

Vehicle Automation and its Role in Energy and Emissions

Matthew Barth Professor and Director College of Engineering-Center for Environmental Research and Technology University of California-Riverside

presented at the:

2012 Road Vehicle Automation Workshop July 25, 2012

Approaches to Minimize Energy and Emissions Impacts of Transportation:

- Build cleaner, more efficient vehicles:
 - make vehicles lighter (and smaller) while maintaining safety
 - improve powertrain efficiency
 - develop alternative technologies (e.g., hybrids, fuel-cell, electric vehicles)
- Develop and use alternative fuels:
 - Bio and synthetic fuels (cellulosic ethanol, biodiesel)
 - electricity
- Decrease the total amount of driving: VMT reduction methods
- Improve transportation system efficiency through automation

Three regimes on how to reduce on-road energy and emissions through automation

UCR College of Engineering- Center for Environmental Research & Technology

Modeling Methodology:

fuel consumption

emissions

Initial Energy and Emissions Analysis of Automated Highway Systems:

- sponsored by NAHSC/PATH
- CO₂ and fuel are linearly related
- used energy/emissions model with typical driving activity

reference:

M. Barth, "An emissions and energy comparison between a simulated automated highway system and current traffic conditions," *Proceedings of the 2000 IEEE Intelligent Transportation Systems Conference*, Dearborn, MI, Oct. 2000

Fuel Saved by Trucks Driving in Close-Formation Platoons (PATH et al., 2003)

Energy and Emissions Analysis of Heavy Duty Trucks:

- sponsored by PATH, U.S. EPA, CARB
- CO₂ and fuel are linearly related
- measured (and modeled) energy/emissions of heavy duty trucks

Follow Truck raw data					
spacing	Avg CO2 gm/s	Avg NOx gm/s	Avg fuel gm/s		
inf M	33.44	0.2004	10.57		
10 M	30.91	0.1975	9.78		
8 M	30.78	0.1938	9.74		
6 M	29.58	0.1926	9.36		
4 M	27.50	0.1982	8.70		

reference:

M. Barth, "Development of a Heavy-Duty Diesel Modal Emissions and Fuel Consumption Model", *PATH Technical Report for MOU-4215*, September, 2004.

System Architecture of Dynamic Eco-Driving

UCR College of Engineering- Center for Environmental Research & Technology

Dynamic Eco-Driving Field Experiments: Example Results

same travel time results:

reference:

M. Barth and K. Boriboonsomsin (2008) "Energy and Emissions Impacts of a Freeway-Based Dynamic Eco-Driving System", in press, *Transportation Research Part D: Environment*, Elsevier Press, August, 2008.

Energy/Emissions	Non-ISA	ISA	Difference
CO2 (g)	5439	4781	-12%
CO (g)	97.01	50.47	-48%
HC (g)	3.20	1.90	-41%
NOx (g)	6.28	3.97	-37%
Fuel (g)	1766	1534	-13%

Single Intersection Optimization with Signal Phase and Timing Information

advanced signal information can help reduce intersection-influenced fuel consumption by 14% for cars and 12% for trucks

LDV24	Fuel	CO ₂	CO	HC	NO _x
Vehicle 1	27.8	87.5	0.378	0.013	0.011
Vehicle 2	70.6	222.4	0.990	0.045	0.063
Vehicle 3	64.5	203.1	0.873	0.034	0.067
% 3 vs 2	-8.7	-8.7	-11.8	-24.8	+6.4
(2-1)	42.9	134.9	0.612	0.032	0.052
(3-1)	36.7	115.6	0.496	0.021	0.056
% (3-1) vs (2-1)	-14.3	-14.3	-19.0	-34.7	+7.8

reference:

M. Li et al., "Traffic Energy and Emission Reductions at Signalized Intersections: A Study of the Benefits of Advanced Driver Information", *submitted to International Journal on ITS*, January, 2009.

Analysis boundary

Dynamic Eco-Driving on Signalized Corridors

LDV24	Without		With		% Diff.	<i>p</i> -value of
	Avg.	S.D.	Avg.	S.D.	in Avg.	<i>t</i> -test
Fuel (g/mi)	118.3	13.2	103.8	9.3	<mark>-12.3</mark>	8.7E-06
CO ₂ (g/mi)	371.0	41.2	318.8	25.3	<mark>-14.1</mark>	3.2E-07
TT (sec)	456.7	60.7	451.9	56.9	-1.06	0.635

references:

S. Mandava et al., "Arterial Velocity Planning based on Traffic Signal Information under Light Traffic Conditions", 2009 *IEEE Intelligent Vehicle Systems Conference*, October, 2009. M. Barth et al., "Dynamic ECO-Driving for Arterial Corridors", *Proceedings of the 2011 IEEE Forum on Integrated Sustainable Transportation (FISTS)*, Vienna, Austria, June, 2011.

Summary and Conclusions:

 automation can have a significant impact on environment/energy through better vehicle control, better traffic operations, and better information systems

Vehicle Systems:

- Automation (lateral and longitudinal control, platooning, etc.)
- Closed loop systems: Smart Engines, HEV energy management

Traffic Operations:

- congestion mitigation
- smoother traffic flow

Information Systems:

- Environmental Friendly Navigation
- Dynamic Eco-Driving
- Speed Management Systems
- Energy/Emissions Savings: Each automation strategy can potentially save 5 – 15%; all strategies can be additive for greater savings