MARINE HIGHWAY TRANSPORT OF TOXIC INHALATION HAZARD (TIH) MATERIALS

NCFRP 17(1)

Annie Protopapas, Ph.D., P.E. Texas Transportation Institute

CMTS/TRB Conference Washington DC June 2012

Objective

• Investigate possibility of transporting greater volumes of chlorine and anhydrous ammonia via the marine highway system

Implemented research recommendation of

initial st Highwa

Motivation

- Public safety
 - Low frequency but high severity of large releases
 → high risk
 - e.g. several high profile railroad incidents
- Environmental concerns
- Eliminate rail TIH shipments (industry support)
- Marine highways are most efficient mode by several measures

Project Overview

- Limited literature; data & information "mining"
 - Operating environment
 - Market, logistics, regulations
 - US, Europe, Canada
 - Vessel requirements
 - Existing barge, rail, truck
 - Economics of expanded operations
 - Market conditions, transportation rates, capital requirements, risk
 - Obstacles
 - Potential courses of action
- Confidential interviews with broad spectrum of industry experts

Import terminals

Users, producers, distributors

Marine transport

- ~1.5 M tons of ammonia (anhydrous & solution) transported by barge in 2007; ~1.1M by rail
- Domestic production & imports ↑
- Current fleet 33 vessels
- Average distance 795 miles
- Typical shipment size 5,000 tons
- Few retail/mfg facilities on water
- Barge cost approximately \$14 million
- ~100K tons of chlorine in 2007; only 1 major receiving marine terminal; ~3.2M tons by rail

Ammonia facility & equipment costs

Capital Item	Cost
Conventional Production Facility	\$300 million
1500 tons/day with storage	
Pipeline 12" Diameter—1000 mi	\$240 million
Large Refrigerated Storage Terminal	\$20 million
30,000-ton capacity	
Pressure Storage Tanks—30,000 gal	\$150,000
\$5/gallon installed	
Ammonia Rail Tank Car	
Current design: 340 psi	\$118,000
Proposed design: 500 psi	\$135,000-\$150,000

Chlorine Producers

Findings - Obstacles

- 1. No coastwise movements exist (no Jones Act vessels)
- 2. Little water shipment of chlorine (2 operators)
- 3. Geographical dispersion works against marine shipment
- 4. Mature markets—no expansion opportunity
- 5. Rail competes on price along water routes
- 6. Capital requirements are high for new vessels/terminals; permit process is lengthy
- 7. Risk is high, even for water; no liability limits
- 8. Manufacturers are seeking substitutes
- 9. Co-location emphasized (eliminate transportation)
- 10. Lock and dam infrastructure condition is a concern

Potential Courses of Action

- 1. Limit liability to carriers & shippers; establish emergency funds e.g.
 - Oil Spill Liability Trust Fund
 - IMO Convention on Liability and Compensation for Damage in Connection with the Carriage of Hazardous and Noxious Substances by Sea
 - "Price-Anderson" protections in transportation of nuclear energy waste

2. Government incentives

- Grants/tax credits for acquisition of equipment or modification of infrastructure, facilities, supply chains
- e.g. encourage plant/facility location near marine terminals

Potential Courses of Action

- 3. Dilute ammonia
 - Would multiply actual volume by 5
- 4. Restrict movements through High Urban Threat Areas
- 5. Require safer equipment & technology
- 6. Repair & maintain marine infrastructure
- 7. Integrate marine component into national transportation planning
 - System resiliency, redundancy (national security)

Conclusion

Contact Information

Annie Protopapas
Associate Research Engineer
Multimodal Freight Transportation
a-protopapas@ttimail.tamu.edu
979-862-2709

Jim Kruse
Director
Center for Ports and Waterways
j-kruse@ttimail.tamu.edu
713-305-3501

