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ABSTRACT

This research effort analyzes the Wiedemann car-following model using car-following periods
that occur at different speeds. The Wiedemann car-following model uses thresholds to define the
different regimes in car following. Some of these thresholds use a speed parameter, but others
rely solely upon the difference in speed between the subject vehicle and the lead vehicle. The
results show that the thresholds are not constant, but vary over different speeds. Another
interesting note is that the variance over the speeds appears to be driver dependent. The results
indicate that the drivers exhibit different behaviors depending upon the speed which can imply
an increase in aggression at particular speeds.
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BACKGROUND

The Wiedemann car-following model was originally formulated in 1974 by Rainer Wiedemann
[1] . This model is known for its extensive use in the microscopic multi-modal traffic flow
simulation software, VISSIM [2]. The Wiedemann model was constructed based on conceptual
development and limited available data, and has to be calibrated to specific traffic stream data.

The principal ideas behind the Wiedemann model were used in this paper, but the exact shape or
formula used in the model are updated using the Naturalistic Driving data that is deemed to be
one of the best available sources of “real world” data [3].



Higgs, Abbas, and Medina

3
Ax front to rear distance

perception

no reaction threshold
/ __-sov
S
; - CLDV
_ =D o
_ unconscious ’ -
OPbY reaction reaction
- - /../' Bx
iy
collsion)

difference of velocity /A\/

<— increasing distance ‘ decreasing distance —»

Figure 1. Wiedemann 74 Car Following Logic [2]

Figure 1 shows the graphical form of the Wiedemann 74 model. The different thresholds are
shown with a certain shape that can only be amplified during the calibration procedure. The
figure shows the subject vehicle approaching a lead vehicle (AX decreasing due to higher subject
vehicle’s speed shown by a positive AV), and entering a perception area (crossing the SDV
threshold) where it has to reduce speed. The subject vehicle then crosses another threshold
(CLDV) where it reacts and reduces speed even further to enter an unconscious reaction car-
following episode. The subject vehicle then continues the unconscious car-following episode as
long as it remains bounded by the OPDV, SDX, and SDV thresholds.

Advantages of naturalistic data

As opposed to traditional epidemiological and experimental / empirical approaches, this in situ
process uses drivers who operate vehicles that have been equipped with specialized sensors
along with processing and recording equipment. In effect, the vehicle becomes the data
collection device. The drivers operate and interact with these vehicles during their normal
driving routines while the data collection equipment is continuously recording numerous items of
interest during the entire driving. Naturalistic data collection methods require a sophisticated
network of sensor, processing, and recording systems. This system provides a diverse collection
of both on-road driving and driver (participant, non-driving) data, including measures such as
driver input and performance (e.g., lane position, headway, etc.), four camera video views, and
driver activity data. This information may be supplemented by subjective data, such as
questionnaire data.

As part of the Naturalistic Truck Driving Study DS study [3], one hundred drivers were recruited
from four different trucking fleets across seven terminals and one to three trucks at each trucking
fleet were instrumented (nine trucks total). After a participant finished 4 consecutive weeks of
data collection, another participant started driving the instrumented truck. Three forms of data
were collected by the NTDS DAS: video, dynamic performance, and audio. Approximately
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14,500 driving-data hours covering 735,000 miles traveled were collected. Nine trucks were
instrumented with the DAS.

The following is a typical description of how the data collection is performed, along with
accompanying screen shots and information describing how the system works and how data can
be used. Four cameras monitor and record the driver’s face, forward road view, and left- and
right-side of the tractor trailer, which are used to observe the traffic actions of other vehicles
around the vehicle. Low-level infrared lighting (not visible to the driver) illuminates the vehicle
cab so the driver’s face and hands could be viewed via the camera during nighttime driving. The
sensor data associated with the project were originally collected in a proprietary binary file
format. A database schema was devised and the necessary tables were created. The schema
preserves the organization of data into modules; i.e., all of the variables associated with a
particular module are stored in one table in the database. The import process itself consisted of
reading the binary files, writing the data to intermediate comma separated value (CSV) files and
"bulk inserting" the CSV files into the database. A stored procedure is available that allows one
to query the database using the module and variable names rather than database table and column
names.

SYNTHESISOF PAST EFFORTS

There have been many attempts to characterize the car-following behavior of drivers. However,
direct correlation with real driving variables is rare and parameterization of objective behavior is
still in its development. Some studies have been limited to very controlled experiments; recent
studies have used aerial photography based measurement from helicopters [4], GPS data, test
track data and trajectory data form NGSIM .

Ossen and Hoogendoorn [5] studied the car-following behavior of individual drivers using
vehicle trajectory data that were extracted from high-resolution digital images collected at a high
frequency from a helicopter. The analysis was performed by estimating the parameters of
different specifications of the GHR car-following rule for individual drivers. In 80 % of the
cases, a statistical relation between stimuli and response could be established. The Gipps (a safe
distance model) and Tampere (stimulus-response model) models and a synthetic data based
approach were used for assessing the impact of measurement errors on calibration results.
According to the authors, the main contribution of their study was that considerable differences
between the car-following behaviors of individual drivers were identified that can be expressed
in terms of different optimal parameters and also as different car-following models that appear to
be optimal based on the individual driver data. This is an important result taking into account
that in most models a single car-following rule is used. The authors also proposed for future
research to apply more advanced statistical methods and to use larger databases. Brackstone [6]
using data collected with an instrumented vehicle that was assembled at TRG Southampton
parameterize the Wiedemann’s threshold for a typical following spiral. As a result they represent
the action points as a function of a probability distribution based on ground speed.

Micro-simulation software packages use a variety of car-following models including Gipps’
(AIMSUN, SISTM, and DRACULA), Wiedemann’s (VISSIM), Pipe’s (CORSIM), and
Fritzsche’s (PARAMICS). And different automated calibration parameters such as genetic
algorithms have been used to calibrate the distribution of car-following sensitivity parameters
[7]. Panwai and Dia [8] compared the car-following models between different simulation
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software, including AIMSUN, PARAMICS and VISSIM using an instrumented vehicle to record
differences in speed and headway (Leading speed, relative distance, relative speed, follower
acceleration were recorded). The EM shows similar values for psychophysical models in
VISSIM and PARAMICS and lower values in AIMSUN. The RMS error and qualitative drift
and goal-seeking analyses also showed a substantially different car-following behavior for
PARAMICS. Siuhi and Kaseko [9] demonstrated the need for separate models for acceleration
and deceleration responses by developing a family of car-following models and addressing the
shortcomings of the GM model. Previous work from Osaki [10] and Subranmanian [11]
modified the GM model separating the acceleration and deceleration responses. Ahmed [12],
following some work from Subranmanian assumed non linearity in the stimulus term and
introduced traffic density. Results from Ahmed [12] and Toledo [13] showed , against popular
belief, that acceleration increases with speed but decreases with vehicle separation. Due to
statistical insignificance, Ahmed and Toledo also removed speed from their deceleration models.
Siuhi and Kasvo [9] addressed some of these shortcomings by developing separate models, not
only for acceleration and deceleration, but also for steady-state responses. Nonlinear regression
with robust standard errors was used to estimate the model parameters and obtain the
distributions across drivers. The stimulus response thresholds that delimit the acceleration and
deceleration responses were determined based on signal detection theory.

Menneni et al [14] presented a calibration methodology of the VISSIM Wiedemann car-
following model based on integrated use of microscopic and macroscopic data using NGSIM
Relative distance vs. relative speed graphs were used for the microscopic calibration, specifically
to determine the action points ( it is important to note that action points were not identical to
perception threshold). Scatter and distribution of action points on relative distance versus relative
velocity graphs also showed similarity in driver behavior between the two freeways. Menneni
also mentioned that many of the Wiedemann thresholds are velocity dependent, but a full
calibration with this third dimension would be a daunting task.

Hoogendoorn and Hoogendoorn [15] proposed a generic calibration framework for joint
estimation of car following models. The method employed relies on the generic form of most
models and weights each model based on its complexity. This new approach can cross-compare
models of varying complexity and even use multiple trajectories when individual trajectory data
is scarce. Prior information can also be used to realistically estimate parameter values.

DESCRIPTION OF THE WIEDEMANN MODEL

The Wiedemann model uses random numbers in order to create heterogeneous traffic stream
behavior in VISSIM. These random numbers are meant to simulate behavior of different drivers.
The naturalistic data is a perfect match for this situation because the data is collected by
individual drivers. Data for three different drivers was selected and processed in order to
calibrate the Wiedemann car-following model. Specifically, car following periods were
extracted automatically according to these conditions for each speed range:

e Radar Target ID>0
This eliminates the points in time without a radar target detected

e Radar Range<=120 meters
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This represents four seconds of headway at 70 mph
e -1.9 meters<Range*Sin (Azimuth) <1.9 meters

This restricts the data to only one lane in front of the lead vehicle
e 20>=Speed>=110

This criterion would be further defined by the different speed ranges.
e Rho-inverse <=1/610 meters™

This limits the curvature of the roadway such that vehicles are not misidentified as being in the
same lane as the subject vehicle when roadway curvature is present.

e Length of car following period while range is less than 61 meters >= 30 seconds
This criterion was established by trial and error as verified by video analysis.

The automatic extraction process was verified from a sample of events through video analysis.
For the random sample of 400 periods, 392 were valid car following periods.

The data was divided into the following speed ranges: 20-30 kph, 30-40 kph, 40-50 kph, 50-60
kph, 60-70 kph, 70-80 kph, 80-90 kph, 90-100 kph, and 100-110 kph.

The equations that form the Wiedemann model were altered in order to remove the random
parameters because they were not necessary when calibrating to a single driver. The equations
shown are the altered equations which reduces the number of calibration parameters. The
starting point for the Wiedemann model is the desired distance between stationary vehicles. The
value calculated by Equation 1 is used in the calculations for the other thresholds.

AX =1L, 1+ AXadd (1)
L, _4 is the length of the lead vehicle
AXadd is a calibrated parameter

The desired minimum following distance threshold is calculated using Equation 2 and Equation
3.

ABX = AX+BX (2)

BX = BXmult v (3)

BXmult is a calibration parameter

v is the minimum of the speed of the subject vehicle and the lead vehicle

The maximum following distance is calculated using Equation 4 and Equation 5.

SDX = AX + EX x BX 4)



Higgs, Abbas, and Medina

EX = EXmult (5)
EXmult is a calibration parameter.

The Perception Threshold marks the point that a driver will begin to react to the lead vehicle.
This threshold is calculated by the use of Equation 6. Equation 1 is needed in order to calculate
Equation 6.

Ax—Ln_l—AX)Z

(6)
L,,_4 is the length of the lead vehicle.
CX is a calibrated parameter

The reaction curve marks the location of a second acceleration change point while still closing
on the lead vehicle. In VISSIM this threshold is assumed to be equivalent to the Perception
Threshold. Due to that similarity, the equation used for the Reaction Threshold, Equation 7 is
derived from Equation 6.

_ (Ax—L,_1-AX\?
CLDV_( CLDVCX ) (7)

CLDVCX is a calibrated parameter specific to one driver

The OPDV (Opening Difference in Velocity) curve is primarily a boundary to the unconscious
reaction region. It represents the point where the driver notices that the distance between his or
her vehicle and the lead vehicle is increasing over time. When this realization is made the driver
will accelerate in order to maintain desired space headway. This threshold is calculated using
Equation 8.

OPDV = CLDV * OPDVmult (8)
OPDVmult is a calibrated parameter

The Wiedemann model reuses the Perception Threshold as a boundary to the unconscious
reaction region. This would again be the point where the driver notices that the distance between
his or her vehicle and the lead vehicle is decreasing over time, but this second use of the
threshold is used when the subject vehicle is already engaged in following the lead vehicle. In
our representation of the model, this reuse of the Perception Threshold was given its own
equation in order to separate the different uses of the threshold. Equation 9 is of the same form
as Equation 6, but with a different calibrated parameter.

Ax—Ly_q —AX)2

SDV2 = ( cX2

©)
CX2 is a calibrated parameter

The first state is the free driving regime where the subject vehicle is not reacting to a lead vehicle
and is travelling at a desired speed or accelerating to a desired speed. The Free Driving Regime
is defined as the area above the Perception Threshold and the Maximum Following Distance
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Threshold. If the subject vehicle enters the free driving regime, the subject vehicle will then
accelerate until the desired speed is reached. The value for this acceleration is calculated using
Equation 10 and Equation 11. Equation 10 relates the maximum speed to the current speed times
Equation 11 and calculates an acceleration value accordingly in order to reach the maximum
speed.

bax = BMAXmult « (v,,,, — v * FaktorV) (10)
BMAXmultis a calibration parameter

Vmax1S the maximum speed of the vehicle

FaktorV = FAKTORVmult (11)
FAKTORVmult is a calibration parameter

The approaching regime occurs when a vehicle in the Free Driving Regime passes the Perception
Threshold. This vehicle will then decelerate according to Equation 12.

_1_ (wp?

b, = 2 ABX—(Ax—Lp—1) +bn-1 (12)

The Closely Approaching regime occurs only when a vehicle in the approaching regime passes
the Closing Difference in Velocity Threshold. In VISSIM this regime is ignored, so the
deceleration is still calculated by Equation 12.

The Deceleration Following regime occurs as a result of a vehicle in the Approaching or Closely
Approaching regime passes the Perception Threshold or a vehicle in the Acceleration Following
Regime passes the Second Perception Threshold. When a vehicle enters the Deceleration
Following regime the acceleration is calculated by the negative of Equation 13.

b = buyn (13)

b1 1s a calibrated parameter

The Acceleration following regime occurs when a vehicle in the Deceleration Following regime
passes the Opening Difference in Velocity Threshold or a vehicle in the Emergency Regime
passes the Minimum Following Distance Threshold. The acceleration for a vehicle in the
Acceleration following regime is simply the positive value of Equation 13. If a vehicle in this
regime accelerates and crosses the Maximum Following Distance Threshold, then that vehicle
will enter the Free Driving regime. Also, the vice-versa is true where a vehicle will enter the
Acceleration following regime from the Free Driving Regime if the Maximum Following
Distance Threshold is passed.

The emergency regime occurs any time that the space headway is below the Minimum Following
Distance Threshold. Equation 14 and Equation 15 calculate the acceleration in the Emergency
regime.

1 (Av)?
n 7 2 ABX—(Ax—Lp—q)

ABX—(Ax—Ly_1)
+ bn—l + bmin * Tl (14)
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b,in = BMINadd + BMINmult v, (15)
BMINadd, BMINmult are calibration parameters
vy is the speed of the subject vehicle

The adjusted equations were implemented into a calibration framework that used a genetic
algorithm to calculate the optimal values of the parameters. A genetic algorithm was used
because of its ability to accurately find optimal solutions that meet certain criteria when
numerous parameters are present. The framework consisted of expressing the logic of the
Wiedemann model as a series of state transitions. The states are defined by the different
thresholds and each state has an equation or parameter for the acceleration. The optimization
function was simply the minimization of the error between the velocity values calculated in the
Wiedemann model and the velocity values directly from the data.

EVALUATION OF THE WIEDEMANN MODEL OVER DIFFERENT SPEED RANGES
Results of the calibration for a sample driver (Driver 49) over a different speed ranges is shown
in Table 1. The length of the lead vehicle (Ln-1) shows feasible results across all of the ranges,
which serves to validate the results of the calibration. The desired speed (Vdes) shows erratic
behavior in the results. Vdes, FaktorVmult, and bmaxmult are all used to calculate the
acceleration in the free driving regime. Judging from the variance in these parameters, the
acceleration equation for the free driving regime needs to be re-evaluated.

The parameters BX and EX show smaller variance than CX, CX2, CLDVCX, and OPDV over
the different speed ranges. This can be attributed to the equations that use these parameters. The
equations with BX and EX include a velocity term while the other parameters have to account
for the differences that speed causes. The null acceleration or bnull shows an interesting trend of
high accelerations at low velocities and low acceleration at high velocities.

Table1: Driver 49 Wiedemann Parameter Results

20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100 100-110

kph kph kph kph kph kph kph kph kph
Ln-1 5.586 5.623 5.461 5.795 4.805 5.084 4419 4322 5.906
AXadd 4.540 6.941 9.611 9.152 5.613 6.230 7.899 9.187 9.890
BX 3.781 4.016 3.647 4.260 4.506 3.733 3.578 3.563 4318
EX 2.974 3.659 3.257 3.582 3.491 2.774 2.855 3.115 3.842
CX 19.511 26.612 19.798  92.114  83.621 90.067  78.938 55382 17.806
CX2 95.072  75.897 19.459  77.140  74.041 51.673  37.506  53.216 68.893

CLDVCX  15.518 24.870 18.487 57.298 57.721 57.315 76.277 48.422 10.000

OPDV -3.947 -2.739 -2.299 -2.533 -2.241 -1.827 -7.024 -2.665 -5.872

bnull 0.194 0.228 0.140 0.158 0.174 0.110 0.121 0.063 0.000
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bmaxmult  0.004 0.105 0.318 0.223 0.137 0.127 0.391 0.367 0.294
FaktorVm
ult 0.328 0.146 0.189 0.242 0.446 0.267 0.217 0.067 0.152

bminadd -1.696 -46.706  -48.703  -47.311 -2.376 -23.471  -39.434  -18.901 -26.656

bminmult  0.283 0.332 0.124 0.081 0.085 0.336 0.319 0.170 0.247
Vdes 100.492  86.696 16.415 51.215 52.278 90.280 120.000  39.789 34.743
FaktorV 0.496 0.501 1.916 0.825 0.855 0.521 0.390 1.005 1.125
RMSE 0.905 1.067 0.863 0.821 1.177 0.639 0.807 0.719 0.576

Table 2 presents the calibration results for another driver (Driver 64) over varying speed ranges.
The length of the lead vehicle (Ln-1) shows feasible values across the speed ranges which
validates the calibration results. Like Driver 49’s results, the BX and EX terms shows smaller
variance than the other parameters. The null acceleration (bnull) reveals some interesting
behavior in Driver 64 that is different from Driver 49. Remembering that bnull represents the
acceleration and deceleration behavior of drivers while oscillating, the null acceleration can be
used to identify when a driver has more relaxed or more aggressive acceleration and deceleration
behavior while following. The higher bnull values correspond to the lower SDV2 thresholds in
Table 2 with the exception on the 20-30 kph range. This means that Driver 64 has a larger
following regime, graphically speaking, where the larger acceleration values exist. This
correlation combines to create larger oscillation loops in the following behavior which can
indicate a less attentive state than smaller oscillation loops.

Table 2: Driver 64 Wiedemann Parameter Results

20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100 100-110

kph kph kph kph kph kph kph kph kph
Ln-1 4.123 6.000 4.305 4.151 4.172 5.407 4.133 4.322 5.016
AXadd 7.958 10.000  4.788 1.108 8.759 9.772 4.576 9.187 5917
BX 4.678 4.250 4.406 3.175 3.770 4.666 3.152 3.563 4.224
EX 3.157 2.517 2.922 2.615 2.570 3.260 3.887 3.115 3.326
CcX 94.615  71.029  48.788 19.926  32.200  88.899  90.181 55.382 65.713
CX2 70.870  81.272  43.778 100.000 45.590  36.588  70.846  53.216 54.886

CLDVCX 42323 51.518  43.741 11.094  31.156  60.460  66.929  48.422 39.959
OPDV -5.206 -3.484 -4.585 -3.510 -2.269 -3.395 -4.081 -2.665 -3.380
bnull 1.000 0.085 0.287 0.221 0.451 0.912 0.061 0.063 0.000

bmaxmult 0.356 0.285 0.075 0.089 0.113 0.400 0.249 0.367 0.190
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FaktorVm
ult

bminadd
bminmult
Vdes
FaktorV

RMSE

0.085

-29.008

0.232

18.872

1.936

0.133

0.255

-22.619

0.335

35.610

1.089

0.137

0.450
-9.219
0.400
74.416
0.679

1.283

0.218

-17.026

0.024

28.041

1.305

0.115

0.304

-23.879

0.085

99.895

0.490

0.506

0.409

-23.877

0.277

57.435

0.795

0.922

0.288

-11.057

0.084

12.151

1.982

0.794

0.067

-18.901

0.170

90.000

0.462

0.980

0.155

-31.202

0.253

57.955

0.725

0.629

Table 3 presents the results of the calibration for Driver 97 over various speed ranges. Like the
other two drivers’ results, the BX and EX terms show smaller variance than the other parameters.
The null acceleration values show a different trend than the other two drivers.
indicate in which speed ranges the drivers will exhibit more aggressive accelerations and
decelerations and also in which speed ranges the driver will exhibit more relaxed accelerations

and decelerations.

various speed ranges are driver dependent.

Table 3: Driver 97 Wiedemann Parameter Results

The results

The results also indicate that the trends in the null acceleration across the

20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100 100-110

kph kph kph kph kph kph kph kph kph
Ln-1 4.747 4.112 4.743 4.076 5.052 4.986 5.701 4.806 5.054
AXadd 6.592 6.000 5.734 8.705 8.549 9.679 8.151 3.715 1.000
BX 4.389 3.342 3.581 4.788 4.998 4.774 3.122 4.101 3.275
EX 2.753 3.251 2.963 2.983 2.930 2.621 2.517 2.739 2.940
CcX 48.743  48.763  27.609  46.141 59.033 55854 45669 44379 74.059
CX2 27.831 80.644  60.011 44.203 58.049  26.043  59.661 45.238 94.902
CLDVCX 47.611 37.187  27.609  40.783 54.775 52795 42980 28316 27.806
OPDV -2.348 -5.076 -3.487 -2.255 -2.100 -3.838 -2.770 -4.859 -4.144
bnull 0.184 0.557 0.143 0.004 0.190 0.060 0.303 0.000 0.000
bmaxmult  0.465 0.142 0.056 0.123 0.111 0.401 0.396 0.278 0.178
FaktorVm
ult 0.359 0.077 0.347 0.051 0.229 0.313 0.316 0.268 0.500
bminadd -38.648  -32.517  -23.920 -22.070 -22.940 -30.448 -13.202 -30.814 -32.488
bminmult  0.318 0.186 0.185 0.299 0.311 0.138 0.075 0.183 0.277
Vdes 12.514  35.848 32899 53.689 57280  87.418  27.713 102.450  78.647
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FaktorV 1.787 1.106 1.131 0.755 0.750 0.551 1.266 0.467 0.674

RMSE 0.843 0.618 0.253 0.274 0.249 0.368 0.928 0.820 0.694

With a bnull value of zero or close to zero, the SDV2 and OPDV thresholds become insignificant
because there is no change in acceleration or speed made when crossing either threshold. In this
situation, the governing thresholds are ABX and SDX, the minimum and maximum following
distance thresholds. This means that the driver will either decelerate in the emergency regime or
accelerate in the free driving regime.

Table 4 presents the Root Mean Squared Error of the calibration for each Driver over the speed
ranges. The values shown are all below 1.5 which suggests that the results of the calibration
create a relatively low error. Table 4 also shows that the calibration within each speed range
appears to be dependent on the driver.

Table 4: Root Mean Squared Error by Driver and Speed Range

20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100 100-110
kph kph kph kph kph kph kph kph kph
Driver
49 0.9046 1.0670 0.8629 0.8207 1.1770 0.6392 0.8074 0.7186 0.5762
Driver
64 0.1331 0.1365 1.2826 0.1145 0.5063 0.9216 0.7938 0.9797 0.6291
Driver
97 0.8433 0.6181 0.2525 0.2742 0.2493 0.3677 0.9276 0.8199 0.6941

Table 5 shows the mean and standard deviation of the individual terms by driver. This table is
the result of collapsing the different speed ranges in order to see the variability of each supposed
constant. The results show that some of the terms have a high standard deviation while other
terms have a smaller standard deviation. The terms with the lower standard deviation suggest
that using a constant in their stead, as the original model suggests, would incur little error. On
the other hand, using a constant in the stead of the terms with a high standard deviation would
incur a large amount of error. For example, the terms CX, CX2, CLDVCX, and Vdes all have a
large standard deviation which means that these terms cannot be considered a constant for the
aforementioned reason.

Table 5: Average and Standard Deviation of Termsby Driver

Average Standard Deviation
Driver Driver Driver Driver Driver Driver
49 64 97 49 64 97
Ln-1 5.22 4.63 4.81 0.591 0.687 0.497
AXadd 7.67 6.90 6.46 1.933 3.001 2.755
BX 3.93 3.99 4.04 0.353 0.594 0.730

11
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EX 328 304  286| 0380 0441 0221
X 53.76  62.97 5003 | 32927 26327 12.572
cxX2 6143  61.89 5518 | 23.182 20455  22.622
CLDVCX 4066 4396 3998 | 23.683 16354 10.584
OPDV 346 362  -343| 1812 0904  1.128
brull 013 034  016| 0069 0375  0.182
bmaxmult 022 024  024| 0133 0125  0.150
FaktorVmult - 5 0.25 027| 0111 0132  0.140
bminadd 2836 -2075  -27.45| 18.489  7.456  7.595
bminmult 022 021  022| 0106 0126  0.086
Vdes 6577 5271 5427 | 34736 31.283 30.143
FaktorV 0.85 105  094| 0475 0580  0.419
RMSE 084 061  056| 0192 0423 0277

Figure 2 presents the AX thresholds for the three drivers over the speed ranges. The AX
threshold represents the desired distance between stationary vehicles, but this value is used in the
equations to calculate other thresholds and parameters. The figures show that this value is
different for the speed ranges which mean that this parameter, in effect, includes some
differences due to speed. This parameter should be a constant, but as the results show it is not
and thus any of the equations that use this parameter will be different over the various speed
ranges. This one parameter is used in the calculations for all of the thresholds and the closing
deceleration.

Driver 49 AX Threshold

18
16—
14 w—20-30
= w—=30-40
E# ==40-50
g —=—50-60
H 8
& =—60-70
6 e70-80
4 80-90
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o 100-110
-10 -5 0 5 10
Av (m/s)

a) Driver 49 Ax Threshold
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Driver 64 AX Threshold
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Driver 97 AX Threshold
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Figure 2: Driver AX Thresholds over the speed ranges

Figure 3 shows the ABX or minimum desired following distance thresholds for the three drivers.
The threshold for Driver 49 shows a trend of increasing as the speed increases. The threshold for
Driver 97 shows an increase as the speed increases until the 70-80 kph range then the threshold
decreases as the speed increases. This indicates that the driver is more aggressive at the higher
speed, speeds above 80 kph. Driver 64 shows this same aggressive behavior but in a different
way. Driver 64 shows a sudden decrease in the ABX threshold from the 70-80 kph speed range
to the 80-90 kph speed range, but from there, the threshold increases as the speed increases. This
means that Driver 64 shows a jump in aggressiveness, but then decreasing aggression in response
to higher speeds.
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Figure 3: Driver ABX Thresholds over the speed ranges

Figure 4 shows the SDX or maximum desired following distance thresholds for the three drivers
over the speed ranges. Driver 49 shows an increasing maximum desired following distance as
the speeds increase up to the 60-70 kph speed range. Then, the threshold decreases by 40 meters
and restarts the same increasing trend as the speed increases. The 100-110 kph threshold is far
above the others which indicates that at these speeds the following regime is very large and thus
the following regime can accurately represent the car following interactions. The maximum
desired following distance for Driver 64 shows more of a clustering behavior than the thresholds
for Driver 49. The 70-80 kph, 90-100 kph, and 100-110 kph thresholds are not included in the
cluster, but these represent speeds at which Driver 64 shows car following behavior at greater
distances. The maximum desired following distance for Driver 97 shows the same increase and
decrease trend that was shown in the minimum desired following distance, ABX.
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Figure 4: Driver SDX Thresholds over the speed ranges

Figure 5 shows the SDV or approaching point thresholds for the three drivers over the speed
ranges. Driver 49 shows two clusters in the SDV threshold; one with speeds up to 50 kph and
the second with speeds from 50 to 90 kph. Driver 64 has approaching point thresholds that begin
with the lowest speed as the highest and then it decreases as the speed increases until 60 kph then
it increases as the speed increases. The lower thresholds indicate that an approaching regime is
not necessary at those speeds as the driver will directly enter the following regime. The
thresholds in the middle indicate that an approaching regime is necessary for large speed
differences, but at low speed differences, the driver will directly enter the following regime. The
high thresholds indicate a necessary approaching regime except for very low speed differences.
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A video reduction of a sample of the car following periods in the higher speed ranges revealed an
interesting behavior in Driver 49 as compared to the other drivers. For the 100-110 kilometer
per hour speed range, Driver 49 tended to approach the lead vehicles and then “settle in” and
maintain that headway. This maintenance of the same headway requires Driver 49 to tap the
brakes, lightly accelerate, and hold the clutch in a very active state. The 90-100 kilometer per
hour speed range for Driver 49 exhibited similar behavior along with regular interaction with the
lead vehicle or oscillation behavior which explains the “misplaced” SDV thresholds in Figure 5
as the two different behaviors will average out.

Driver 97, in the 100-110 kilometer per hour speed range, showed regular interaction with the
lead vehicle which agrees with Figure 5. That agrees with the figure because with a higher speed
and the same reaction time, the reaction distance needed will be greater for high speeds than low
speeds.
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Figure5: Driver SDV Thresholds over the speed ranges

Figure 6 shows the positive speed difference boundary or threshold to the following regime for

¢) Driver 97 SDV Threshold

the three drivers over the speed ranges. The thresholds for Driver 49 show two clusters; the high

cluster causes a smaller following regime which indicates smaller oscillations while the lower
cluster causes a larger following regime indicating larger oscillations. The speeds with larger
oscillations are speeds 70-100 kph which means that at those speeds Driver 49 will wait to react

until the speed difference between him and the lead vehicle is greater than at other speeds. This
can almost indicate a more relaxed or distracted behavior.
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Figure6: Driver SDV2 Thresholds over the speed ranges

Figure 7 presents the negative speed difference threshold (OPDV) or boundary to the following
regime for the three drivers over the speed ranges. All of the thresholds in Figure 7 show a
relaxed or low value as compared to the positive speed difference threshold. This shows that the
drivers tend to be more responsive when approaching a lead vehicle than when falling behind a
lead vehicle. Drivers 64 and 97 exhibit a clustering behavior in the OPDV thresholds, while
Driver 49 shows more of a spread behavior. The OPDV thresholds for Driver 49 show an
increase as the speed increases until the 70-80 kph speed range. Then, the OPDV thresholds
decrease as the speed increases. The clustering of the thresholds in Driver 64 and 97 in Figure 7
indicates at which speeds the drivers are more or less responsive to falling behind the lead
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vehicle. The low OPDV thresholds indicate less responsive while the high thresholds indicate
more responsive behavior.
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Figure7: Driver OPDV Thresholds over the speed ranges

CONCLUSIONS

The results show that the thresholds of the Wiedemann model vary over the speed ranges. This
variation seems to be dependent upon the driver and thus driver profiles should be used instead
of a single parameter. The null acceleration also shows variance over the speed ranges that seem
to be driver dependent. The OPDV and SDV2 thresholds show that the drivers are more
responsive to approaching than falling behind a lead vehicle. The variances also show at which
speeds each driver exhibits aggressive behavior which adds value to the model. The inclusion of
different aggression behavior for different speeds will only improve the Wiedemann model and
make it a more realistic mimicry of the real world. As far as simulation packages are concerned,
the inclusion of the ability to change the parameters according to the speed of the vehicle would
serve to increase the accuracy of simulations. Future research is recommended in the
development and implementation of driver aggression profiles in the Wiedemann model. Also,
discovering ways to group drivers according to their profiles would potentially reduce the
number of profiles needed in order to gain a more accurate simulation of traffic flow.

ACKNOWLEDGMENT

This material is based upon work supported by the Federal Highway Administration under
Agreement No. DTFH61-09-H-00007. Any opinions, findings, and conclusions or
recommendations expressed in this publication are those of the Author(s) and do not necessarily
reflect the view of the Federal Highway Administration.

The authors would like to express thanks to Dr. C.Y. David Yang, the FHWA Agreement
Manager, for his continued support and guidance during this project. They would also like to
thank individuals at Virginia Tech and the Virginia Tech Transportation Institute who
contributed to the study in various ways: Greg Fitch, Shane MclLaughlin, Kelly Stanley and
Rebecca Olson.

21



Higgs, Abbas, and Medina

References

10.

1.
12.

13.
14.

15.

Wiedemann, R., Smulation des Srassenverkehrsflusses. Schriftenreihe des Instituts fir
Verkehrswesen der Universitit Karlsruhe, Band 8, Karlsruhe, Germany. 1974.

PTV-AG, VISSM 5.10 User Manual. 2008.

Olson, R., et al., DRIVER DISTRACTION IN COMMERCIAL VEHICLE OPERATIONS
2009, Center for Truck and Bus Safety; Virginia Tech Transportation Institute:
Blacksburg VA. p. 285.

Ranjitkar, P. and T. Nakatsuji, A TRAJECTORY BASED ANALYSS OF DRIVERS
RESPONSE IN CAR FOLLOWING STUATIONS TRB 2010 Annual Meeting CD-ROM,
2010: p. 21.

Ossen, S. and S.P. Hoogendoorn, Validity of trajectory-based calibration approach of
car-following models in presence of measurement errors. Transportation Research
Record, 2008(2088): p. 117-125.

Brackstone, M., Driver Psychological Types and Car Following:Is There a Correlation?
Results of a Pilot Sudy. 2003. p. 6.

Schultz, G.G. and L.R. Rilett, Analysis of Distribution and Calibration of Car-Following
Sensitivity Parameters in Microscopic Traffic Smulation Models. 2004: p. 11.

Panwai, S. and H. Dia, Comparative evaluation of microscopic car-following behavior.
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2005.
6(3): p. 314-325.

Siuhi, S. and M. Kaseko, PARAMETRIC STUDY OF SIIMULUSRESPONSE
BEHAVIOR FOR CAR-FOLLOWING MODELS. TRB 2010 Annual Meeting CD-ROM,
2010.

Osaki, H., Reaction and anticipation in the Car-Following Behavior. In Proceedings of
the 12 International Symposium on the Theory of Traffic Flow and Transportation, 1993.

Subranmanian, H., Estimation of Car-Following Models. Master Thesis, 1996.

Ahmed, K.I., Modeling Drivers Acceleration and Lane Changing Behavior. PhD
Dissertation, 1999.

Toledo, T., Integrating Driving Behavior. PhD Dissertation,, 2003.

Menneni, S., C.P.D. Sun, P.E., and P. Vortisch, An Integrated Microscopic and
Macroscopic Calibration for Psycho-Physical Car Following Models TRB 2009 Annual
Meeting CD-ROM 2008: p. 17.

Hoogendoorn, S. and R. Hoogendoorn, A Generic Calibration Framework for Joint
Estimation of Car Following Models using Microscopic Data. TRB 2010 Annual
Meeting CD-ROM, 2010: p. 17.

22



