems (Evans et al, 2008).  
 
This paper considered Wyoming as a case study. In Wyoming, between 2002 and 2006, the 
average rural MVMT was 6,654 and the average fatality rate per 100 MVMT was 2.23 (USDOT, 
2008). Nearly eighty-six percent of passenger vehicle occupant fatalities occurred in rural areas 
of Wyoming (NHTSA, 2008), much higher than the national average of sixty-two percent. Due 
to the high percentage (nearly 70%) of rural population (USDA, 2011) and the extend of the 
rural roadway network, Wyoming has the highest crash fatality rate in the nation with a reported 
NHTSA 2009 road death rate of 24.6 per 100,000 population. This is more than twice the 
national average of 11.0. To address the issue of rural traffic safety, the state of Wyoming 
initiated a program called Wyoming Rural Road Safety Program (WRRSP) which aimed at 
helping counties to identify high risk rural locations and develop a strategy to obtain funding for 
improving safety in the top-ranked locations. One objective of this initiative was to develop a 
methodology of using available data (crash records, traffic volume, speed, etc) for crash 
prediction on rural roads. 

 
LITERATURE REVIEW 
 
Crash prediction models offer an estimate of expected accident frequency as a function of traffic 
flow characteristics and roadway geometries. Regression equations that relate crash experience 
to traffic and other geometric conditions are widely used in modern highway safety analysis 
(NCHRP, 2001). Extensive research had been performed to examine the relationship between 
vehicle crashes and traffic flow features (e.g. traffic volume, speed) or geometric designs (e.g. 
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lane width, shoulder width). In previous safety studies, linear regression, Poisson regression and 
Negative Binomial Regression (NBR) were three techniques used to develop regression models 
(Wang, 2008).  
 
Previous safety studies such as Miaou et al (1993) used multiple linear regression techniques to 
study the relationships between vehicle accident and geometric features. Japanese researchers 
(Okamoto, 1989) tried to use multiple linear regression to analyze accident rates related to 
geometric design elements. They found that linear regression was not suitable to model vehicle 
accidents. The underlying assumption of linear regression is that events follow a normal 
distribution. Therefore, the linear model may predict a negative value. However, in real life, 
traffic crash data are always discrete and regarded as a random variable that takes non-negative 
integer values. These characteristics imply that crash data may follow more closely the Poisson 
distribution, instead.  
 
Miaou and Lum tried using the Poisson regression to model truck accident data (Miaou et al, 
1992). From their analysis they found that truck accidents were strongly related to traffic volume 
and the roadway geometric factors, such as vertical grade and horizontal curvature. Poisson 
regression was used to analyze traffic count data. This technique can be used to model the 
number of occurrences (or the rate) of an event of interest, as a function of some independent 
variables. In Poisson regression, it is assumed that the dependent variable Y that corresponds to 
the number of occurrence of an event (number of crashes per mile in this study), has a Poisson 
distribution given the independent variables X1, X2, …..,Xi. The general form of the Poisson 
regression is as following: 
 ݂(ܻ) = ఓೊ௘௫௣	(ିఓ)௒!       (1) 

Where: ݂ (ܻ) is the probability that the outcome is ܻ, and 
 
In exponential form, equation 1 can be rewritten as: 
∑+ 0ߚ) i = expߤ  ௜ܺߚ௝௡௝ୀଵ )        (2) 

Where: ߤi is the expected crash per mile on road i 
X1, X2…..Xi are the values of the roadway variables (traffic volume, speed, etc) on road i ߚଵ,….	ߚ௝ are the coefficients to be estimated by modeling. 

 
The expected crash rate is the number of crashes adjusted for intensity and it is assumed to be an 
exponential value applied to a suitable combination of roadway variables. Thus, the model falls 
under the heading of a Generalized Linear Model (GLM). The exponential function guarantees 
that the mean (the number of expected crashes) is non-negative. The most widely accepted way 
to estimate the parameters ߚ	j is to use a Maximum Likelihood Estimation (MLE) procedure. The 
likelihood function can be written as: 
൯ߚ൫̅ܮ  = ∏ ௜݂	( ௜ܻ) =௡௜ୀଵ ∏ [ఓ(௑೔,ఉ)]ೊ೔	௘௫௣	[ିఓ(௑೔,ఉ)]௒೔! 			 	 	 	 							(3) 

Where: ߤ( ௜ܺ,  .ܺi	to	 iߤ is the function which relates (ߚ
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Miaou and Lum (Miaou et al, 1993) also pointed out the limitations of using the Poisson 
Regression approach. The Poisson distribution’s fundamental assumption is that the variance 
should be equal to its mean. However, real crash data rarely comply with this assumption. In 
most cases, the variance is larger than its mean. This phenomenon causes what is called over-
dispersion. The consequence of the over-dispersion is that the variances of the estimated 
parameters tend to be underestimated. In other words, the estimated ߚ	 from MLE under the 
Poisson regression model is still close to the true parameter, but the significance levels of the 
estimated parameters may be overstated.  
 
In dealing with the over-dispersion in crash data, NBR, an alternative to Poisson regression, has 
been used in accident modeling. In 1995, Shankar (Shankar, 1995) tried to use the NBR to 
overcome the over-dispersion problem. He used both Poisson regression and NBR to model the 
effects of road geometry and environmental factors on the number of crashes. He found that 
NBR modeled the crash data better than Poisson regression when the crash data were over-
dispersed. Caliendo (Caliendo et al, 2007) used both Poisson regression and NBR to examine the 
relationship between geometric features and accident frequency on multilane roadways in Italy. 
They found that Poisson regression was inappropriate to model the random variation of the 
number of crashes if there was clear evidence that over-dispersion was present.  
 
NBR generalizes the Poisson regression by permitting the variance to be over-dispersed. In the 
NBR model, the variance equals to the mean plus a quadratic term in the mean whose coefficient 
is called the over-dispersion parameter ߙ (Equation 4). 
]	ݎܸܽ  ௜ܻ] = ]	ܧ ௜ܻ][1 + ]ܧߙ ௜ܻ] = ]	ܧ ௜ܻ] + ]ܧߙ ௜ܻ]ଶ	     (4) 
 

Where: a= over-dispersion parameter. 
 
The selection between the two models, i.e., Poisson regression or NBR, depends on the value of α. When this parameter is equal or close to zero, a Poisson model is appropriate. When it is 
larger than zero, it represents the variance above and beyond the mean. The over-dispersion 
phenomenon is commonly due to the variation of the highway variables present in the model, 
such as accident-related factors pertaining to drivers, vehicles, and location not encompassed by 
the highway variables (Miaou et al, 1993). For the NBR model, the expected accident frequency 
for a section i is written as: 

௜ߤ  = ଴ߚ൫݌ݔ݁ + ∑ ௜ܺߚ௝௡௝ୀଵ ൯               (5) 
 

Where: ߤi = ܧ ௜ܻ| ௜ܺ for ௜ܻ | ௜ܺ distributed as a negative random binominal variable. 
 

One of the forms of NBR distribution can be written as: ݂(ܻ) = 	 ௰ቀభഀା௒೔ቁ௰(௒೔ାଵ)௰ቀభഀቁ ( భഀభഀାఓ೔ )( ఓ೔భഀାఓ೔)௒೔               (6) 

 
Where: 	߁ is a gamma function. 
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From the literature review, it can be found that Poisson regression or NBR are suitable candidate 
options to model crash data. Therefore, this study focused on applying these two methods in 
developing crash prediction models using data from rural roads in Wyoming. 
 
CASE STUDY: CRASH PREDICTION ON RURAL ROADS IN WYOMING 

 
Candidate Roads Selection and Crash Data 

 
In order to develop a crash prediction model for low volume rural roads in Wyoming, thirty six 
rural roads were considered for inclusion in the evaluation from three Wyoming counties, 
namely Laramie, Carbon, and Johnson. All study roads included in developing the prediction 
model were identified by the WRRSP as high risk roads. The reported crash records over the 
1995 to 2005 time period were obtained from the Wyoming Department of Transportation 
(WYDOT). This dataset contains all types of crashes that occurred on all roadway classifications. 
Since, this project focused on rural roads, only the crashes that occurred on rural county roads 
were included in the analysis. The crash records from WYDOT contain various attributes for 
every crash, including accident route number and name, accident mile point, accident year, 
number of vehicles involved in the accident, number of injuries and fatalities in the accident, 
accident severity, light condition, weather conditions and road surface types. In this study, the 
key attribute retrieved from the crash records for modeling was the total number of all severity 
levels of crashes that occurred during the ten year period. Table 1 summarizes the crashes on all 
the roads included in this experiment. 
 
Traffic Counts and Speeds 

 
One of the objectives of this safety study was to determine the correlation between traffic 
volume and speed and the number of crashes. Therefore, traffic volume and the 85th percentile 
speed data were considered as key factors in developing the crash prediction model. 
Unfortunately, Wyoming local government did not collect traffic data on these roads on a routine 
basis. Therefore, traffic data on all the candidate roads were collected by the research team. The 
traffic counter locations were determined mainly based on the risk locations identified from the 
crash analysis. Another consideration was the existence of major intersections which may result 
in changing traffic volumes. As an example, if a rural road stretches a very long distance and 
intersects with higher functional class of roads, it is very likely that the intersection areas will 
have high traffic volume. Two or more automatic traffic counters were installed at these 
locations. When developing the prediction model, the traffic data collected from the highest 
traffic volume spots were used.  
 
Automatic traffic counters were used to collect traffic data for this study including traffic volume, 
speed and vehicle classification data. The specific type involved in the study is “TRAX RD”, 
which is manufactured by JAMAR Technology Inc. Properly installed traffic counters can 
collect TRAX RD employs two road tubes to record the traffic data. The tubes connected with 
TRAX RD were placed perpendicular to the flow of the traffic and set to 8 feet apart. When 
vehicles crossed over the road tubes, air impulses were generated to trigger the two air-impulse 
switches inside the traffic counter.  
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Table 1 Summary of Crash Data 
Source: Crash Data of 1995-2005 from WYDOT 

County 
Road 

Number 

Road 
Length 
(miles) 

Property 
Damage 

Only 
(PDO) 

Injury Fatal 
Total 

Crashes 
Crashes per 

Mile 

Carbon 385 16.25 1 6 0 7 0.431 
Carbon 291 57.43 25 14 3 42 0.731 
Carbon 603 3.67 3 0 0 3 0.817 
Carbon 702 7.32 7 0 0 7 0.956 
Carbon 353 6.6 2 1 0 3 0.455 
Carbon 550 1.48 1 0 0 1 0.676 
Carbon 203 7.62 5 1 0 6 0.787 
Carbon 660 14.52 5 4 0 9 0.620 
Carbon 500 23.94 10 5 1 16 0.668 
Carbon 561 8.13 5 3 0 8 0.984 
Carbon 504 16.05 4 11 0 15 0.935 
Carbon 324 5.17 6 2 0 8 1.547 
Carbon 401 34.53 25 12 2 39 1.129 
Carbon 710 3.09 4 0 0 4 1.294 
Carbon 701 19.13 4 4 0 8 0.418 
Carbon 700 17.2 3 5 0 8 0.465 
Laramie 210 10.8 11 19 0 30 2.778 
Laramie 109 9.48 13 12 1 26 2.743 
Laramie 136 8.23 5 6 0 11 1.337 
Laramie 143-2 28.38 10 6 2 18 0.634 
Laramie 212-1 4.11 4 5 0 9 2.190 
Laramie 102-1 7.32 7 8 0 15 2.049 
Laramie 120-1 22.73 14 8 1 23 1.012 
Laramie 124 10.84 9 8 0 17 1.568 
Laramie 215 18.47 17 24 1 42 2.274 
Laramie 209 7.33 10 6 0 16 2.183 
Laramie 203-1 36.8 14 16 0 30 0.815 
Laramie 164-1 12.26 4 5 0 9 0.734 
Laramie 162-2 10.95 15 13 1 29 2.648 
Laramie A149-1 0.69 4 0 0 4 5.797 
Johnson 212 1.6 2 1 0 3 1.875 
Johnson 14 8.49 4 2 0 6 0.707 
Johnson 91H 12.2 19 6 0 25 2.049 
Johnson 3 32.7 8 1 0 9 0.275 
Johnson 132 12.94 7 0 0 7 0.541 
Johnson 40 8.32 5 3 0 8 0.962 
Johnson 85 5.9 4 1 0 5 0.847 
Johnson 256 1.69 4 4 0 8 4.734 

 
 
Various tube layouts could be selected to record different traffic flow patterns. In this safety 
study, the selected tube layout is shown in Figure 1. In this layout, the traffic data were recorded 
separately in each direction. 
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Figure 1 Tube Layout for Collecting Traffic Data 
Source: JAMAR Technology, Trax RD Manual 

 
TRAX RD is solar powered and its battery can last more than one week. In this study, traffic 
counters were installed for approximately one week to collect the weekday and weekend traffic 
data at each data collection site. The simple axle vehicle classification scheme was used to 
classify vehicles. Any type of vehicle that has more than or equal to three axles was categorized 
as a truck. Table 2 shows an example of the traffic data collected on each section.  
 

Table 2 Traffic Data on County Road 324 

 

Volume Vehicle Classification 85th Percentile Speed, MPH 
Direction 1 Direction 2 Direction 1 Direction 2 Direction 1 Direction 2 

Cars 
&Trucks 

Cars 
&Trucks 

Cars Trucks Cars Trucks 
Cars  

&Trucks 
Cars  

&Trucks 
Wed 7/11/2007 90 91 89 1 91 0 61 60 
Thu   7/12/2007 83 82 78 5 80 2 63 61 
Fri    7/13/2007 98 96 97 1 94 2 62 62 
Sat   7/14/2007 168 172 166 2 170 2 57 59 
Sun   7/15/2007 99 96 99 0 96 0 59 61
Mon  7/16/2007 70 67 67 3 65 2 59 58 
Tue 7/17/2007 75 75 74 1 75 0 60 59 

Average 98 97 96 2 96 1 60 60 

 
Directional Distribution (%) Percent of Vehicles (%) 

 47 53 98 2 99 1 

 
The collected traffic data indicated that truck volumes account for only a small percentage. 
Therefore, it is not necessary to consider truck volumes separately and thus combined average 
daily traffic (ADTs) were used in this study. The traffic counters recorded traffic volume 
separately for each direction. Traffic volume used in this study was the sum of both directions of 
daily average over the traffic counter duration period (approximately one week). The daily 85th 
percentile speed was obtained from TRAX RD software after processing the data collected by 
the traffic counter. Similar to the traffic volume, the 85th percentile speed used for this study was 
the average of the daily 85th percentile speed of the traffic counter duration period.  
 



8 
 

In Table 3, surface type indicates on which type of road surface the traffic counter was installed. 
It was defined as a categorical variable. As seen from Table 3, “0” indicates that the traffic 
counter was installed on gravel or dirt surface, while “1” indicates an asphalt surface.  
 

Table 3 Summary of Traffic Data 

County 
Road 

Number 

Road 
Length 
(miles) 

Surface 
Type 

Volume 
(ADT) 

Speed 
(mph) 

Carbon 385 16.25 0 37 49.5 
Carbon 291 57.43 0 35 47.5 
Carbon 603 3.67 0 200 50.5 
Carbon 702 7.32 0 48 38 
Carbon 353 6.6 0 99 29.5 
Carbon 550 1.48 0 247 47 
Carbon 203 7.62 0 161 35.5 
Carbon 660 14.52 0 112 48 
Carbon 500 23.94 0 293 44.5 
Carbon 561 8.13 0 192 33.5 
Carbon 504 16.05 1 218 62.5 
Carbon 324 5.17 1 195 60 
Carbon 401 34.53 1 324 66.5 
Carbon 710 3.09 1 112 47 
Carbon 701 19.13 0 722 51.5 
Carbon 700 17.2 1 164 49 
Laramie 210 10.8 0 173 42 
Laramie 109 9.48 0 357 46 
Laramie 136 8.23 0 238 46.2 
Laramie 143-2 28.38 0 308 51.5 
Laramie 212-1 4.11 0 46 55.5 
Laramie 102-1 7.32 0 138 52 
Laramie 120-1 22.73 0 256 42.8 
Laramie 124 10.84 1 747 51.1 
Laramie 215 18.47 1 395 56.5 
Laramie 209 7.33 1 898 52.2 
Laramie 203-1 36.8 1 156 68.5 
Laramie 164-1 12.26 1 200 61.3 
Laramie 162-2 10.95 1 160 68 
Laramie A149-1 0.69 1 373 68.5 
Johnson 212 1.6 1 583 36.5 
Johnson 14 8.49 0 174 44.5 
Johnson   91H 12.2 1 1468 51.3 
Johnson 3 32.7 1 125 39.4 
Johnson 132 12.94 1 253 52.9 
Johnson 40 8.32 0 229 33 
Johnson 85 5.9 0 350 31.3 
Johnson 256 1.69 1 510 42.7 

 
Difficulties of Installing Traffic Counters on Gravel and Dirt Roads 
 
A significant portion of the rural roads in this study were gravel or dirt roads. This added to the 
difficulty of installing traffic counters. The major problem was fixing the road tubes on the road 
surface. There are no traffic counters specifically designed to collect traffic data on gravel or dirt 
roads and experience shows that road tubes work well on paved roads but not so on gravel or dirt 
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roads. The rubber tubes need special treatment before installation. Otherwise, it is very likely 
that the tubes could be pierced by sharp gravel. If the tubes leak, they cannot generate accurate 
air impulses to the counter.  
 
One method of protecting the tubes is enclosing the rubber tube inside a cover such as a fire hose. 
However, this causes another problem of being able to fix the tubes on the ground. Without any 
cover, the tubes can be easily fixed by metal clamps on asphalt. But a tube inside a fire hose is 
difficult to be fixed. Sometimes, the tubes are displaced from their original installed position. In 
order to calculate the speeds of the vehicles, the traffic counter needs the precise time stamp 
(generated by the air impulse) with an accurate distance of the two tubes. Tubes’ displacement 
changes the distance between the two tubes. As a result, the traffic counter will not get the 
accurate vehicle classification and speed data. For this reason, the speed data from some roads 
may be unavailable or inaccurate. However, from the collected traffic data, it was found that at 
most locations, the daily traffic volumes and speeds were consistent and the variation could be 
neglected. Moreover, the inaccurate data due to the displacement of the tubes were deleted. At 
these locations, two or three days data were used to calculated ADT and 85th percentile speed. 

 
Data Analysis and Prediction Model Developing 

 
Traffic data from the three counties were combined in one dataset for developing the crash 
prediction model. The dataset consisted of a total of 38 records. Table 3 summarizes the traffic 
and surface type data. It was clear from the traffic data collected in this study that the measured 
85th percentile speeds were significantly higher than the posted speed limits (up to 15 MPH).  

 
Outlier Identification 
 
Outliers are extreme observations in the dataset. They may stem from errors in data collection or 
miscalculation. The negative binominal regression method uses the maximum likelihood method 
to estimate the predictor variables’ coefficients. As a result, outliers may lead to serious 
distortions in the estimated regression function (Kutner, 2003). During the model development 
process, two outliers were identified. One outlier was the County Road 701 in Carbon County, 
and the other was County Road A149 in Laramie County. County Road 701 has a relatively high 
traffic volume but a very low crash rate. It is very likely that new developments around this road 
have occurred in recent years, which resulted in increasing traffic flow. However, the recent high 
traffic volume has not yet been translated into high crash rates. County Road A149 is a unique 
section. It is very short, less than one mile. The crash records indicate that only four PDO crashes 
occurred on this road in the ten-year analysis period. This extremely short length was behind 
another section with abnormally high crash rate. Due to the reasons explained above, these two 
observations were discarded from the dataset, which resulted in 36 records remaining in the final 
dataset for modeling. 

 
Crash Prediction Model Development 

 
As stated in the literature, previous safety studies had used geometric factors such as, lane width, 
shoulder width, horizontal and vertical distance as the predictor variables in the prediction model. 
However, such information was not available for this safety study. More importantly, the 
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developed crash prediction model needed to be simple and practical enough to be used by the 
local governments. From the roadway classification survey, traffic volume and traffic speed 
collection were common in studies conducted by counties. Therefore, traffic volume, traffic 
speed, road surface type, and an interaction variable (the product of traffic volume and speed) 
were used as the predictor variables in modeling. Crash rate (number of crashes per mile) was 
the response variable in the model. In this study, the statistical analysis software, SAS (proc 
genmod), was used for modeling.  
 
As stated before, one interest of this study was to evaluate the combined and individual effects of 
traffic volume and speed on crash rates of rural roads. Therefore, various combinations of the 
predictor variables were tested in modeling. The basic process was as follows:  
 

1. Put one predictor variable alone in the model and use SAS to run this model. 
2. Add the surface type into the model while keeping the predictor variable and rerun the 

model to see if there is any interaction between the predictor variable and surface type. 
 

Similar steps were performed on traffic volume and traffic speed. Finally, traffic volume and 
speed were analyzed in the model simultaneously.  
 
When using different combinations of the predictor variables to develop a crash prediction model, 
Poisson regression and NBR were evaluated separately. Table 4 and Table 5 summarize these 
results. The estimated coefficients of the predictor variables are summarized in the estimate 
column. The p-values of the predictor variables reflect the goodness of fit. Simply speaking, the 
p-value indicates a predictor variable’s probability of being associated with the response as 
strongly as is seen in the observed data set. In other words, small p-values indicate that a 
predictor variable should probably be included in the model. The usual convention for p-value is 
to be smaller than 0.05 (95% significance level) to keep a predictor variable in the model.  
 
Goodness of Fit 

 
The standard Poisson regression and NBR are both forms of GLM (Dobson et al, 2008). In the 
generalized linear model, one of the goodness of fit criteria, namely deviance, 
 

Table 4 Using Poisson Regression to Fit the Crash Data 

Model 
Number 

Predictor 
Variables 

Estimate P-Value 

Goodness of Fit 

Deviance 
Degree of 
Freedom 

(DF) 
Deviance/DF 

1 Volume*Speed 15.8596 <.0001 157.0424  34 4.6189  

2 
Volume*Speed 16.5071  <.0001 

156.7640  33 4.7504  
Surface -0.0519  0.5981  

3 Speed 0.0117  0.0061  184.4524  34 5.4251  

4 
Speed 0.0105  0.0528  

184.3195  33 5.5854  
Surface 0.0407  0.7150  

5 Volume 0.0001  <.0001 158.5255  34 4.6625  

6 
Volume 0.0008  <.0001 

158.5251  33 4.8038  
Surface 0.0018  0.9853  

7 
Volume 0.0008  <.0001 

152.8154  33 4.6308  
Speed 0.0105  0.0164  
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Table 5 Using Negative Binominal Regression to Fit the Crash Data 

Model 
Number 

Predictor Variables Estimate P-Value 

Goodness of Fit  

Deviance 
Degree of 
Freedom 

(DF) 

Deviance/
DF 

Log 
Likelihood 

1 Volume*Speed 16.0736 0.0267 36.3341 34 1.0686 975.8060 

2 

Volume*Speed 30.2164 0.3093 

36.3908 32 1.1372 975.9298 
Surface 0.1381 0.7064 

Volume*Speed* 
Surface 

-15.2914 0.6200 

3 Speed 0.0122 0.2522 36.7000 34 1.0794 973.7859 

4 
Speed 0.0196 0.3413 

35.2631 32 1.1020 974.3200 Surface 1.2329 0.4108 
Speed* Surface -0.0218 0.4579 

5 Volume 0.0008 0.0267 36.1447 34 1.0631 975.8185 

6 
Volume 0.0011 0.4164 

36.1312 32 1.1291 975.8663 Surface 0.1123 0.7572 
Volume*Surface -0.0003 0.8162 

7 
Volume 0.0008 0.0286 

36.0422 33 1.0922 976.4679 
Speed 0.0111 0.2540 

 
has an approximate chi-square distribution with n-p degrees of freedom, where n is the number 
of the observations and p is the number of predictor variables (including the intercept). The 
expected value of a chi-square random variable is equal to the degrees of freedom (df). If the 
model fits the data well, the ratio of the deviance to df should be close to one. If this ratio is 
significantly larger than one, it may indicate that the model fails to account for the data’s 
variability. 
 
Based on the examination of the Poisson regression results summarized in Table 4, it was found 
that the crash data is over-dispersed (i.e., the ratio of the deviance/df is significantly larger than 
1). Thus using Poisson regression, the independent variables may seem significant in the model 
(with p-value smaller than 0.05), however, the results may be misleading due to the over-
dispersion. Standard errors of the estimated coefficients are incorrectly estimated, implying an 
invalid chi-square test (UCLA, 2007). In contrast, Table 5 shows that the NBR fits the data 
reasonably well (i.e., the ratio of the deviance/df is very close to 1). Therefore, in this study, 
NBR was selected as the best option for modeling. 
 
Interpretations of the Results 

 
It is clear from Table 5 that when the interaction variable (the product of volume and speed) is 
analyzed in the model alone, it was found to be significant. However, if the interaction variable 
and the surface type were both in the model, none of them were significant. As an example, in 
Model 2, “Volume*Speed”, “Surface”, and “Volume*Speed*Surface” were all in the model, but 
according to their p-values, none of them were significant in the model. This suggests that there 
was no interaction between the interaction variable and the surface type. Similar observations 
can be made for the traffic volume and speed variables.  
 
From another aspect, the speed variable alone in the model was found to be statistically 
insignificant. However, when it was combined with traffic volume as the interaction variable and 
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added in the model, it became significant. This implies that on the analyzed rural roads in 
Wyoming, traffic speed has a significant effect on road safety but its effect is masked unless it is 
combined with higher traffic volume.  
 
From Table 5, it can be found that the Model 1 and Model 5 have very close Deviance/df and log 
likelihood values. NBR is one of GLMs. A common comparator of GLM that accounts for model 
complexity is the Akaike Information Criterion (AIC). Simply stated, smaller AIC value of a 
model generally means this model is better than the other. It is expressed as: 
 

AIC = -2*Log likelihood +2*k               (7) 
Where: k is the number of parameters in the model. 

 
For example, from Table 5, the AIC value for Model 1 that includes the “Volume*Speed” 
predictor is -2*975.8060+ 2*2 =-1947.612. The AIC value for Model 5 that includes the 
“Volume” predictor is -2*975.8185+2*2= -1947.637. From the AIC value, there is no clear 
superiority when comparing Models 1 and 5. Therefore, both Model 1 and Model 5 are proposed 
based on the NB regression analysis. The total number of crashes will occur in ten years are: 
 

Total crash= exp (-0.0340+16.0736* Volume*Speed /1,000,000)* Road Length          (8) 
 

Total crash= exp (-0.0428+0.0008* Volume)* Road Length            (9) 
Where: exp is the exponential function  

  Road length is the length of the analyzed road, and 
Constants -0.0340 and -0.0428 are estimates of constant β0 in Equation (5) 

  

Another concern of the model’s goodness fit is the Proportionate Reduction in Variation (PRV) 
and it is usually evaluated by the value R2. It measures the proportionate reduction of total 
variation in response variable associated with the use of the set of predictor variables (Kutner, 
2003). In ordinarily least square (OLS) regression, R2 takes the value between 0 and 1. Larger R2 
indicates that the model can explain more observed variability. In GLM, no such equivalent R2 
exists. In the GLM, the coefficients of the predictor variables are estimated from the maximum 
likelihood procedure (UCLA, 2007). Therefore, unlike the OLS regression, the coefficients are 
not calculated to minimize variance. However, to evaluate the goodness of fit of the GLM, 
several pseudo-R2 were proposed. Although all pseudo-R2 measures are imperfect, they still help 
describe PRV in a general way. One pseudo-R2 proposed by Cox & Snell (COX et al, 1989) is 
expressed as following: 

 

R2= 1 – exp [− ଶ௡ ൛݈൫ߚመ൯ − 	݈(0)ൟ]             (10) 

Where: ݈൫ߚመ൯ is the log likelihood of the fitted model, ݈(0) is the log likelihood of the null model, and 
n is the sample size 

 
For Model 1, the log likelihood of the null model is 973.1323. The pseudo-R2 of the fitted model 

is 1-exp[− ଶଷ଺{975.8060-973.1323}]= 0.138. This means that the model can explain the 13.8% of 

the observed variability. Using the same equation, the pseudo-R2 of Model 5 is 0.1386. The 
relatively low pseudo-R2 may result from two respects, namely number of prediction variables 
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and sample size. Introducing other prediction variables such as geometric features (road width, 
shoulder width) to the model may be helpful in improving the predictability of the model. It 
should be kept in mind that the objective of this safety project was to help counties in Wyoming 
to identify high risk locations. Therefore, the developed model was not meant for predicting the 
precise number of crashes but rather be used to evaluate if a road is potentially high risk. 
Meanwhile, a simplified model will be easier to be used by counties. Relatively small sample 
size may also have effects on pseudo-R2 value. If more comprehensive and complete data could 
be obtained from a future study, the predictability of the model is expected to improve.  
 
This regression model in this study was developed based on the crash and traffic data from the 
roads, selected by the WRRSP. These roads have the highest crash rates (number of crashes per 
mile) among the county rural roads in the three counties included in the pilot study. The 
developed model was successful in providing counties with a useful and practical tool to 
determine if a specific road has a higher than normal crash rate. As an example, if a road in a 
county has actual 7 crashes in a ten-year period and the model predicts 15 crashes based on the 
prevailing traffic condition, then this road should not be considered as a high risk road. However, 
if a road has 20 actual crashes and the model predicts only 15 crashes, then this road should be 
considered as a high risk road. 
 
CONCLUSIONS AND RECOMMENDATIONS 
 
The NBR and the Poisson regression methods were both examined in the study. The NBR was 
found to be superior to the Poisson regression in fitting the overdispersed Wyoming crash data. 
The p-value of the surface type in the model was not found significant when interaction with 
other traffic variables took place. The type of road surface type (gravel vs. paved) showed 
statistically similar crash rates in the dataset analyzed in this study. According to the regression 
model findings, high speed by itself did not significantly correlate with high crash rates. 
However, high traffic volume in conjunction with high speed resulted in higher crash rates. It 
should be noted that the prediction model is recommended to be used to determine if a specific 
rural road should be considered as high risk. 
 
The dataset used for developing the prediction model contained only 36 effective observations. 
The absence of adequate traffic data on Wyoming rural roads made it difficult to increase the 
sample size. The relatively small size of the dataset may have reduced the predictability of the 
model. It is recommended that local government and state DOTs should focus on collecting 
traffic data on rural roads in a more systematic way. The availability of such data should help in 
confirming and refining the prediction model developed in this study in the future. 
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