Field Operational Tests of Vehicle Assist and Automation Technologies

California-Oregon VAA Team

Ching-Yao Chan and Wei-Bin Zhang

5th National BRT Conference Las Vegas August 22, 2012

FTA and RITA JPO Vehicle Assist and Automation Demonstration Program

- ✓ Addresses deployment issues
- ✓ Assesses
 benefits and
 costs through
 revenue-service
 operations

California-Oregon

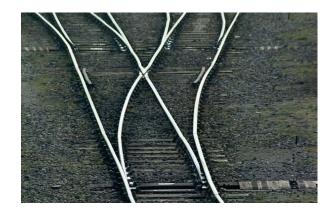
- BRT and HOV applications
- Lane guidance and precision docking
- Magnetic and GPS technologies

Minnesota

- Bus on highway shoulder application
- Steering assist
- DGPS technology

San Diego

- Bus on highway medians
- Lane guidance and collision warning Vision technology


Why VAA for BRT?

Problems and Challenges

- Right-of-way purchase costs are high and increasing
- Transit agencies seek safe and cost-effective transit systems
- Transit customers demand high-quality transit service

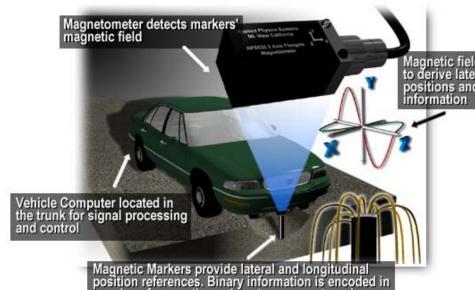
Potential Benefits

- Reduced right-of-way requirements and infrastructure costs (potential go-no-go decision)
- > Reduced accidents
- Reduced operating and maintenance costs
- Smoother ride and level boarding for faster travel and reduced dwell time
- "Rail-like" status
 - More attractive to choice riders
 - Encourage transit oriented development

Review of Previous Work

- R&D on AHS
- Lane Assist Systems for Bus Rapid Transit: Needs and Requirements
- Lane Assist Systems for Bus Rapid Transit: Technical Scan Tour to Europe
- Lane Assist Systems for Bus Rapid Transit: Interface Requirements

Review of Previous Work (Con'd)


- Automated Bus demonstration in 2003
 - -- To capture imagination of stakeholders and the public at large, and to energize public and private decision makers toward VAA
 - -- Three-bus platoon with fully automated functions

 Demonstration of Lane Assist and Precision Docking Systems at ITS World Congress 2005 in San Francisco

Magnetic Marker System

- Subject to interference
 - Missing magnets (detectable)
 - Unwanted magnets (detectable)
- Not compatible with crashed asphalt
- Require infrastructure installation with \$10-25k per lane mile
- No maintenance

a series of magnetic markers to represent roadway

geometry and other characteristics

PATH Development: Vision-based Guidance Technology

PATH DGPS/INS/Magnet System

Technology Selection

□ Criteria

- Operating conditions
 - Weather
 - road surface conditions
- Safety and reliability requirements
 - Reliability
 - Fail-Safe (sensing) vs. Fail-Soft (system)
- Performance requirements
 - Tracking and docking accuracy
 - Robustness
- Maintenance requirements
- Life cycle costs
- ☐ Selection:
- Magnetic marker reference/sensing as primary sensing technology (for both AC Transit and LTD applications)
- Combined with GPS to demonstrate fused sensing technologies (AC Transit application)

VAA Project Background

- Participants
 - FTA, Caltrans, Transit operators (AC Transit & Lane Transit District), UCB/PATH, Industrial subcontractors
- Two guidance technologies:
 - Magnetic sensing
 - DGPS based

Revenue Service (Deployment) →→

- Product Development (Robustness/Reliability)
- Safety: Redundancy Operations (HW/SW)
- Safety: Fault Detection/Operations—All aspects
- Customer Satisfaction (agencies, operators, passengers, contracts, ...)
- Re-design for deployment in almost every aspect
- Very little margin for mistakes

- Project goals
 - Demonstrate the technical merits and feasibility of VAA technology applications
 - Access benefits and costs
- Project durations
 - Component development, system integration and refinement primarily in the first two and half years
 - Revenue operation starts 2012

VAA Project Scope

LTD, Eugene Oregon

- 2.5 miles of single/double dedicated ROW
- One 60ft New Flyer BRT bus
- Functions to be tested:
 - Lane guidance for on dedicated BRT lane
 - Precision docking

AC Transit

- A 3 mile section of HOV lane, on the California Highway 92 freeway from Hesperian Blvd. to the San Mateo Bridge toll plaza
- Two MCI (50ft) coaches
- Functions to be tested:
 - Lane guidance on HOV lane
 - Guidance through toll bridge

Full range of VAA applications for BRT

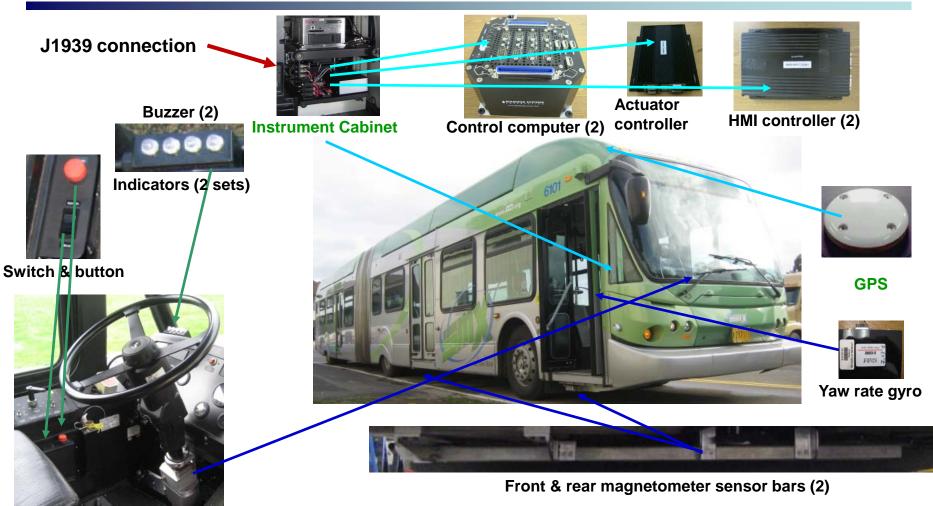
- Highway and urban BRT applications
- Precision docking and guidance
- Very low to highway speed (65 mph)
- Degrees of driver assist

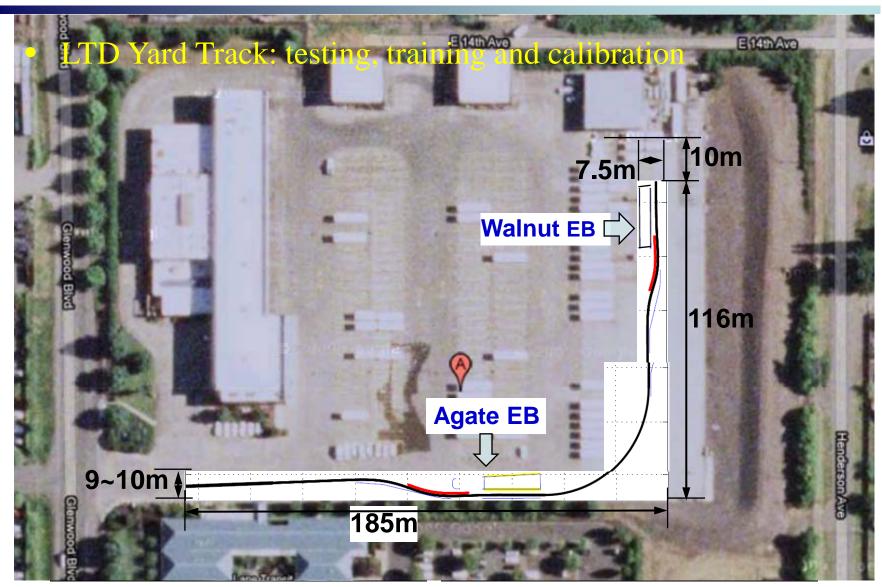
VAA FOT in Revenue Service

-- Design & Development for Deployment

- Revenue service elevates design requirements of automated control
 - Apply product development methodologies (reliability + maintainability)
 - Prefer to use embedded controllers and sensors
 - Emphasize on safety design (redundancy + fault detection/management)
 - Fail-safe and fail-soft
- Deployment requires professional installation
 - Installation not to degrade bus normal operations
 - Normal maintenance to be straightforward (visual inspection, fault reporting, data collection)
 - Most repairs could be conducted by transit personnel (spare part replacement)
- Deployment requires the handling of all operational modes
 - Work in all possible operational conditions and scenarios (different drivers, speeds, weather, traffic conditions, transition methods, ...)
 - Detect and manage all (known) faults
- Revenue service demands addressing any (new) issues
 - Work through operational and other issues (e.g., policy, legal, institutional) with transit agencies

VAA Test (Oregon): Lane Transit District Precision Docking + Lane Guidance

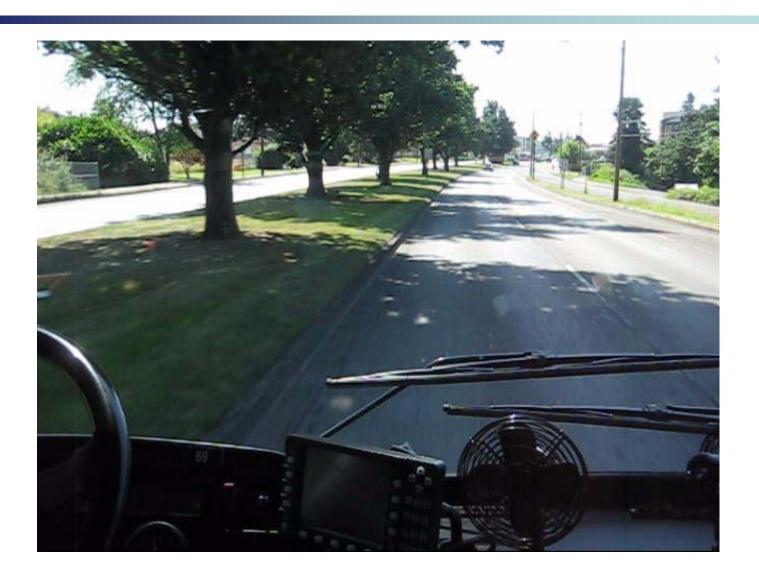




LTD Automated Bus (New Flyer, 60') VAA System Installation/Configuration

Steering actuator

LTD Automated Bus Yard Track Results: LTD First Test Drives



LTD Automated Bus Preliminary Results: Docking Performance on Replicated Stations

Testing on BRT Corridor

Summary

- The VAA FOT addresses deployment issues and benefits/costs through revenue-service operation
- California-Oregon team selected magnetic guidance as the primary guidance technology based on thorough evaluation and technical merits
- Full range of VAA applications for BRT is to be field tested
 - Highway and urban BRT application
 - Precision docking and guidance
 - Very low to highway speeds (65 mph)
- FOT will begin in the fall/winter of 2012

Questions

 Please contact Wei-Bin Zhang wbzhang@path.berkeley.edu