Enhancing Safety Through Automation

TRB Automated Vehicle Workshop, July 25, 2012

Tim Johnson
Director, Office of Crash Avoidance and Electronic Controls Research
National Highway Traffic Safety Administration
NHTSA’s Missions

- **Safety**

 Save lives, prevent injuries and reduce economic costs due to road traffic and non-traffic crashes through education, research, safety standards and enforcement activity.

- **Consumer Programs**

 Increase fuel economy, damageability protection, and theft protection, reduce odometer tampering, and provide consumer information.
The Problem!!!

Safety
• 32,788 highway deaths in 2010
• 6,000,000 crashes/year
• Leading cause of death for ages 4 - 34

Mobility
• 4,200,000,000 hours of travel delay
• $80,000,000,000 cost of urban congestion

Environment
• 2,900,000,000 gallons of wasted fuel
Fatalities in Motor Vehicle Traffic Crashes 2009

Human Error is Critical Reason for 93% of Crashes
<table>
<thead>
<tr>
<th>Crash Avoidance</th>
<th>Crashworthiness</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORMAL DRIVING</td>
<td>CRASH IMMINENT</td>
</tr>
<tr>
<td>PASSENGER CARS/TRUCKS</td>
<td>• Driver Distraction</td>
</tr>
<tr>
<td></td>
<td>• Driver Support Systems</td>
</tr>
<tr>
<td></td>
<td>• Blind Spot Detection</td>
</tr>
<tr>
<td></td>
<td>• Alcohol Detection</td>
</tr>
<tr>
<td></td>
<td>• Drowsy Driver Detection</td>
</tr>
<tr>
<td></td>
<td>• V2V & V2I</td>
</tr>
<tr>
<td></td>
<td>• Human Factors/HMI</td>
</tr>
<tr>
<td></td>
<td>Automation</td>
</tr>
<tr>
<td>HEAVY VEHICLES - Truck/Bus</td>
<td>• Driver Distraction</td>
</tr>
<tr>
<td></td>
<td>• Drowsy Driver Detection</td>
</tr>
<tr>
<td></td>
<td>• Enhanced Vision Systems</td>
</tr>
<tr>
<td></td>
<td>• Blind Spot Detection</td>
</tr>
<tr>
<td></td>
<td>• V2V & V2I</td>
</tr>
<tr>
<td></td>
<td>• Human Factors/HMI</td>
</tr>
<tr>
<td></td>
<td>Automation</td>
</tr>
<tr>
<td>MOTORCYCLES</td>
<td>• Conspicuity</td>
</tr>
<tr>
<td></td>
<td>• Automation?</td>
</tr>
<tr>
<td>PEDESTRIANS</td>
<td>• Quiet Car Detection</td>
</tr>
<tr>
<td></td>
<td>• Lighting Systems for Peds</td>
</tr>
<tr>
<td></td>
<td>• Automation</td>
</tr>
<tr>
<td>Crash Avoidance</td>
<td>Crashworthiness</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>NORMAL DRIVING</td>
<td>CRASH IMMINENT</td>
</tr>
<tr>
<td>PASSENGER CARS/TRUCKS</td>
<td>• Driver Distraction</td>
</tr>
<tr>
<td></td>
<td>• Driver Support Systems</td>
</tr>
<tr>
<td></td>
<td>• Blind Spot Detection</td>
</tr>
<tr>
<td></td>
<td>• Alcohol Detection</td>
</tr>
<tr>
<td></td>
<td>• Drowsy Driver Detection</td>
</tr>
<tr>
<td></td>
<td>• V2V & V2I</td>
</tr>
<tr>
<td></td>
<td>• Automation</td>
</tr>
<tr>
<td>HEAVY VEHICLES - Truck/Bus</td>
<td>• Driver Distraction</td>
</tr>
<tr>
<td></td>
<td>• Drowsy Driver Detection</td>
</tr>
<tr>
<td></td>
<td>• Enhanced Vision Systems</td>
</tr>
<tr>
<td></td>
<td>• Blind Spot Detection</td>
</tr>
<tr>
<td></td>
<td>• V2V & V2I</td>
</tr>
<tr>
<td></td>
<td>• HFCV</td>
</tr>
<tr>
<td>MOTORCYCLES</td>
<td>• Conspicuity</td>
</tr>
<tr>
<td></td>
<td>• Automation?</td>
</tr>
<tr>
<td>PEDESTRIANS</td>
<td>• Quiet Car Detection</td>
</tr>
<tr>
<td></td>
<td>• Lighting Systems for Peds</td>
</tr>
<tr>
<td></td>
<td>• Automation</td>
</tr>
</tbody>
</table>
Evolution of Vehicle Electronics

Crash Avoidance and Injury Mitigation

- Long Range Radar Sensor
- Automated Vehicle Control

- Short Range Radar Sensor
- Camera Based Lane Detection
- Integrated Human System Interface

Information
Focus on Safety

- Automation should be focused first on safety
- Not enough to be “as safe” as human drivers
- Automated car goal: “crash-less”
Definitions are Important

- **Autonomous**
 - “not subject to control from outside; independent” *
 - “undertaken or carried on without outside control” #

- **Automated**
 - “automatically controlled operation of an apparatus, process or system by mechanical or electronic devices that take the place of human labor” #

- **Cooperative**
 - “acting together for a common purpose or benefit” *

Sources: *
http://dictionary.reference.com
http://www.merriam-webster.com/dictionary
Levels of Automation (NHTSA Draft)

<table>
<thead>
<tr>
<th>Levels of Automation</th>
<th>Monitoring Roadway</th>
<th>Active Control</th>
<th>Responsibility for Safe Operation</th>
<th>Driver/Occupant Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 0 - Non-Automated</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>Y</td>
</tr>
<tr>
<td>Level 1 - Automated-Assisted</td>
<td>D</td>
<td>D and R</td>
<td>D</td>
<td>Y</td>
</tr>
<tr>
<td>Level 2 - Monitored Automation</td>
<td>D</td>
<td>R</td>
<td>D</td>
<td>Y</td>
</tr>
<tr>
<td>Level 3 - Conditional Automation</td>
<td>R</td>
<td>R</td>
<td>R?</td>
<td>Y</td>
</tr>
<tr>
<td>Level 4 - Full Automation</td>
<td>R</td>
<td>R</td>
<td>R?</td>
<td>N</td>
</tr>
</tbody>
</table>

D = Driver
R = Robot
Building Blocks for Autonomous Operation

- Automated Operation
 - Policy Considerations
 - Infrastructure Changes?
 - Active Driver Engagement?

- GPS/Maps for Positioning
- On-Board Data Collection
- Radar/Camera for Crash Avoidance
- Network for Cybersecurity
- AI for Decision-Making
- Driver Information Systems

- Reliability
- Security
- HMI
Automation Challenges Include:

- Human Factors (Driver Engagement/Re-engagement)
- Sensor Performance
- Artificial Intelligence Decision-Making Capability
- Electronic Control Systems Safety
- Cybersecurity
- Testing and Evaluation Methodology

Regulatory Approaches:
- Performance requirements/objective testing for various levels of automation.
- Standardization - Are different concepts for achieving automation compatible on the roadway?

- Operating environment - operating in mixed traffic and on public roads?
- Infrastructure modifications
- Liability
- etc…….
Motor Vehicle Automation Research Roadmap

Goal: to improve motor vehicle safety by investigating the requirements for automated driving that is:

- Operational only to the extent granted by the driver
 - Including override capability

- **Electronically Reliable and Secure**
 - Functionally safe w/appropriate data storage/diagnostics/prognostics
 - Secure from malicious external control and tampering

- **Operationally intuitive for drivers**
 - under diverse driving conditions
 - within limits understood by the driver

- **Focused on reducing crashes!**
Objectives

1. **Support policy decisions on emerging system concepts (Level 2 and Level 3 systems)**
 - Near production concepts are already here

2. **Facilitate development/deployment of safety enhancing automated systems**
 - Defining concepts of automated operation including the integration of safety systems [safety enhancing concepts]
 - Developing technical requirements and associated performance tests
 - Assess safety benefits & system performance
Motor Vehicle Automation Research Roadmap

Efforts

1. Support Policy Decisions
 - Complete human factors studies to evaluate emerging concepts
2. Program Planning/Knowledge Base
 - Evaluate critical issues. Synthesize findings to define critical research gaps
3. Develop System Performance Requirements
 - Performance requirements for automation levels and associated system concepts
4. Address Electronic Control Systems Safety
 - Reliability and cybersecurity requirements
5. Improve Driver Awareness & Response
 - Driver-Vehicle Interface (DVI) criteria and guidelines
 - Driver Training & Licensing req’ts
6. Evaluate System Operability
 - Develop obj. tests
 - Define safety and perf. metrics
 - Complete Evaluation studies
 - Estimate Benefits

Outcomes
Automation Challenges Can be Met

- The goal is a worthy one
- Great potential for improving vehicle safety
 - And other transportation goals
- NHTSA establishing a comprehensive research plan
- Will require collaboration
 - product developers,
 - insurers,
 - academia,
 - state and federal governments,
 - and many others.....
Contact Information:

- Tim.Johnson@dot.gov
- Ph. 202-366-5664