Crash Event Modeling Approach for Dynamic Traffic Assignment

Jay Przybyla
Jeffrey Taylor
Dr. Xuesong Zhou
Dr. Richard Porter

4th Transportation Research Board Conference on Innovations in Travel Modeling (ITM)
Tampa, Florida
April 30th, 2012

FHWA Planning BAA Project: Open-source DTA Tools for Assessing the Effects of Pricing and Crash Reduction Strategies
• Why model crashes?
• How to model crashes?
 – Crash prediction
 – Simulation tools
 – Safety improvement strategies
• Working example with “Road Diet”
• Modeling complications, limitations
Why Model Crashes?

- How to capture effects of traffic incidents in traffic assignment? (DTA)
- How to enable system-wide or network-wide safety planning?

Sources of Congestion:
- Bottlenecks
- Traffic Incidents
- Work Zones
- Bad Weather
- Poor Signal Timing
- Special Events/Other
Safety Planning Applications

• Incorporating safety in transportation planning
 – Transportation Improvement Plans
 – Implemented by state DOTs & MPOs

• Highway Safety Manual
 – Static crash predictions

• Safety Surrogates
 – Microsimulation
 – Conflicts, speed, etc.

• Hot Spot Analysis

Incident rates predicted based on AADT
Source: WFRC (MPO in Salt Lake City, UT)
How to Model Crashes?

Crash Prediction

Simulation Tools

Safety Improvements
Crash Prediction

- Predict crash frequency (using AADT, V/C, etc.)
 - Highway Safety Manual methodology
Analytical / Simulation Methods

- Option 1: Average Capacity Reduction
- Option 2: Probabilistic Capacity Reduction
- Option 3: Incident Calendar
- Option 4: Hybrid Approach
Option 1: Avg. Capacity Reduction

- Crashes have same average capacity reduction

- Pros: Pre-set capacity reduction for each iteration

- Cons: Simplistic traffic results, cannot capture day-to-day traffic variations
Option 2: Prob. Capacity Reduction

• Analytical point-queue model
 – Can’t capture queue spillback
How to Correctly Model Travel Time Impacts?

• Approach 1: Probabilistic analytical model

$$\text{Avg TT} = \text{Crash prob.} \times \text{Crash TT} + (1-\text{prob.}) \times \text{Link TT}$$

$$22\text{min} = 20\% \times 30\text{ min} + 80\% \times 20\text{ min}$$

• Approach 2: Simulation to capture queue spillback
Option 3: Crash Calendar

- **Pros:** captures impacts of different event types over multiple days
- **Cons:** Numerically intensive, sampling errors

<table>
<thead>
<tr>
<th>Incident No.</th>
<th>Starting Time</th>
<th>Incident Duration (min)</th>
<th>Capacity Reduction Ratio</th>
<th>Additional Delay (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Day 1@ 8AM</td>
<td>30</td>
<td>0.3</td>
<td>10.0</td>
</tr>
<tr>
<td>2</td>
<td>Day 12 @8:30AM</td>
<td>30</td>
<td>0.23</td>
<td>6.9</td>
</tr>
<tr>
<td>3</td>
<td>Day 15@ 7AM</td>
<td>30</td>
<td>0.13</td>
<td>3.81</td>
</tr>
<tr>
<td>4</td>
<td>Day 15@ 9AM</td>
<td>15</td>
<td>0.12</td>
<td>1.84</td>
</tr>
<tr>
<td>5</td>
<td>Day 20@ 8AM</td>
<td>15</td>
<td>0.07</td>
<td>1.12</td>
</tr>
</tbody>
</table>
Option 4: Hybrid Analytical/Simulation

Long-term traffic equilibrium

Without Incident
Use light-weight DTA to simulate recurring traffic congestion

With Incident
Evaluate the probabilistic impact of traffic incidents based on queueing model
Selecting Simulation Option

• Trade-offs between event modeling approaches:
 1. Different resolutions lead to different degrees of modeling accuracy
 2. Requires balance between data availability, output uncertainty/accuracy and computational effort
Safety Improvements

• Safety Improvement Strategy Evaluation
 – Improve geometric design (crash prob.)
 – Incident management/response (capacity)
 – Real-time incident information

• Road Diet Example
Road Diet Example Application
Step 1: Traffic Volume Calibration

- Crash prediction from AADT – calibrate first
Step 1: Traffic Volume Calibration
Treatment Results Comparison
(Expected # Crashes/Year)

<table>
<thead>
<tr>
<th>Street</th>
<th>From</th>
<th>To</th>
<th>Est. AADT</th>
<th>Length (mi)</th>
<th>Base Case</th>
<th>Treatment Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>158th Ave</td>
<td>Jenkins</td>
<td>Walker</td>
<td>23,240</td>
<td>1.35</td>
<td>20.1</td>
<td>22.2</td>
</tr>
<tr>
<td>Murray Ave.</td>
<td>Jenkins</td>
<td>Walker</td>
<td>25,520</td>
<td>1.05</td>
<td>18.5</td>
<td>18.6</td>
</tr>
<tr>
<td>Jenkins Rd.</td>
<td>158th Ave</td>
<td>Murray</td>
<td>15,980</td>
<td>1.49</td>
<td>22.6</td>
<td>18.6</td>
</tr>
<tr>
<td>Walker Rd.</td>
<td>158th Ave</td>
<td>Murray</td>
<td>19,680</td>
<td>1.94</td>
<td>14.2</td>
<td>19.0</td>
</tr>
<tr>
<td>Jay St.</td>
<td>158th Ave</td>
<td>Jenkins</td>
<td>13,650</td>
<td>1.14</td>
<td>5.0</td>
<td>6.7</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80.4</td>
<td>85.1</td>
</tr>
</tbody>
</table>

Why did crashes increase?
Estimated AADT Comparison

<table>
<thead>
<tr>
<th>Street</th>
<th>From</th>
<th>To</th>
<th>Base Case</th>
<th>Treatment Case</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>158th Ave</td>
<td>Jenkins</td>
<td>Walker</td>
<td>21,560</td>
<td>23,240</td>
<td>1680</td>
</tr>
<tr>
<td>Murray Ave.</td>
<td>Jenkins</td>
<td>Walker</td>
<td>25,300</td>
<td>25,520</td>
<td>220</td>
</tr>
<tr>
<td>Jenkins Rd.</td>
<td>158th Ave</td>
<td>Murray</td>
<td>17,080</td>
<td>15,980</td>
<td>-1100</td>
</tr>
<tr>
<td>Walker Rd.</td>
<td>158th Ave</td>
<td>Murray</td>
<td>19,020</td>
<td>19,680</td>
<td>660</td>
</tr>
<tr>
<td>Jay St.</td>
<td>158th Ave</td>
<td>Jenkins</td>
<td>11,890</td>
<td>13,650</td>
<td>1760</td>
</tr>
</tbody>
</table>
Output Visualization: Crash Heat Map
Modeling Complications, Limitations
Levels of Detail:

Planning: One-way link, one-way volumes

Safety: Two-way link, two-way volumes

Issue: Center divider = different prediction equations
Network Structure/Topology

- Omitted intersections
- Intersection definitions
- Zonal connectors influence traffic volumes
Calibration/Validation
Crash Calendar: Time Resolution

• Operations: Peak period, #N modeling periods
• Safety: Annual crash frequency

- Crashes are rare events
 - How can we simulate their occurrence?

- 20 Crashes/Year
- 0.05 Crashes/Day
- 0.01 Crashes/Peak Period
Can we find crash rate equilibrium (long run-times)? How many “days” do we need to simulate?
Summary

• Why Model Crashes?
• Crash Prediction
 – Network compatibility
• Simulation Tools (Hybrid Method)
 – Balance trade offs between approaches
• Safety Improvement Strategy Evaluation