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ABSTRACT  

The Indiana Department of Transportation (INDOT) prepares annual reports that identify 
intersections and segments on state roads that require attention due to the excessive number and 
severity of crashes.  Many of these identified intersections are two-way stop-controlled (TWSC) 
intersections on rural multi-lane roads with 55 or 60 mi/h speed limits.  Various road design and 
human factors may contribute to the troublesome level of safety at Indiana high-speed rural 
intersections.  Some of these safety factors have already been identified while other factors still 
await identification.  This paper looks first at past research on safety at high-speed intersections 
to learn about known safety factors and to identify proven and proposed countermeasures.  Next, 
extensive data, representing 557 Indiana TWSC intersections, are analyzed with statistical 
modeling to reevaluate some of the safety countermeasures found in the literature and to identify 
new ones. The developed trivariate ordered probit model estimates the effects of design, traffic, 
and land-use variables on crash severity and frequency at the studied intersections.  The results 
are then used to estimate the possible reduction of fatal, injury, and property damage crashes 
associated with certain modifications of intersection geometry. Our findings show that adding 
acceleration lanes, increasing the intersection angle, widening medians more than 80 feet, and 
improving the recognizability of intersections considerably contribute to improving intersection 
safety. 

Keywords: Intersections; transportation safety; countermeasures; crash reduction factors; road 
geometric improvements; Indiana. 
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INTRODUCTION  

Roadway and human factors, as well as other factors, affect the level of safety at high-speed rural 
intersections.  Past efforts to identify effective countermeasures that would successfully increase 
intersection safety have brought mixed results.  

Several sources have identified factors that contribute to crash severity and frequency on high-
speed divided highways. The factors that increase the frequency of crashes include traffic 
volume and residential and commercial development while residential and commercial 
development tends to increase the crash severity (Van Maren, 1977; Burchett et al., 2005). 
Roadway characteristics also play a significant role; intersections located on or near horizontal 
and vertical curves tend to have higher crash rates than intersections on tangent segments 
(Savolainen and Tarko, 2005; Burchett et al, 2005; Khattak et al, 2006; Van Maren, 1977). 

One main concern is that drivers on the minor roadway find it difficult to evaluate gaps between 
vehicles on the major road due to the high speed traffic and the divided roadway. Consequently, 
drivers may select an unsafe gap in the major road traffic flow when performing a turning or 
crossing maneuver (Burchett et al, 2005). Right-angle collisions, the result of selecting a gap that 
is too short, account for between 36 to 50 percent of crashes at intersections on high-speed 
divided highways, as opposed to 28 percent of crashes at intersections on other types of roads 
(Alexander et al, 2007). 

To improve safety at high-speed intersections, a number of safety countermeasures have been 
proposed, some of which have been implemented. NCHRP Report 500 summarizes these safety 
countermeasures. The countermeasures listed there have had varying degrees of success; some of 
them have been used extensively and are proven to work, while others are still in the 
experimental stages of study. 

The first step to improving safety at TWSC intersections is to provide an adequate sight distance 
for drivers on the minor road to view the approaching traffic on the major road. AASHTO (2004) 
helps determine the minimum sight distances for various traffic maneuvers at unsignalized 
intersections.  One proven countermeasure in NCHRP Report 500 is installing separate left-turn 
and right-turn lanes. These lanes allow drivers to separates themselves from the main traffic 
stream before slowing down and, in the case of a left turn, before stopping to yield to oncoming 
traffic and to turn left. This countermeasure decreases the frequency of rear-end crashes, 
especially where the through traffic on the major road is heavy. 

One concern unique to divided highway intersections is that the left-turn paths may overlap. This 
can be resolved with the use of offset left-turn lanes. The Ohio Department of Transportation 
favors their use on their rural divided highways, and Khattak et al. (2006) found that 
intersections that have offset left-turn lanes have fewer crashes than intersections that do not 
have them. NCHRP Report 650 documents a case in North Carolina where the installation of 
offset left-turn lanes resulted in a decrease in crashes at an intersection with a heavy volume of 
left turns departing the major road. However, this solution is not preferable at intersections with 
high volume traffic crossing the major road due to possible confusion among drivers about the 
yielding rules (MoDOT, 2009). 
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Another geometric improvement allows two-stage crossing or turning left from the minor road 
by providing a sufficient refuge area inside the intersection to facilitate selection of a gap in one 
traffic direction at a time. There are several ways of doing this, including widening the median, 
using indirect left-turn treatments, and adding a median acceleration lane. Van Maren (1977) 
notes that a good highway design should not force drivers to make too many decisions 
simultaneously; therefore, it is expected that a two-stage crossing of the divided highway should 
result in improved safety.  

To allow the two-stage crossing and turning left from the minor road, AASHTO (2004) 
recommends that the median be as wide as possible. It suggests that the median should be at least 
25 feet wide to accommodate a passenger car, but may need to be significantly wider (80-150 
feet) in order to store a school bus or a large truck. Not all divided highways can have an 
adequate median width because building a wide median may be cost-prohibitive at locations with 
a restricted right-of-way. One method of implementing a two-stage crossing at such locations is 
an indirect left-turn treatment (e.g., Michigan Left, Superstreet, or J-turn). Vehicles from the 
minor road, that intend to cross the major road or turn left, must turn right onto the major road 
instead and then make a U-turn at a median crossover downstream of the intersection (Levinson 
et al., 2000; Chowdbury et al., 2003). The direct left-turn movements from the major roadway 
may or may not be permitted depending on the intersection. An implementation of this treatment 
in Maryland has been extremely successful. In the three years before the implementation, there 
were 38 crashes; whereas there were only four crashes in the six years that followed the 
intersection improvement (Iowa State University, 2007; Hochstein et al., 2009; NCHRP Report 
650). 

Adding a parallel acceleration lane in the median is another way of implementing a two-stage 
left turn. This solution allows left-turning traffic to accelerate and merge in with the far-side 
traffic, similar to merging from an on-ramp to a freeway mainstream traffic (Maze et al., 2004; 
MoDOT, 2009; NCHRP Report 375; NCHRP Report 650). Parallel acceleration lanes may not 
be preferable at a four-leg intersection with heavy volumes of cross traffic if they reduce the 
median width below the minimum needed for vehicle storage. 

Other safety countermeasures do not involve geometric changes and rely on enhanced signage on 
a high-speed road that warns drivers of an upcoming intersection. Both Nebraska and Ohio have 
developed different signing practices that help enhance the conspicuity of the intersection. In a 
case study in Minnesota, conventional signage at an intersection on a rural divided highway was 
replaced with larger signs. A before-and-after analysis showed that, even though the crash rate 
increased slightly in the 2 ½ years after the signage change compared to the three years before, 
there was a significant reduction in angle crashes (NCHRP 650). Some other measures have 
included dynamic warning signs (NCHRP 500). It should be noted that the use of overhead 
flashers at an intersection may confuse some drivers (observed in driving simulator study at the 
University of Minnesota) leading to dangerous behaviors (Preston and Storm, 2003). 

A promising countermeasure is assisting drivers in selecting safe gaps in the major road traffic. 
One notable treatment is known as the Cooperative Intersection Collision Avoidance Systems-
Stop Sign Assist (CICAS-SSA) (Gorjestani et al, 2008). The system is meant to reduce the 
frequency of crashes at rural expressway intersections. CICAS-SSA uses sensing technology, a 
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computer processor, and algorithms to determine unsafe conditions. A driver interface provides 
timely alerts and warnings about these conditions. Although research results thus far have been 
encouraging, this system is still considered experimental and is undergoing further evaluation 
(NCHRP 650).  

An ultimate solution is converting an at-grade intersection into a grade separation, possibly with 
connectors for movements that must be facilitated. Although this improvement may result in the 
safest operations, it is the most expensive solution and should therefore be considered as a last 
resort option. Several partial grade separation concepts also have been developed (AASHTO, 
2004; MoDOT, 2009; Hochstein et al., 2010). 

Even though a number of authors have investigated the problem, some of these studies have been 
limited in scope, and some of the identified potential countermeasures still await in-service 
evaluation. Therefore, a systematic data-based analysis of safety at high-speed rural intersections 
focused on the impacts of road design and other factors should be beneficial.  

DATA  

The studied sample includes 557 Indiana intersections located on nine four-lane rural highway 
corridors within 36 counties and within all the six Indiana districts. The intersections included in 
the sample are two-way stop-controlled (TWSC) intersections on rural high-speed divided 
highways; and all approaches from the minor road are controlled by stop signs. 

GoogleEarth Professional software was used to identify intersections that matched the criteria: 
rural location, state route, and divided highway. These characteristics indicated that the speed 
limit on the state–administered highways was at least 45 mi/h (range between 45 and 60 mi/h). 
The aerial photography and GIS capabilities of the software assisted with collection of geometric 
information the GoogleEarth and link it with data from other sources. The data collected with  
GoogleEarth included for each intersection: 

• Number of intersection legs; 

• Median width measured between median markings; 

• Presence of a median and/or divisional islands on the crossroad; 

• Corner radii, if there was a separate right-turn bypass lane(s); 

• Intersection angle; 

• Number of separate left-turn lanes and right-turn lanes, both on the major road and the 
crossroad.  This information was also recorded for each intersection approach; 

• Presence of acceleration lanes and/or tapers on approaches from the minor road (recorded 
for each intersection approach); 

• Number of approach lanes on the minor roadway; 

• Presence of through-movement or turning restrictions on the minor roadway; 
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• Presence of closely-spaced access points or other intersections (within 300 feet) on the 
major or minor roadway; 

• Presence of railroad crossings near the intersection (within 400 feet); 

• Horizontal curvature on both the major road and the minor road, whether the intersection 
was on the curve or within close proximity to a curve, and the radii of such curves; 

• Land uses surrounding the intersection, and, additionally, whether the intersection is a 
point of access into a city or town; and 

• Whether the minor roadway was a state roadway or a local roadway. 

Relevant data such as intersection controls, advanced signage, vertical curvature, and intersection 
conspicuity could not be collected from the aerial photographs. These data were collected with 
the INDOT Video Log system.  Most of the data collected were from 2006, but some 
information was retrieved from earlier video logs.   

The Indiana Video Log allows “driving” along the roads included in the Video Log database, 
extracting the location information, and making measurements directly on the video image using 
built-in tools. Each intersection included in the study was viewed in the Video Log from each 
approach and additional data were recorded. This allowed documenting approach-specific 
conditions that might be different on a different approach; considerable differences were present 
particularly between the major and minor roadways. In some cases, opposite approaches on the 
major road were also different. For example, an intersection was recognizable when approaching 
it from one direction on the highway but not be recognizable in the other direction.  In another 
case, a considerable grade was present on one approach to the intersection while the opposite 
approach was flat. 

For each intersection approach, several more attributes were collected, as follows: 

• The presence and type of advance signage on the intersection approach.  This was 
grouped into five types: conventional guide signage, freeway-style (larger) guide signage, 
overhead signage, route number signage, and warning signage.   

• Speed limit data.  In some cases, a lower advisory speed was posted for the intersection, 
which was also noted. 

• Intersection recognizability consideration in the distance and time domains.  The 
conspicuity distance is the distance to the intersection at which there are obvious 
indications of the intersection presence. This distance was determined at each intersection 
and for both major approaches on the major road. This distance was compared with the 
stopping sight distance and decision sight distance (AASHTO, 2004), and any 
deficiencies were noted. 

• The conspicuity time is the time to reach the intersection from the point where the 
intersection is noticeable. Two conspicuity times were calculated for each major 
approach by dividing the corresponding conspicuity distance by two speeds: (1) the 
posted speed limit and (2) a constant speed of 100 ft/s (68 mi/h).  The constant speed was 
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used to check if the low intersection conspicuity under the assumption of excessive speed 
(regardless of the speed limit) was correlated with the occurrence of crashes.  

• Surface treatment, asphalt or concrete.   

• Grades and vertical curvature.  Information was collected on whether it was an upgrade 
or downgrade, whether there was a crest or sag vertical curve, and the distance of any 
vertical curve to the intersection.   

• Presence of overhead flashers at the intersection. 

The correctness of the data collected with the Google Earth and the Video Log were confirmed 
by field visits to selected locations. 

The state speed limit on rural divided highways changed on July 1, 2005, from 55 mi/h to 60 
mi/h. The video logs collected in 2004 and 2006 were viewed to check which intersections had a 
speed limit change.  It was concluded that most of the rural high-speed intersections on divided 
highways currently have the 60 mi/h speed limit. All of them had the speed limit of 55 mi/h 
before July 1, 2005.  In a few cases, however, the original speed limit of 55 mi/h was unchanged. 
Additionally, all of the intersection approaches with an original speed limit lower than 55 mi/h 
have retained the 55 mi/h speed limit and are documented in the data set. We believe that in all 
the cases of unchanged speed limits, the primary reason for keeping the original speed limits was 
a safety concern. This is an important point which will be later considered when interpreting the 
results.  

Finally, the Annual Average Daily Traffic (AADT) values were retrieved for each intersection 
from the most recent traffic flow maps on INDOT’s website. The retrieved data were adjusted 
with the growth adjustment factors to convert them to the values relevant to the years with crash 
data (2004-2007). Only the traffic volumes for the major roads were available. 

Information about crashes that happened in the 2004-2007 period at the studied intersections was 
extracted from the Indiana crash database. The severity of each crash was measured on the 
KABCO scale. The KABCO scale is an indication of the severity of each crash based on whether 
anyone involved  in the crash was killed (K); sustained incapacitating injuries (A), minor injuries 
(B), or possible injuries (C); or was uninjured (O) and property damage only occurred. The most 
severe injury sustained in a crash determines the severity of the crash.  

A total of 2,326 crashes extracted from the crash database were linked with the sample 
intersections, which were broken down by injury severity; Table 1 shows this distribution. Note 
that, following the nature of the injury-severity level of each crash and INDOT preferences, the 
fatal and incapacitating crashes are combined together (K and A); the minor and possible injury 
crashes are combined together (B and C); and non-injury/property damage only (PDO or O) 
crashes are kept separate. 
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Table 1 Crash Distribution by Injury Severity 

Crash severity 
Number 
of crashes  

Fatal (K)  
126 

Incapacitating injury (A)  
Minor injury (B)  

720 
Possible injury (C)  
Property damage only (O)  1,480 

 

STATISTICAL MODELING AND RESULTS 

The state speed limit on rural roads was changed on July1, 2005, 18 months into the study period 
with the considered crashes. The traditional year-based aggregation could not be used and we 
decided to divide the four-year period into eight six-month intervals to be able to use all of the 
available data and to study the effect of speed limit changes on crashes.  Therefore, the entire 
period of four years was divided into three six-month intervals before the speed limit change and 
five six-month intervals after the speed limit change. The 557 intersections in the sample 
generated 557x8 = 4,456 observations.  After removing observations with missing values, 4,348 
observations were used in the modeling. Our model-based statistical analysis did not detect any 
significant difference between the first and second halves of each year so the effect of 
seasonality thus could be ignored in this case. 

The observations differed by geometry, traffic, operational characteristics, and KA, BC, and 
PDO crash totals. The traditional approach to statistical modeling of safety includes modeling 
crash frequency (Lord and Mannering, 2010) and severity separately given that a crash happened 
(Savolainen et al., 2011). Our approach differs from the traditional one. We applied a trivariate 
ordered probit model that allowed us to combine estimation of the frequency and severity of 
crash in one model. Safety at an intersection is represented by a set of crash counts distributions: 
one distribution for each level of severity as shown in Table 2. There are three bins for the fatal 
and incapacitating injury (KA) crashes, six bins for the minor and possible injury (BC) crashes, 
and eight bins for the property damage only (PDO) crashes. 
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Table 2 Bins used in crash frequency/severity modeling by severity level 

Crash severity Crash count Number of 
Observations  

Fatal or incapacitating 
injury (K or A) 

0 4,230 
1 113 
2 5 

Minor or possible injury  
(B or C) 

0 3,845 
1 364 
2 93 
3 34 
4 9 

5 or more (6.00*) 3 
Property damage only 
(PDO) (O) 

0 3,464 
1 606 
2 167 
3 54 
4 27 
5 5 
6 7 

7 or more (9.50*) 18 
*Average number of crashes in the bin 

 

The multivariate ordered probit model estimated the probability of the number of crashes for 
each severity level based on the values of the explanatory variables.  Equation 1 shows the 
univariate ordered probit model formulation on which the multivariate model was based 
(Washington et al., 2011): 

��� � 0� � Φ��	
�  

��� � 1� � Φ�� � 	
� �  Φ�	
�  

��� � 2� � Φ��� � 	
� �  Φ�� � 	
� (1) 
…  

��� � �� �  1 � Φ���� � 	
�  
Where: 

P�y=i�  is the probability of number of crashes falling into crash bin i (i is equal to the 
number of crashes except the last bin, see Table 2), 

Φ is the cumulative normal distribution,  

µi is the threshold, and  
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ββββXXXX is the product of the vectors of the estimated coefficients and the explanatory 
variables plus the error term, as shown in Equation 2: 

	
 � �� � � ���� � ε

�

��
 

 
(2) 

Xi represents explanatory variable i, and βi represents the corresponding coefficient.  The ε 
~N(0,1)  represents the error term of the model. The multivariate ordered probit model differs 
from the univariate in that it accounts for cross-equation error correlation between the levels of 
injury severity. 

The model was estimated with SAS software (SAS, 2007). Initially, all of the explanatory 
variables were included in the model for estimation; and based on the results, the model was 
further refined depending on whether or not a variable was significant.  Some variables included 
in the analysis were collinear or nearly collinear with each other.  In such cases, the model was 
estimated with each variable separately and the variable that provided the best overall fit was 
kept in the final model. Tables 3, 4, and 5 present the obtained results. The final model includes 
only statically significant variables. An explanatory variable was considered to be statistically 
significant if the t-statistic was at least 1.6 (the p-value was less than 0.10).  

 

Table 3 Parameter Estimates from SAS Multivariate Ordered Probit Model - fatal and 
incapacitating injury (K and A) crashes 
 

Variable Description Coef. Standard 
error 

t-stat. p-
value 

KAcr.Intercept Intercept -2.3461 0.1390 -16.87 <.0001 

KAcr.INDOTrd 
1 if minor road administered by 
INDOT, 0 otherwise 

0.5765 0.1341 4.30 <.0001 

KAcr.Popul 
Population of city/town within 6 miles 
along minor road (scaled by 100,000) 

1.7354 0.4343 4.00 <.0001 

KAcr.LTB 
1 if left-turn bays on major road, 
0 otherwise 

0.4678 0.1434 3.26 0.0011 

KAcr.CommLU 1 if commercial area, 0 otherwise 0.3129 0.1351 2.32 0.0206 
KAcr.TInt 1 if three-leg intersection, 0 otherwise. -0.1819 0.1049 -1.73 0.0829 

KAcr.RTacl 
1 if parallel right-turn acceleration lane on 
major road, 0 otherwise 

-0.4557 0.2634 -1.73 0.0836 

KAcr.MjCrv 
1 if horizontal curve on major road, 
0 otherwise 

-0.1717 0.0994 -1.73 0.0841 

KACr.Limit1 Limit between 0 and 1 BC crashes  0.0000 Fixed   
KACr.Limit2 Limit between 1 and 2 BC crashes 1.1214 0.1254 8.94 <.0001 
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Table 4 Parameter Estimates from SAS Multivariate Ordered Probit Model - minor and possible 
injury (B and C) crashes  
 

Variable Description Coef. Standard 
error t-stat. p-

value 
BCcr.Intercept Intercept -1.9252 0.0858 -22.44 <.0001 

BCcr.AADT 
Average Annual Daily Traffic (AADT) on 
major road (scaled by 10,000) 

0.1476 0.0358 4.12 <.0001 

BCcr.INDOTrd 
1 if minor road administered by 
INDOT, 0 otherwise 

0.7134 0.0961 7.43 <.0001 

BCcr.Popul 
Population of city/town within 6 miles 
along minor road (scaled by 100,000) 

1.4826 0.3388 4.38 <.0001 

BCcr.LTB 
1 if left-turn bays on major road, 
0 otherwise 

0.5395 0.0844 6.39 <.0001 

BCcr.ResidLU 1 if residential area, 0 otherwise 0.1413 0.0529 2.67 0.0076 
BCcr.CommLU 1 if commercial area, 0 otherwise 0.3102 0.0880 3.52 0.0004 

BCcr.TInt 1 if three-leg intersection, 0 otherwise. -0.1196 0.0604 -1.98 0.0477 

BCcr.SchlChLU 
1 if school or church near intersection , 
0 otherwise 

0.4212 0.2050 2.05 0.0399 

BCcr.RXRmaj 
1 if railway crossing on major road, 
0 otherwise 

0.4360 0.2509 1.74 0.0823 

BCcr.MedGT80 1 if median wider than 80 feet, 0 otherwise -0.4240 0.2212 -1.92 0.0553 

BCcr.LTacl 
1 if parallel left-turn acceleration lane on 
major road, 0 otherwise 

-0.2297 0.0946 -2.43 0.0152 

BCcr.MjCrv 
1 if horizontal curve on major road, 
0 otherwise 

-0.1453 0.0596 -2.44 0.0147 

BCCr.Limit1 Limit between 0 and 1 BC crashes  0.0000 Fixed   
BCcr.Limit2 Limit between 1 and 2 BC crashes 0.7131 0.0352 20.27 <.0001 
BCcr.Limit3 Limit between 2 and 3 BC crashes 1.2270 0.0581 21.12 <.0001 
BCcr.Limit4 Limit between 3 and 4 BC crashes 1.7496 0.1003 17.45 <.0001 
BCcr .Limit5 Limit between 4 and 5+ BC crashes 2.2009 0.1724 12.76 <.0001 
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Table 5 Parameter Estimates from SAS Multivariate Ordered Probit Model – property damage 
only (PDO) crashes  
 

Variable 
description Description Coef. Standard 

error t-stat. p-
value 

PDOcr.Intercept Intercept -1.5609 0.0740 -21.08 <.0001 

PDOcr.AADT 
Average Annual Daily Traffic (AADT) on 
major road (scaled by 10,000) 

0.2604 0.0314 8.28 <.0001 

PDOcr.INDOTrd 
1 if minor road administered by 
INDOT, 0 otherwise 

0.8392 0.0882 9.52 <.0001 

PDOcr.Popul 
Population of city/town within 6 miles 
along minor road (scaled by 100,000) 

1.5065 0.3144 4.79 <.0001 

PDOcr.LTB 
1 if left-turn bays on major road, 
0 otherwise 

0.3376 0.0735 4.59 <.0001 

PDOcr.RTB 
1 if right-turn bays on major road, 
0 otherwise 

0.2163 0.0610 3.54 0.0004 

PDOcr.CommLU 1 if commercial area, 0 otherwise 0.2660 0.0787 3.38 0.0007 
PDOcr.TInt 1 if three-leg intersection, 0 otherwise. -0.1873 0.0528 -3.55 0.0004 

PDOcr.ang75a90 
1 if intersection angle between 75 and 90 
degrees, 0 otherwise 

-0.1047 0.0482 -2.17 0.03 

PDOcr.Any12sdf  0.1523 0.0456 3.34 0.0008 
PDOcr.MedGT80 1 if median wider than 80 feet, 0 otherwise -0.5986 0.2060 -2.91 0.0037 

PDOcr.LTacl 
1 if parallel left-turn acceleration lane on 
major road, 0 otherwise 

-0.1937 0.0819 -2.37 0.018 

PDOcr.RTtpr 
1 if tapered right-turn acceleration lane, 0 
otherwise  

-0.1803 0.0539 -3.35 0.0008 

PDOcr.MjCrv 
1 if horizontal curve on major road, 
0 otherwise 

-0.1478 0.0518 -2.85 0.0043 

PDOcr.Limit1 Limit between 0 and 1 PDO crashes  0.0000 Fixed   
PDOcr.Limit2 Limit between 1 and 2 PDO crashes 0.7460 0.0280 26.68 <.0001 
PDOcr.Limit3 Limit between 2 and 3 PDO crashes 1.2166 0.0419 29.01 <.0001 
PDOcr.Limit4 Limit between 3 and 4 PDO crashes 1.5284 0.0549 27.83 <.0001 
PDOcr.Limit5 Limit between 4 and 5 PDO crashes 1.7985 0.0704 25.53 <.0001 
PDOcr.Limit6 Limit between 5 and 6 PDO crashes 1.8703 0.0755 24.76 <.0001 
PDOcr.Limit7 Limit between 6 and 7+ PDO crashes 1.9942 0.0855 23.31 <.0001 

 

The errors terms of the three latent variables of the ordered probit models were found to be 
significantly correlated with each other (Table 6). This result justified the use of the trivariate 
version of the ordered probit model. 
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Table 6 Correlation coefficients of the error terms ε 

Correlation Coefficient Coefficient Standard 
error t-stat. p-value 

Rho.KAcr.BCcr 0.3770 0.0458 8.24 <.0001 
Rho.KAcr.PDOcr 0.3260 0.0437 7.45 <.0001 
Rho.BCcr.PDOcr 0.4664 0.0254 18.34 <.0001 

 

The final model was used to estimate the expected number of crashes at each level of crash 
severity. A sensitivity analysis of the expected number of crashes was conducted to investigate 
the impact of the identified safety factors.  

Results 

The following intersection attributes were found to be associated with the increased frequency of 
crashes in the various severity levels: 

• Heavy traffic (AADT) on the major roadway; 
• The minor roadway administered by state (intersection complexity and higher volumes); 
• Considerable population (villages and towns) along the minor roadway and within six 

miles of the intersection (substitute for traffic volume on the minor road); 
• Left-turn bays on the major roadway (substitute for considerable left-turn volumes); 
• Right-turn bays on the major roadway (substitute for considerable right-turn volumes); 
• Residential development present in the direct neighborhood of the intersection;  
• Commercial development present  in the direct neighborhood of the intersection;  
• Schools or churches present in the direct neighborhood of the intersection; 
• At-grade railroad crossings on the major roadway near the intersection; and 
• Limited intersection conspicuity to drivers on the major roadway. 

 
The following intersection attributes were found to be associated the reduced frequency of 
crashes: 

• Left-turn parallel acceleration lanes on the major roadway; 
• Right-turn parallel acceleration lanes on the major roadway; 
• Close to normal intersection angle (within 75 - 90 degrees) 
• Median at least 80 feet wide; 
• Minor road terminating at the intersection (T-intersection); and 
• Horizontal curvature on the major roadway. 

 
As the major road traffic increases along the major road, there is also an increase in crashes 
because of the increased difficulty for minor road traffic to find suitable gaps, which has been 
confirmed with many other studies (NCHRP Report 650; Savolainen and Tarko, 2005; Burchett 
et al., 2005; and many others). 
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Traffic volumes on minor roads, most of which are local roads, were not available. Several 
variables were used as proxy variables to measure this effect. These variables included the 
presence of residential and/or commercial land uses around the intersection, the presence of a 
city or town along the minor road, the population of the city or town, and whether the minor road 
was under INDOT jurisdiction (U.S. or state route). All of these factors are associated with the 
increased traffic and turning movements from crossing roads and, not surprisingly, all of these 
factors increase the estimated frequency of crashes. In particular, the increase in crashes was the 
strongest with the presence of commercial land uses at the intersection. The presence of a city or 
town accessible via the intersection also led to an increase in crashes, with the effect growing 
stronger as the population increased. 

The model shows that the presence of left-turn lanes was associated with an increase in the 
number of crashes, which is due to left-turn bays tending to be present at intersections with 
considerable left-turning traffic. As left-turn volumes were not available, the presence of left-turn 
bays were considered as a substitute for left-turning volumes and higher exposure to crashes. 
Apparently, the exposure effect of turning volumes is stronger than the possibly positive effect of 
turning bays. 
 
A similar result was obtained with the presence of right-turn bays, with their presence also 
associated with more crashes. Here again, this is only indicative of heavier volumes of right-turn 
traffic, since right-turn bays are only installed where the need exists. However, the effect was not 
as strong and was only significant for the PDO crashes.  

The presence of a railroad crossing at the intersections was associated with a higher frequency of 
crashes. Railroad crossings disrupt traffic on a roadway, and queues sometimes may impact a 
nearby intersection.  

Poor intersection recognizability may lead to an increase in PDO crash frequency (no significant 
effect detected for more severe crashes). At intersections that are not recognizable to drivers on 
the major road, there is an increased risk of a surprise should another driver on the minor 
roadway enter the intersection.  Additionally, if a driver who intends to leave the major roadway 
at the intersection does not know the intersection location in advance, he or she may be forced to 
brake abruptly and to create a hazard. 

Three-leg intersections were found to have fewer crashes at all levels of severity than four-leg 
intersections. This is intuitive because there are fewer turning conflicts and no crossing conflicts 
at a three-leg intersection than at a four-leg intersection. 

The presence of a median acceleration lane for left turns was found to be associated with 
considerably fewer crashes than at other locations. This lane allows drivers turning left from the 
minor road, after crossing the near-side traffic stream, to accelerate and then merge onto the 
highway into the far-side traffic stream. It permits a two-stage left turn, even with a narrow 
median. The expected effect was a reduction in angle crashes because the need to select a gap in 
the far side of the highway traffic is mitigated. It also allows more space for evasive maneuvers. 
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The effect of median acceleration lanes on intersection safety performance is considerable.  This 
effect was tested in combination with other factors (AADT on major road, presence of left-turn 
bays on major road, crashes related to each highway corridor, and crashes related to the six 
different INDOT districts) to determine which of these factors had a stronger impact than the 
median acceleration lanes on crashes.  No other significant factors could be found.  These tests 
have strengthened the evidence that median acceleration lanes have a strong positive impact on 
safety. 

The presence of right-turn acceleration lanes on the major roadway was found to significantly 
reduce KA crashes.  This countermeasure can be expected to reduce angle crashes because it 
reduces the speed difference between the vehicles on the major road and the vehicles merging to 
this road.   

Intersections with 75- to 90-degree angles were also found to reduce PDO crashes, which is in 
line with the AASHTO (2004) recommendation to avoid building intersections with a severe 
skew angle.  AASHTO (2004) recommend using intersection angles as close to 90 degrees as 
possible and avoiding angles less than 60 degrees.   

Intersections with at least 80 feet wide medians experience fewer BC and PDO crashes.  A wider 
median makes it easier for larger vehicles to make two-stage crossings.  With a wider median, 
drivers will be more confident that they can cross the first half of the divided highway and be 
able to safely wait for gaps in the far-side traffic before completing the crossing maneuver (or 
left turn). 

The intersections with reduced speed limits of 45 and 50 mi/h, as well as a number of 
intersections with a speed limit of 55 mi/h, had no speed limit increase on July 1, 2005. A 
separate analysis focused on the speed limit effects. A cross-sectional analysis was hampered by 
the endogeneity of the speed limit variable. Speed limits are posted on road sections in response 
to the safety concerns of engineers or road users. Speed limits might improve safety only 
partially and such locations with speed limits tend to be more dangerous than others.  We 
decided not to include the speed limit variable to the discussed here model because of the 
mentioned endogeneity issues.  

The effect of increasing the statewide speed limit on traffic safety was evaluated by using a sub-
sample of the intersections where the speed limit had been increased from 55 mi/h to 60 mi/h. No 
significant safety effect, negative nor positive, could be detected. It is possible that the speed 
limit increase matched the speed behavior already present on the road (i.e., drivers most likely 
drove faster than 55 mi/h before the change in the speed limit). If the effect of changing speed 
limits is reversible and reducing a speed limit does not change safety, this would prompt careful 
consideration of speed limits as safety countermeasures. The tendency of lower safety at the 
intersections with reduced speed limits observed in our sample supports the concern about the 
low effectiveness of speed limits in improving safety. If used, a speed limit reduction should be 
accompanied by aggressive and routine police enforcement.    

In our sample, nearly half of the intersections were located on a horizontal curve or at a distance 
less than 1,500 ft. These intersections were associated with the lower frequencies of PDO 
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crashes. No effect on more severe crashes was detected, which was a surprising result. 
Horizontal curves increase the complexity of driving and can make an evasive maneuver on a 
major road more difficult. Furthermore, assessing gaps between vehicles moving along a curved 
road may be more difficult for drivers stopped on the minor road (Burchett and Maze, 2005; 
NCHRP Report 650).  It has been concluded in past research that considerably superelevated 
roads on horizontal curves have a negative impact on intersection safety (Savolainen and Tarko, 
2004). Our result is difficult to explain from the crash causality point of view. It could be the 
effect of a complex interplay between the variables in the sample and a potential omission of 
other variables. This interpretation is supported by the lack of association between the horizontal 
curve presence and the intersection safety in the sample with removed low speed limits (used to 
evaluate the increase of the statewide speed limit).  

 

RECOMMENDATIONS FOR IMPROVING SAFETY  

Based on the results of the modeling results and on the literature, the following recommendations 
are made to improve safety on both new and existing high-speed divided highways. 

New Construction 

The recommendations for new construction are as follows: 

Design the intersection angle at 75 to 90 degrees. The Indiana study indicates a 20% reduction in 
crashes at intersection angles at 75 to 90 degrees than intersections more skewed. 

Consider J-turns (or median U-turns) at intersections to allow a two-stage crossing. The J-turn is 
recommended where major-road left turns are relatively high; the U-turns may be a good choice 
with weaker turning volume. 

Design left-turn and right-turn bays at intersections. NCHRP Report 500 reports a clear safety 
benefit to providing a dedicated lane for turning vehicles to decelerate away from the through 
traffic. 

Design the median at least 80 feet wide in the intersection area. The Indiana study indicates that 
there are far fewer crashes with medians that are at least 80 feet wide than with narrower 
medians. Wider medians allow better opportunities to make a two-stage crossing. 

Limit intersections to three legs if possible if the median cannot be at least 80 feet wide. The 
Indiana study has demonstrated that three-leg intersections are safer than four-leg intersections 
because of a lack of crossing traffic and fewer conflicts. Converting a four-leg intersection to two 
three-leg intersections requires additional analysis because short spacing between the new 
intersections may cause additional crashes.    

Consider left-turn acceleration lanes in the median to reduce the difference in speed between the 
vehicles merging after turning left and the through traffic along the major road. 
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Avoid locating intersections near horizontal curves. This study agrees with other studies that 
intersections near horizontal curves experience more crashes than intersections on tangent 
segments. 

Avoid locating intersections near railroad crossings. The negative effect was shown in this 
research. Although it should be confirmed with a larger study, it would be prudent to follow this 
recommendation if it is not cost-prohibitive. 

Existing intersections 

Recommendations for improving safety at existing intersections are as follows: 

Convert direct left turns to indirect left turns. This change can be completed by closing off the 
median and adding U-turns in the median, which will reduce the conflicts in the median and 
facilitate a two-stage crossing. 

Add parallel acceleration lanes in the median This study and other studies show some safety 
benefits with a median acceleration lane because left-turning traffic can enter the far side of the 
divided highway more easily. However, it will not resolve a crash problem with cross traffic. 

Add larger signage to make the intersection more conspicuous, which was shown by this study 
and other studies to have safety benefits. 

Add lighting, particularly if the majority of crashes occur at night. 

 

CONCLUSIONS AND SUMMARY 

The Indiana Five Percent Reports over the past several years identified a safety problem 
concerning at-grade intersections on high-speed divided highways.  The current paper identified 
factors that tend to increase the frequency and severity of crashes at these intersections and 
countermeasures that can be used to improve safety. 

The safety recommendations of this research were based on both a literature synthesis and a 
statistical analysis of 557 existing intersections in Indiana and 72 existing intersections in 
Michigan.  Statistical analysis was performed in order to identify what factors tend to increase 
the frequency and severity of crashes at existing intersections.  The literature review aimed to 
identify existing design guidelines at high-speed rural intersections, as well as the experiences of 
other states in terms of their crash experience, in order to recommend several promising 
countermeasures that could be implemented.   

A number of factors were identified as causes of increases in the likelihood of crashes at the 
three severity levels: increased turning traffic (using the presence or absence of left and right-
turn bays as a surrogate measure); horizontal curves within the intersection area; traffic volumes 
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at the intersection on both the major and the minor roads (using surrogate measures for the minor 
road the land use, population of the areas immediately surrounding the study location, and the 
road functional class); at-grade railroad crossings in the intersection area; and lack of 
conspicuity.  On the other hand, acceleration lanes for both left and right turns, increased median 
width, an intersection angle that is close to perpendicular, and the presence of three legs (instead 
of four) at the intersection (determined indirectly using various surrogate measures) were all 
factors found to decrease the likelihood of crashes in the severity categories.  These results are in 
line with other research results as documented in the literature review. 

Based on the results of this research and other studies, the following recommendations are made 
to improve safety at new intersections as well as at existing intersections.  For new intersections, 
constructing wide medians is suggested; in cases where this is not possible and a narrow median 
needs to be constructed, reducing the legs of the intersection to three is suggested.  It is also 
suggested that intersections be placed away from horizontal curves and at-grade railroad 
crossings.  At existing intersections, closing off the median or restricting certain maneuvers is 
suggested. Median acceleration lanes can be added as well in order to provide for a two-stage 
crossing or left-turn maneuvers.  Enhanced guide and warning signage can be used to improve 
conspicuity; and adding illumination can especially can help at night.  The practice of adding 
left- and right-turn bays should be continued as this countermeasure has been proven to make 
intersections safer.  All of these countermeasures can help improve safety without having to 
build grade separations, which should be used only when absolutely necessary due to the 
associated high costs to both the roadway agency and the traveling public. 

The median acceleration lane, the J-turn (indirect left turn), U-turns, and the enhanced guide 
signage are all recommended for further study. 
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