Reinventing the Automobile: Personal Urban Mobility for the 21st Century

Dr. Chris Borroni-Bird,

en-v-s

W

Director, Advanced Technology Vehicle Concepts (and EN-V Program), General Motors

Challenges to a Sustainable Auto Industry

- Energy
- Environment
- Safety
- Affordability

Megatrends: Urbanization and Aging

Source: UN Population Division

Challenges to a Sustainable Auto Industry

- Energy
- Environment
- Safety
- Accessibility
- Congestion
- Parking

Urban Mobility

Megacities – Regional Transportation Policies

	Delhi	Mumbai	Beijing	Shanghai	Moscow	Seoul	New York	London	Tokyo
Bus Rapid Transit Lanes	V	\bigotimes	V	2011	\bigotimes	2011	V	V	0
Metro/Subway	V	2011	~	V	\	~	V	V	V
Congestion Charging	Planned	Planned	2012	2012	Future	*	Planned	~	Future
Parking Cuts	\bigotimes	\bigotimes	\bigotimes	\bigotimes	\bigotimes		\	V	\bigotimes
Road use Charging/Ban	\bigotimes	Yes	1 Week Day Ban	1 week Day Ban	\bigotimes	1 Week Day Ban*	0	0	Future
EV/Hybrid Incentives	V	${igodot}$	~	~	\bigotimes	~	~	*	V
Bicycle Lanes	\bigotimes	\otimes	*	*	\otimes	~	~	-	*
Energy and Environmental Standards	Euro 4	Euro 4	Euro 4	Euro 4	Euro 3 Euro 4 by 2012	Euro 4	CAFE 27.8mpg by 2011 34.7 mpg by 2016	Euro 4 Euro 5 by 2011	25% reduction by 2015

Source: Frost and Sullivan

What type of "car" does the <u>city</u> need?

City Objectives	No Pollution (air, noise)	Renewable energy sources	Safety for <u>all</u> road users	Faster, more predictable travel times	Reduced parking space requirements	Accessibility for All	Beautiful Urban Design
Electrification, Connectivity and Appropriate Design							
Future "Car"	Future "Car" • INFORMATION: Vehicles wirelessly communicate with each other, the road, electronic devices (pedestrians, cyclists,) • POWER/ENERGY: Battery and/or Hydrogen Fuel Cell, Wheel Motors, 360° electronic cocoon, • TRANSPORTATION: Compact and/or reconfigurable footprint and shape, based on environmental conditions						
Future City	 INFORMATION: Wireless communications with infrastructure (road, intersections, parking lots, mass transit stations,) POWER/ENERGY: Rapid Charging stations, Smart Grids, Inductive Charging, Electric Guideways TRANSPORTATION: No city center signage, dedicated lanes/zones/highways, Intelligent Intersections 						

Same DNA for 100 years

New Automotive DNA

EN-V (Electric Networked Vehicle): A comparison with a conventional city car

	Typical city car	Typical EN-V
Mass (kg)	1,000	500
Occupancy (# seats)	4	2
Footprint (m ²)	5	3
Maximum speed (km/h)	150	50
Propulsion output (kW)	100	10
Driving range (km)	500	50
Vehicle energy consumption (Wh/km)	400	80
Well-to-wheels CO ₂ (g /km), US electricity mix	150	50

EN-V: Components & Features

EN-V Program Next Steps: EN-V2.0 pilot in Tianjin Eco-City

Personal Mobility & Public Transport Integration

Now

Future?

Source: MIT

Source: Rinspeed

GM

Dynamic Pricing for Mobility-on-Demand

Source: "Reinventing the Automobile: Personal Urban Mobility for the 21st Century"

Inductive Charging Infrastructure

Source: "Reinventing the Automobile: Personal Urban Mobility for the 21st Century"

GM

Reinventing Urban Mobility

Design

Ultra-small vehicle is easy to

maneuver and park and is

inherently affordable and clean

Small vehicle is easy to park at public transport stations or to dock on larger transport vehicle, encouraging more use of public transport

Electrification

Battery propulsion provides

zero emissions & encourages

diverse, renewable

energy sources

EVs can be charged at key locations, such as public transport stations and parking lots

Reinventing Urban Mobility

Connectivity

Wireless communications helps to avoid collisions and optimize throughput

Wireless communications can co-ordinate with public transport or can help to locate nearest vehicle

Summary

- Automobile usage in cities is common because it has some valued advantages over walking/cycling and over public transport
- For urban use, today's automobile is over-engineered AND under-used
- By reinventing the automobile and the ownership model, it is possible to preserve its benefits while significantly reducing the side-effects in urban use
 - Autonomy can enhance the mobility experience and enable personal mobility for all the population
 - These same enablers (electrification, connectivity and vehicle design) can also create new opportunities for seamlessly integrating personal and public transport
 - Autonomy can enhance the consumer experience and improve the business model for mobility-on-demand systems