2012 Road Vehicle Automation Workshop

KONVOI and interactIVe
Truck Platooning and Crash Avoidance

Irvine, 25th of July 2012

Dr.-Ing. Adrian Zlocki

Institut für Kraftfahrzeuge
RWTH Aachen University
Agenda

- Motivation
 - KONVOI project
 - Results of the KONVOI project
 - interactIVe project
 - Summary
Motivation
Safety and Efficiency become “Mega Trends”

- New EU white paper to halve persons killed in traffic until 2020 after the goal for 2010 was not achieved
- New overall-rating of EURO-NCAP includes active safety criteria
- Conventional passive safety measures are in contrast to light weight design and CO₂ reduction
- Energy costs are expected to rise in the middle term
- Fuel consumption and emissions are facing further regulations and also monetary fees
- Sustainability and protection of the environment are highly important topics for politics and society
- Emissions gain crucial importance on mobility

Regulation (EC) No 443/2009
- 130 g/km CO₂-Emission at 65% of new vehicles until 2012
- 130 g/km CO₂-Emission at 100% of new vehicles until 2015
- 95 g/km CO₂-Emission at 100% of new vehicles until 2020
- ECO-Innovations can be considered with up to 7 g/km
Motivation
Selected EU Research on Safety and Efficiency

European

German

Automation

Platooning

Transport Telematics (FP3)

TAP (FP4)

Drive II

DRIVE I

PROMETHEUS (EUREKA)

1987-1995

1989-1991

1992-1994

1990-1991

1992-1994

1994-1998

1996-2000

1996-1998

1998-2002

2000-2003

2000-2003

2001-2004

2001-2004

2002-2005

2005-2009

2006-2010

2008-2011

2008-2012

2008-2013

2008-2014

2008-2015

2008-2016

1985

1990

1995

2000

2005

2010

2015

2007-2014

2011-2015

2010-2013

2009-2012

2008-2012

2008-2011

2008-2010

2008-2009

2008-2007

2007-2006

2005-2004

2004-2003

2003-2002

2002-2001

2001-2000

1998-1997

1996-1995

1994-1993

1990-1989

1988-1987

Selected EU Research on Safety and Efficiency

- Automation

- Platooning
Agenda

- Motivation
- KONVOI project
- Results of the KONVOI project
- interactIVe project
- Summary
KONVOI
Traffic Situation in Germany

- Individual traffic increases about 20%
- Goods traffic increases about 64% up to 600 billion tkm

![Graph showing Long-Distance Traffic with Trucks > 150 km (in ton kilometres)]

Source: BAG/KBA/BMVBM

BMVBW *BAG/KBA

Year

0 200000 400000 600000 800000

Mio. tkm

350000 384000 560000 600000

+60%*** +64%** 560000

Conclusion

Appropriate solutions needs to be developed in order to prevent a traffic collapse
KONVOI
Goals and General Framework

Goal

Practical usage of truck platoons in road freight transport for verification of prognosticated effects (economy of road space, reduction of fuel consumption, …)

General framework

- Duration: 01.05.2005 - 31.05.2009
- Setup of 4 test trucks (1 x MAN, 1 x Wabco, 2 x ika)
- Consortium
 - Institutes of RWTH Aachen University
 - Vehicle manufacturers and suppliers
 - Highway patrol, district government of Cologne
 - Forwarding agencies as prototypical user

Funded by

Bundesministerium für Wirtschaft und Technologie

TÜV

Berufskolleg Simmerath/Stolberg

Autobahnpolizei Köln

#120910 · 12zl0020.pptx
KONVOI

The KONVOI System

- Electric platooning of up to 4 trucks with 10 m desired distance between trucks
- First truck in platoon driven manually (driver is supported by ACC and LDW)
- KONVOI system for longitudinal / lateral control for all following vehicles

Concept

- Central KONVOI-Server
- Global Positioning System (GPS)
- Vehicle-Infrastructure Communication (UMTS, GPRS, GSM)
- Short Distance Controller
- Vehicle-Vehicle Communication (2,4 GHz broad-band technology)
- Driver Information System
- Lane Keeping
 Necessary Vehicle Adaptation
ika‘s Test Vehicles IVECO Stralis

- Lateral Dynamics
 → EPS (ZF ServoTwin Steering Actor)
- Sensors
 → VED, Distance- and Lane Marking Detection
 (Hella KGaA Hueck & Co, ACC-Radar Sensor)
- Inter Vehicle Communication
 → IVC (Fa. Agilion)
- GPS → KONVOI Positioning
- UMTS → Connection to Server
- Electrics → Power Supply for all components
- Driver Information System (DIS)

VCM = Vehicle control management
ESC = Vehicle dynamics control
IVC = Inter vehicle communication
EPS = Electric power steering
VED = Vehicle environment detection
Real World Tests
German Motorway

- System development and preliminary testing on closed test tracks and closed motorways under construction
- Final Tests on motorway BAB 1 in real world traffic
- Safety measures:
 - Vehicle driving 1 km before KONVOI platoon
 - Vehicle driving behind KONVOI platoon informing other vehicles of 100 m platoon length
 - Additional vehicle of motorway police following

![Graph showing mileage for different configurations of KONVOI trucks and overall mileage.](graph.png)
Maneuver Tests
Video

clip26_2.avi
Agenda

- Motivation
- KONVOI project
- Results of the KONVOI project
- interactIVe project
- Summary
KONVOI Results
Longitudinal and Lateral Control

Driving maneuver:
- Velocity changes of leading vehicle in platoon

Longitudinal Control
- Increase of distance at high accelerations by means of conservative control
- Increase of performance with next generation vehicle hardware possible

Lateral Control
- Lateral deviation up to 40 cm in curves

Results
- Comfortable and safe driving in platoon
- No amplification of minor interference
KONVOI Results
Platooning Control

Driving maneuver:
- Coupling
- Following
- De-Coupling

Results
- Comfortable and safe driving in platoon
- No amplification of minor interference
KONVOI Results
Impact Assessment on Traffic

- Results based on test drives in real world traffic on German motorway
- Analysis and assessment of video data of all tests and comparison to reference scenarios without KONVOI system
 - Analysis of relative velocity between KONVOI and surrounding traffic
 - Analysis of up to 2400 overtaking maneuvers

Results

- No significant influence on surrounding traffic!
KONVOI Results
Impact Assessment on Traffic

- During KONVOI platooning a total of 13 other vehicles entered between KONVOI trucks at junction (distance of 10 to 25 m)
- During coupling and decoupling manoeuvres 2 other vehicles entered between KONVOI trucks at junction (distance of 35 to 45 m)

Results

- Especially other truck driver expect friendly behaviour! KONVOI is not designed for this behaviour. “Platoon” signs not sufficient for general understanding.
KONVOI Results
Lessons Learned 1/2

- Acceptance
 - Population needs to be informed about KONVOI/Platoons
 - Clear platoon indication necessary
 - Positive results on questionnaires after system explanation
 - Most named advantage: efficient usage of motorway space

- Operation demand for driver
 - Simulator studies have proven that test persons are capable to drive in platoon
 - Driving distances are lower after 2 hours of platooning
 → support in distance keeping recommended after platoon driving
 - No influence on lateral driving behavior

- Impact on Traffic
 - No significant influence on other traffic participants
 - Clear markings for junctions of advantage
 - Significant reduction of necessary space (e.g. for 4 truck KONVOI from 150 m to 100 m)

- Technology
 - Longitudinal and lateral control possible with available technology
 - Coupling and decoupling possible with available technology
KONVOI Results
Lessons Learned 2/2

- Legislation
 - KONVOI is in conflict with the Vienna Convention
 - KONVOI is not aligned with the German rules of the road
 - KONVOI is not aligned with German liability law

- Cost Benefit Analysis
 - Fuel consumption not focus of KONVOI project
 - Longitudinal control optimized for comfort and safety
 - Test drives on OEM test track in Dudenhofen/Rodgau with CC in first vehicle
 - Positive results for constant driving at a velocity of 80 km/h with 10 m distances

- Final comment from German motorway police
 - “Insgesamt stellt sich das System dem Verkehrsteilnehmer als unspektakulär dar. Das Verkehrsverhalten ändert sich durch das System KONVOI aus Sicht der Begleitfahrzeuge nicht.“ (POK Thomas Fiala, Autobahnpolizei Köln)
 - “Overall, the road user understands the system as unspectacular. The traffic behavior does not change by means of the KONVOI system from the perspective of the escort vehicles.” (POK Thomas Fiala, Autobahnpolizei Köln)
Agenda

- Motivation
- KONVOI project
- Results of the KONVOI project
- interactIVe project
- Summary
interactIVe
Objectives

System intelligence

Low cost segment

Full collision avoidance | mitigation

More scenarios covered

Objectives interactIVe

Sensor platform

Decision strategies

Active interventions

Integration of functions

interactIVe

Accident avoidance by active intervention for Intelligent Vehicles
interactIVe Project Overview

The interactIVe vision: Accident-free traffic and active safety systems in all vehicles

- interactIVe facts:
 - Duration: 47 months (January 2010 – November 2013)
 - 29 partners of 10 countries
 - Budget: 30 Million € (Founding by the European Commission: 17 Million €)
interactIVE

Demonstrators and Functions

<table>
<thead>
<tr>
<th>Demonstrator vehicle</th>
<th>Continuous Support</th>
<th>Collision Avoidance</th>
<th>Collision Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMW</td>
<td>enhanced Dynamic Pass Predictor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiat</td>
<td>Continuous Support with focus on haptic HMI</td>
<td>Collision avoidance (for rear-end, blind spot & run-off road conflicts)</td>
<td></td>
</tr>
<tr>
<td>Ford</td>
<td>Continuous Support and automated driving</td>
<td>Collision avoidance (for lane change and run-off road conflicts)</td>
<td></td>
</tr>
<tr>
<td>Volvo Car</td>
<td>Continuous Support and Safe Cruise</td>
<td>Collision avoidance (for rear-end, blind spot & run-off road conflicts)</td>
<td></td>
</tr>
<tr>
<td>Volvo Truck</td>
<td></td>
<td>Collision avoidance (for rear-end, blind-spot & run-off road conflicts stability considerations for trucks)</td>
<td>Collision mitigation with focus on cost-efficient sensors and algorithm</td>
</tr>
<tr>
<td>VW</td>
<td></td>
<td></td>
<td>Emergency steering assistance</td>
</tr>
<tr>
<td>Continental</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
interactIVe
Automation in interactIVe

- Normal driving:

- Safe Cruise:
 - Autonomous following of front vehicle by means of longitudinal and lateral control
 - Possible to activate in vehicle speeds up to 130 km/h in extra urban traffic
 - Driver is observed in order to ensure his/her situational awareness

Source: motorvision.de
interactIVe
Automation in interactIVe

Emergency situations:

- **RECA (Rear-end Collision Avoidance):**
 - Collision avoidance by means of braking and steering depending on situation

- **Avoidance by Steering**
 - Steering is more efficient for higher velocities
 - Precondition must be fulfilled
 - Check of driving direction of adjacent lane as well as other vehicles
 - Driver can overrule the function (→ Braking in order to mitigate)
Agenda

- Motivation
- KONVOI project
- Results of the KONVOI project
- interactIVe project
- Summary
Summary

- Road safety and vehicle efficiency become design dictum based on legislation, political development and consumer awareness
- Sensor and actuator technology for automated driving support is becoming available in modern vehicle
- Close to market research tries to provide continuous driver support
- Autonomous driving systems take over driving task in critical situations
- Complete autonomous driving in platoon is technical possible, but there are still issues to be solved
 - Legislation
 - Human Factors
 - Acceptance
- Research in these fields still necessary!
Thank you for your attention!

Dr.-Ing. Adrian Zlocki

Institut für Kraftfahrzeuge
RWTH Aachen University
Steinbachstraße 7
52074 Aachen
Germany

Phone +49 241 80 25616
Fax +49 241 80 22147

Email zlocki@ika.rwth-aachen.de
Internet www.ika.rwth-aachen.de