NIM: Navigation Investment Model

Ingrid K. Busch
Michael R. Hilliard

Center for Transportation Analysis
Oak Ridge National Laboratory
NIM in Brief

• Set of analysis tools that are used to evaluate the benefits of investments in a river system

• Developed for the Huntington District of the US Army Corps of Engineers, beginning in 1995

• Comprises three major modules:
 – Waterway Supply and Demand Model (WSDM)
 – Lock Risk Model (LRM)
 – Optimization Module
ORNIM Modules

- WSDM
- Traffic Levels
- LRM
- Investment Plan
- Reliability Estimates
- Optimization
Waterway Supply and Demand Module

...determines equilibrium waterway traffic levels under a given system configuration and forecast scenario for each year in the analysis period, taking into account scheduled lock closures.
WSDM: Calibration

The NIM calibration process involves modifying movement and network parameters to force WSDM to develop shipping plans that mimic historic navigation shipping plans.

- Movement dedication factors
- Tow size limits
- Towboat utilization factors

Statistics are compared to targets at projects.
WSDM Equilibrium Process

Each movement has its own cost curve and demand function:
WSDM Equilibrium Process

Each movement has its own cost curve and demand function:
WSDM Equilibrium Process

Each movement has its own cost curve and demand function:
WSDM Equilibrium Process

Each movement has its own cost curve and demand function:

- Price: p^*
- Tonnage: q^*
- Demand function
- Cost function
- Consumer surplus
For short closures (1 day, 3 days, 10 days, etc.), movements are expected to accept the resulting delays. What about longer closures?

NIM provides a mechanism to indicate the response of each movement to a closure.

- Length of closure
 - e.g., different response to 15 – 59 vs 60 – 180 days
- Range of years
 - e.g., different response in years 2020 and 2037
- Externality costs by category
 - e.g., truck accidents, emissions, delay
Lock Risk Module

...estimates the probability of each potential closure in each year of a component’s life, given equilibrium traffic levels, hazard functions and event trees.
Lock Risk Module

Monte Carlo Simulation: A series of dice rolls.
For each component, step through its lifetime:
In year y, does it fail?
 If no, increment y
 If yes, what is its failure level?
 what is its fix level?
Apply repair consequences.
Lock Risk Module Results

Probability of Closure

Year

Probability

180-days Main
240-days Main
365-days Main
Optimization Module

…systematically compares investments, selects the optimal investment strategy and summarizes the results.
Optimization Alternatives

- Cover a range of improvements:
 - Component replacement
 - Rehabs
 - Extensions

- Can change
 - Components
 - Transit times
 - Maintenance schedules / costs
 - Costs
Optimization Objective

- Net Economic Benefits
- Include
 - Cost reduction benefits
 - Shift-of-mode benefits
 - Shift-in-origin or -destination benefits
 - New movement benefits
 - Induced movement benefits
ORNIM Modules

- WSDM
- Traffic Levels
- LRM
- Investment Plan
- Reliability Estimates
- Optimization
Metrics Reported

• Tonnage accommodated
• Tonnage diverted
• Transit times
• Average delay
• Externalities estimates
 – Road damage
 – Safety
• Tonnage by river segment
National Needs → Metrics and Objectives

National Needs
- Reduced Cost
- Increased Profits
- Economic Growth
- Jobs
- Security
- Resiliency
- Safety
- Environment
- Energy reduction

Metrics
- Traffic accommodated
- Traffic diverted
- Average Delays
- Capacity utilization
- Transit times

Objective
- Net benefits