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Overview of the proposed approach 

Time-dependent origin-destination (OD) demand matrices are fundamental inputs for 

dynamic traffic assignment (DTA) models to describe network flow evolution as a result of 

interactions of individual travelers. In the past decades, a rich body of literature, to be presented 

as follows, has been devoted to the methods of estimating static or time-dependent OD demand 

tables (e.g., Yang et al., 1992; Florian and Chen, 1995; Cascetta et al., 1993; Tavana, 2001; Zhou 

et al., 2003; Zhou and Mahmassani, 2006; Yang, 1995; Balakrishna et al., 2008; Cipriani et al., 

2011; Bell et al., 1997; Sherali and Park, 2011; Nie and Zhang; 2008; Nie and Zhang, 2010; Qian 

and Zhang, 2011; Shen and Wynter, 2011). However, time-dependent OD demand estimation, 

particularly under congested conditions, remains a critical and challenging problem that is 

attracting significant attention from transportation researchers to develop theoretically sound and 

practically deployable approaches.  

The contributions of this study to the growing body of literature on dynamic OD demand 

estimation are as follows. 

 Instead of working on the commonly-used OD flow variables, this study presents a new 

path flow-based optimization model for jointly solving the complex OD demand estimation and 

UE DTA problems. Specifically, this model simultaneously minimizes (i) the deviation between 

measured and estimated traffic states, and (ii) the deviation between aggregated path flows and 

target OD flows, subject to a dynamic user equilibrium (DUE) constraint, which is reformulated 

using an equivalent gap function. Working in this path-flow dimension, our formulation can 
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directly aggregate estimated path flows to obtain final OD flow patterns, and obviate explicit 

dynamic link-path incidences, as opposed to the majority of previous studies. 

 By dualizing the difficult DUE constraint into the objective function, this research 

proposes an effective Lagrangian relaxation-based solution framework. The relaxed problem can 

be viewed as a simultaneous route and departure time user equilibrium (SRDUE) problem with 

elastic demand, and the final solution is a set of path flow patterns satisfying “tolled user 

equilibrium” (Lawphongpanich and Hearn, 2004), where the deviation with respect to traffic 

measurements can be viewed as an additional penalty for over-estimated or under-estimated path 

flows. By incorporating heterogeneous real-world measurements in the objective function, such 

as link densities from video surveillance and road side detectors and link travel times from 

Bluetooth readings, the proposed estimation model fully utilizes available information to reflect 

route choices in a congestion network. 

 A dynamic network loading (DNL) model that encapsulates Newell’s simplified KW 

model in a mesoscopic traffic flow simulation framework is proposed to describe congestion 

phenomena, such as queues formation, spillback, and dissipation. Explicitly using the cumulative 

arrival and departure curves, Newell’s traffic flow model provides a rigorous mathematical 

formulation to realistically represent traffic dynamics and capture the impact of shock waves on 

various macroscopic traffic measures. Compared to standard partial differential equations (PDE)-

based DNL models that subdivide a long link into segments with a shorter length, Newell’s 

model can handle reasonably long links with homogeneous capacity, and its simple form and 

computational efficiency make it appealing in developing dynamic OD estimation algorithms. 

 Based on the proposed DNL model, this research derives analytical, local gradients of 

different measurement types, such as link flow, density and travel time, with respect to path 

flows. This valuable gradient information not only considers the dependences of link 

flow/density/travel time changes on the OD/path flow, but also allows for computing feasible 

descent directions in an efficient gradient-projection-based method embedded in the Lagrangian 

relaxation-based solution framework.  

Single-level path flow estimation framework  

Given sensor data (i.e. observed link flows, densities, and travel times) and target 

(aggregated historical) OD demand, the proposed single-level path flow estimation model is a 

nonlinear optimization model with path flows as decision variables. Final OD demand estimates 
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can be constructed by summing up path flows for each OD pair. To construct a tractable single-

level nonlinear optimization model, we first consider the DUE gap function as a side constraint 

(Lu et al., 2009), and dualize this constraint to the GLS-based objective function with a Lagrange 

multiplier. The resulting Lagrangian relaxation model is solved by a column-generation-based 

algorithmic framework consisting of a gradient-projection-based descent direction algorithm for 

updating path flows, a mesoscopic DNL model for evaluating link and network performances, 

and a time-dependent least time path (TDLTP) algorithm for generating paths. 

 

Fig. 1 Flowchart of the time-dependent path flow estimation algorithm 

The algorithmic steps of solving the Lagrangian relaxation reformulation are presented in 

Fig. 1. The basic idea is to iteratively solve a Lagrangian lower bound problem using the 

gradient-projection-based descent direction method, and update the Lagrange multiplier using a 

subgradient method, until reaching an optimal path flow vector that can both fit the time-varying 

observation data and satisfy the DUE conditions (i.e., minimize the gap function). To circumvent 

the difficulty of path enumeration, the time-dependent least time path (TDLTP) algorithm, 

… 
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developed by Ziliaskouplas and Mahmassani (1993), is employed to generate new paths in each 

outer loop iteration n. 

Evaluation of partial derivatives with respect to path flow perturbation  

Solving the proposed single-level dynamic OD estimation model requires the evaluation of 

the partial derivatives with respect to time-varying path flows. These partial derivatives represent 

the marginal effects of an additional unit of path inflow on link (i.e., link flow, density, and travel 

time) and path performances (i.e., path travel time).  

Evaluation of link partial derivatives on a congested link  

In this study, link partial derivative is referred to as the change in link flow, density, or 

travel time, due to an additional unit of link/path inflow. For instance, the link travel time 

derivative is the travel time contribution of an additional unit of flow on link l at time ′  to the 

link travel time , , where ′  is in time interval t. Ghali and Smith (1995) presented an 

analytical approach to evaluate the (local) link marginal travel time (or delay) on a congested 

link, based on link cumulative flow curves. An illustration of the approach is depicted in Fig. . 

The key result of their approach is that the link marginal delay equals the grey area.  

 

Fig. 2 Illustration of link marginal delay on a congested link 

The following propositions can be induced from Fig.  for deriving the marginal effects on 

link flow (inflow and outflow), density, and travel time.  

Proposition 1: Under free-flow conditions, an extra unit of flow arriving at the upstream end of 

link l at time ′  results in the following: (i) the link inflow and outflow increase by 1 at times ′  

and ′′, respectively, and the flow rates at the other time intervals do not change; (ii) the link 

density increases by 1 from ′  to ′′; (iii) the individual travel times are not changed, and ′′
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Proposition 2: Under partially congested conditions and constant link (outflow) capacity c, an 

extra unit of flow arriving at the upstream end of link l at time ′  results in the following: (i) the 

link inflow and outflow increase by 1 at times ′  and , respectively, and the flow rates at the 

other time intervals do not change; (ii) the link density increases by 1 from ′  to ; (iii) the 

flows arriving between ′  and  experience the additional delay 1/c, because it takes 1/c to 

discharge this perturbation flow.  

Proposition 3: If the perturbation flow arrives at the upstream end of link when it is fully 

congested, then the link flow and density will remain the same at the maximum flow rate, 

respectively, and then increase by 1 when the link becomes partially congested.  

A common pitfall for deriving the partial derivative of link density, under congested 

conditions, is to record the increase in density by 1 from ′  to ′′. Proposition 2, induced from 

Fig. , clarifies that the actual change in link density would last until the queue vanishes at time . 

Proposition 2 also indicates that the change in link outflow, due to an extra unit of flow arriving 

under congested conditions, occurs at the time , rather than ′′.  

Evaluation of the impact of path flow perturbation on two sequential links 

We evaluate the impact of path flow perturbation (i.e., partial derivatives) in the individual 

link-time level by tracing the changes in link flow, density, and travel time on a sequence of links 

(or a path) and over different time intervals, due to the addition of unit path flow. Qian and 

Zhang (2011) conducted a similar analysis for individual path marginal travel times.  

Firstly, consider a freeway or an arterial segment with two sequential links, without merges 

and diverges, say link l1 and link l. Under congested conditions, there are three basic cases of 

interest, when the additional unit of flow arrives at this segment. 

(i) There is a bottleneck on the downstream link l and the queue on link l does not spill back 

to link l1; that is, link l1 is in free-flow condition while link l is partially congested. 

(ii) There is a bottleneck on the downstream link l and the queue on link l spills back to link 

l1; that is, link l1 is partially congested while link l is fully congested. 

(iii) There is a bottleneck on each of the two links, and the two bottlenecks are independent, 

assuming that both links are sufficiently long so that the queue in the downstream does not spill 

back to the upstream. This is in fact the case in which both links l1 and l are partially congested. 
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For cases (i) and (iii), Proposition 2 can be applied to determine the marginal effects of the 

additional unit of flow on link flow, density, and travel time.  For case (ii), there are two possible 

scenarios. As depicted in Fig. 3(a), one scenario is that the additional unit of flow does not 

encounter the queue on link l1, so it can enter link l at time 1 , 

when link l is partially congested, i.e.,  or . Another scenario, as depicted in Fig. 

3(b), is that the perturbation flow encounters the queue on link l1, i.e., 

1 , so it cannot enter link l until time . Note that , 

the time at which the queue on link l start to spill back to link l1.  

 

Fig. 3 Link marginal analysis for the case of queue spillback 

Experiments on a simple two-link corridor with steady state travel time function  

In the first set of experiments, we aim to examine the convergence pattern of the proposed 

algorithm on a simple corridor with a single O-D pair connected by two parallel links (or paths). 

A simple linear travel time function is used to perform the traffic assignment which loads a total 

peak-hour demand, 8000 vehicles/hour (or vhc/hr) to those two paths.  

Ta = FFTTa + ra / capa,  

where Ta and FFTTa are the travel time and free-flow travel time on link/path a, respectively. ra 

and capa are the flow volume and capacity of link/path a, respectively.  Then, the resulting UE 

assignment results are used as the ground-truth condition to evaluate the path flow estimation 

performance under various testing conditions. 
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Fig. 4 Path flow volume convergence pattern as a function of inner iteration number 

We start with an initial path flow distribution that loads 3000 vhc/hr to each link. The 

ground-truth demand of 8000 vhc/hr is set as the target demand, and the error-free flow counts 

(r1 = 5400, r2 = 2600) are used as the observations.  Fig.  and Fig.  demonstrate the convergence 

patterns of the proposed path flow estimation algorithm in the first 20 inner iterations. We can 

observe that, after 3 or 4 inner iterations, the total estimated demand is quickly adjusted to a level 

very close to the ground-truth demand, while the equilibrium processes of path flow distribution 

and path travel times are relatively slow.  

 

Fig. 5 Path travel time convergence pattern as a function of inner iteration number 
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Experiments on a freeway corridor with time-dependent sensor data 

In the second set of experiments, we test the performance of the proposed algorithm on a 

freeway corridor with time-dependent real-world sensor data. As shown in Fig. , the freeway 

corridor of interest is a 2-mile section of I-210 Westbound, located in Los Angeles, 

CA.  This corridor includes three on-ramps and one off-ramp.  In the network representation, we 

ignore the HOV lane and only consider 4 general purpose lanes on the freeway.  Traffic speed, 

flow count and occupancy are measured at 5-mins intervals on freeway and ramp links.  
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Fig. 6 Network representation of a section of I-210 West bound corridor 

In this simple corridor, each OD pair only has a single path, so it does not involve a 

complex flow equilibration process required for multiple alternative paths. As a result, our focus 

is on demonstrating how the proposed gradient-based adjustment algorithm adjusts the incoming 

demand pattern to capture the observed queue formation, propagation and dissipation.   

 

Fig. 7 Observed lane volume on station a vs. estimated lane volume on entrance link 

Error! Reference source not found. shows the estimated and observed flow patterns on entry link 

a, and the corresponding average relative estimation errors are less than 10%. This indicates that 

the proposed algorithm can adjust a biased, initial demand pattern to match the target demand 
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volume at the entry point.  The estimated space speeds and observed point speeds at station c are 

plotted in Fig. , which demonstrates that the DNL model is able to accurately reproduce the 

queue spillback phenomenon along the corridor.  

 

Fig. 8 Observed point mean speed at station c vs. estimated space mean speed on the link from 

off-ramp h to station c 
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