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Approaches to Minimize Energy and
Emissions Impacts of Transportation:

Build cleaner, more efficient vehicles:

. make vehicles lighter (and smaller) while maintaining safety

. iImprove powertrain efficiency

. develop alternative technologies (e.g.,hybrids, fuel-cell, electric vehicles)

Develop and use alternative fuels:

. Bio and synthetic fuels (cellulosic ethanol, biodiesel)

. electricity

Decrease the total amount of driving: VMT reduction methods

Improve transportation system efficiency through automation
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Three regimes on how to reduce on-road energy and
emissions through automation

increase capacity of roadways
through automation eliminates
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Initial Energy and Emissions Analysis of Automated Highway
Systems:

« sponsored by NAHSC/PATH
« CO, and fuel are linearly related

« used energy/emissions model with
typical driving activity
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Fuel Saved by Trucks Driving
In Close-Formation Platoons (PATH et al., 2003)
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Energy and Emissions Analysis of Heavy Duty Trucks:

« sponsored by PATH, U.S. EPA, CARB
« CO, and fuel are linearly related

« measured (and modeled) energy/emissions
of heavy duty trucks
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System Architecture of Dynamic Eco-Driving
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Dynamic Eco-Driving Field Experiments:. Example Results
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Energy/Emissions | Non-1SA ISA | Difference
CO2 (9) 5439 4781 -12%
CO (g) 97.01 50.47 -48%

reference: HC (g) 3.20 1.90 -41%

M. Barth and K. Boriboonsomsin (2008) “Energy
and Emissions Impacts of a Freeway-Based Dynamic

Eco-Driving System”, in press, Transportation NOX (g) 6.28 3.97 -37%
Research Part D: Environment, Elsevier Press,

August, 2008. Fuel (g) 1766 1534 -13%

same travel time results:
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Single Intersection Optimization with Signal
Phase and Timing Information

Speed
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LDV24 Fuel | CO, | CO | HC [ NO, < ; >
Vehicle 1 278 | 875 | 0378 | 0013 | 0011 Analysis boundary
Vehicle 2 70.6 222.4 0.990 0.045 0.063
Vehicle 3 64.5 203.1 0.873 0.034 0.067 reference:
%3vs2 -8.7 8.7 -11.8 ~24.8 +6.4 M. Li et al., “Traffic Energy and Emission
(2-1) 42.9 134.9 0.612 0.032 0.052 Reductions at Signalized Intersections: A Study of
(3-1) 36.7 115.6 0.496 0.021 0.056 th% B_enegits of AdvancedIDriver Ilnform%tion",
% (3-1) vs (2-1) 143 143 190 YN 178 Z%Orglltte to International Journal on ITS, January,
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Dynamic Eco-Driving on Signalized Corridors

Without With % Diff. | p-value of
LDV24 Avg. S.D. Avg. S.D. in Avg. t-test
Fuel (g/mi) | 118.3 | 13.2 | 103.8 9.3 -12.3 8.7E-06
CO,(g/mi) | 3710 | 41.2 | 3188 | 25.3 -14.1 3.2E-07
TT (sec) 456.7 | 60.7 | 4519 | 56.9 -1.06 0.635
references:

S. Mandava et al., “Arterial Velocity Planning based on
Traffic Signal Information under Light Traffic

Conditions”, 2009 IEEE Intelligent Vehicle Systems

Conference, October, 2009.

M. Barth et al., “Dynamic ECO-Driving for Arterial
Corridors”, Proceedings of the 2011 IEEE Forum on
Integrated Sustainable Transportation (FISTS), Vienna,
Austria, June, 2011.
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Summary and Conclusions:

¢ automation can have a significant impact on environment/energy
through better vehicle control, better traffic operations, and better

Information systems

Vehicle Systems:
« Automation (lateral and longitudinal control, platooning, etc.)

« Closed loop systems: Smart Engines, HEV energy management

Traffic Operations:
e congestion mitigation
« smoother traffic flow

Information Systems:

« Environmental Friendly Navigation
e Dynamic Eco-Driving

« Speed Management Systems

 Energy/Emissions Savings: Each automation strategy can
potentially save 5 — 15%; all strategies can be additive for greater

savings
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