

July 25, 2012 TRB Road Vehicle Automation Workshop

Sadayuki Tsugawa, Dr. Eng.
NEDO Energy ITS Project Leader
Professor, Department of Information Engineering
Meijo University, Japan

Outline

- Outline of "Energy ITS" project
- What we did and learned by now
- What we have to do and learn from now

Outline of the Project

- Objectives: energy saving and CO2 emission reduction for road transportation
- Period: FY2008 FY2012
- Funding: METI & NEDO, about 4.4 billion yen in 5 years
- Themes
 - Automated truck platoon
 - Evaluation method of effectiveness of ITS on energy saving and CO2 emission reduction
- Contractors
 - Japan Automobile Research Institute
 - Universities, research institute, private companies

Automated Truck Platoon

- Technologies
 - Lane marker detection for lateral control
 - Passive and active computer vision
 - Gap measurement for longitudinal Control
 - Radar, laser scanner
 - Inter-vehicle communications
- Feature of the technologies: high reliability
- Goals
 - In March, 2010: 3 Heavy (25 t) trucks at 80 km/h with 10 m gap
 - achieved
 - In March, 2013: 3 Heavy trucks and one light truck at 80 km/h with 4 m gap

Videos: Platoon Engaging, Lane Changing, and Passenger Car Cut-in

Vehicle Control Performance

Driving site		Test track		Expressway Before public use	
		Goals	Results	Goals	Results
Vehicle speed		80 [km/h]		80 [km/h]	
Lateral control		<u>+</u> 20 [cm]	<u>+</u> 6 [cm]	<u>+</u> 20 [cm]	<u>+</u> 15 [cm]
Longitudinal Control	Steady state	10 <u>+</u> 2 [m]	10 <u>+</u> 1 [m]	10 <u>+</u> 2 [m]	10 <u>+</u> [m]
	Braking at 0.5 G	10-3 [m]	10 <u>+</u> 1 [m]	10 <u>+</u> 3 [m]	10 <u>+</u> 1 [m]
Lane changing (target path following)		<u>+</u> 7 %	<u>+</u> 10 %	<u>+</u> 7 %	<u>+</u> 15 %
Time to form a platoon		15 [s]	32 [s]	N/A	N/A

Effects of Platooning on Energy Saving

- ČFD simulation result: CD values of each truck
 - Driving at 80 km/h with 4 m gap
 - CD value of a single truck=1

- Energy saving owing to less aerodynamic drag
 - Measurement when driving at 80 km/h with 10 m gap

Driving cito	Driving	Energy consumption improvement			
Driving site	distance	Lead truck	Middle truck	Tail truck	Mean
Expressway before public use	8.0 km * 3 times	+7.5 %	+18 %	+16 %	+14 %
Test track (oval)	About 100 km	+10.0 %	+17.5 %	+14 %	+13.8 %

- Estimate of CO2 emission reduction by simulation
 - Roadway: Tomei expressway, Tokyo area, about 100 km
 - Traffic flow: light vehicles 69 %, heavy vehicles 31 %
 - Platoon rate: 40 % of heavy trucks

Gap	Speed		Macro effect (capacity Increase)	Total
10 m	00 km/h	2.0 %	0.1 %	2.1 %
4 m	80 km/h	3.5 %	1.3 %	4.8 %

Technological Issues

- Quantitative evaluation of the reliability of the equipment
 - Required MTBF of the equipment for introduction
- Passive safety
 - Passive safety device will be necessary when the gap is small
- HMI
 - Information to drivers in the following trucks
 - Information to drivers around a platoon

Reliability of the Equipment: Current Status of the Trucks

Functions	Devices	Reliability improvement	
Lane marker detection	Computer vision (ordinary CCD camera, laser scanner+PD, LED+CCD camera)	Plurality of sensors of different operating principles	
Obstacle detection	MMW radar LRF		
Gap measurement	Infrared stereo vision		
Electronic control unit		Fail safe Detection of faults	
V2V communications	5.8 GHz DSRC	Plurality of communication units of different media and operating principles	
V2 V COMMUNICATIONS	Infrared		
Steering actuator	Electric motors	Independent 2 motors	
Braking actuator	WABCO		
Throttle actuator	diesel		

Passive Safety Device

- Shock absorber
 - Under development for 4 m platooning

(left) trial device, (right) experiment

HMI for Drivers on the Followers

 Information to drivers on the dashboard and on the back of the leader

Market Research

- Backgrounds of freight operators in Japan
 - Tough competitiveness
 - Profit-sensitive, cost-sensitive
- Interview to freight operators
 - After trial ride along an expressway on March 2011 (80 km/h, 10 m gap)
 - Expectations on platooning
 - Energy saving: yes (91%)
 - Congestion reduction: yes (79%)
 - Load damage reduction: yes (73%)
 - High company brand image: yes (60%)
 - Safe driving: yes (39%), unknown (39%), no (21%)
 - Workload reduction: no (67%), unknown (18%), yes(15%)

Issues on Operation

- Places to engage/disengage a platoon
 - Current plan: on expressways while driving
- When different freight companies make a platoon,
 - How the benefits (positive and negative) are shared among them?
 - Responsibility of an accident

Legal and Institutional Issues on Automated Truck Platoon

Automation levels	Issues	Backgrounds / Notes	Currently Permitted?
Driver assistance systems	Drivers on each truck, 40 m gap ACC (1.8 sec gap)		Yes
	Drivers on each truck, 10 m gap	A platoon may be an obstacle to other vehicles	No
	Drivers on each truck, 4 m gap	Drivers on following trucks cannot operate due to small FOV	No
Automated driving systems	The first truck is driven by a driver, and automated, unmanned trucks follow	Can it be regarded as a long single vehicle?	No

Introduction Scenario of a Truck platoon (2012 July version)

	Near Future	Mid Future	Far Future	
Concept	- ACC - driver assistance	- CACC (ACC + V2V) - driver assistance	- CACC - automated lateral control	
Roadway	Expressways, mixed traffic			
System objectives	- elimination of congestion at sags	safer systemeco drivingsmooth traffic	much safer systemenergy savingworkload reduction	
Gap [sec]	1.8 – 1.0	1.0 - 0.9	0.9-0.3	
Control objectives		- warning to drivers and control of brakes on emergency braking of a lead vehicle	- short gap keeping - lane keeping	
Drivers	on each truck	on each truck	on each truck or only on the lead truck	
Notes	(1.8 s gap) no legal and institutional issues, and can be introduced	 ACC gap for trucks is 1.8 s while that for passenger cars is 1.0 s according to the Japanese guidelines Truck ACC is in the market, but freight companies prohibit their drivers from the use due to accidents 		

Conclusions

- Technological results of Energy ITS Project
 - At present, a platoon of 3 automated trucks driving at 80 km/h with 10 m gap
 - Effectiveness of energy saving and CO2 emission reduction
- Technologies issues
 - Reliability of the equipment
- Non-technological issues
 - Operational issues
 - Locations to engage/disengage a platoon
 - Legal and institutional issues
 - What kind of (semi-) automated trucks are permitted?

Energy ITS Workshop in Vienna

- Date: October 22 (Monday), 2012
- Time: 9 am 3 pm
- Venue: Vienna Convention Center (the same place of 19th ITS World Congress)
- Program
 - Detailed report of automated truck platoon
 - Progress in US and EU (planned)
- Contact: Tsugawa (tsugawa@meijo-u.ac.jp)