# Improved Resource Allocation for Dredge Scheduling and Procurement

Heather Nachtmann, Ph.D. Chase Rainwater, Ph.D. Edward Pohl, Ph.D. Department of Industrial Engineering University of Arkansas

Kenneth Ned Mitchell. Ph.D. Coastal and Hydraulics Laboratory U.S. Army Engineer Research and Development Center

> CMTS/TRB Conference June 2012 – Washington, D.C.

# **Project Overview**

- Each year the U.S. Army Corps of Engineers (Corps) dredges hundreds of navigation projects through its fleet of government dredges and individual contracts with private industry
- Decision of assigning dredging resources to navigation projects is predominately being made at the District-level through lowest-cost contracts
- Efficiencies can be gained by studying the dredging project portfolio at the system-level
- Goal is to develop a system-level decision support approach that optimizes the decision of allocating dredge resources to projects under necessary system constraints such as environmental windows, dredge resource cost and availability, and District-level project requirements

## **Research Objective**

- To minimize the aggregate cost the Corps incurs to complete their dredging portfolio while achieving compliance and desired system performance
  - What is optimal dredging resource mix (government vs. private)?
  - What are optimal project-resource assignments?
  - Given a finite budget and limited dredging resources, what is the optimal dredging project sequence (including project duration dates)?
  - How does future placement of new environmental windows and potential relaxation of overly restrictive environmental windows impact system efficiency?

#### **Environmental Windows**

- "Temporal constraints placed upon the conduct of dredging or dredged material disposal operations in order to protect biological resources or their habitats from potentially detrimental effects" (Dickerson, et al., 1998)
- Environmental windows are intended to minimize environmental impacts by limiting the conduct of dredging activities when biological resources are not present or are least sensitive to disturbance
- USACE surveys indicate that approximately 80% of all Civil Works O&M dredging projects are subject to some form of environmental window constraint

# **Dredge Fleet Scheduling & Assignment**

Minimizing Demobilization and Mobilization Travel Time/Distance

Subject to

- Environmental Windows: The EPA and state departments of environmental quality place restrictions on when dredging can take place due to migration patterns of turtles, birds, fish, and other wildlife.
- Resources Limitations: Not all dredge equipment can complete every type of project and the amount of dredge equipment available is limited.
- Equipment Productivity: Dredge equipment has varying productivity rates that affect project completion times and environmental impacts

# Sets

- Require the following set definitions to account for the key components of our scheduling problem
  - D (indexed by d) be the set of dredging equipment resources available in each time period;
  - T (indexed by t) be the set of consecutive time periods comprising the planning horizon;
  - J (indexed by j) be the set of dredge jobs that need to be completed over the planning horizon;
  - $W_j$  (indexed by w) be the set of environmental windows applicable to dredging job j.

#### **Parameters**

- Elements of the various sets contain specific properties that drive the decisions made by our model
- $b_w$  is the beginning of environmental window  $w \ (w \in W_j; j \in J);$
- $e_w$  is the end of environmental window  $w \ (w \in W_j; j \in J);$
- $t_j^d$  is the time (in days) that it takes for dredging equipment piece  $d \ (d \in D)$  to complete  $j \ (j \in J)$ ;
- $t_{j,j'}^m$  is the time (in days) that it takes to move dredging equipment piece  $d \ (d \in D)$  from job site j to job site  $j' \ (j \in J; j' \in J; j \neq j')$ .

### **Decision Variables**

- $y_{dj}$  is a binary variable with value 1 if dredging equipment piece d is used to complete job j;
- $z_{djt}^{-}$  is a binary variable with value 1 if dredging equipment piece d begins work on job j in period t;
- $z_{djt}^+$  is a binary variable with value 1 if dredging equipment piece d ends work on job j in period t;
- $\alpha_{dj}$  is the day that dredging equipment piece d begins work on job j;
- $\beta_{dj}$  is the day that dredging equipment piece d ends work on job j.

# **Objective Function**

- Minimize the number of dredging days
  - Equivalent to minimizing the cumulative span across all jobs

 $\sum \sum \left(\beta_{dj} - \alpha_{dj}\right)$  $j \in J \ d \in D$ 

#### Constraints

- Single Assignment Restriction
  - Each job must be assigned to a single piece of equipment

$$\sum_{d \in D} y_{dj} = 1 \quad j \in J$$

- Specifying Start/End of Job
  - If job *j* is satisfied by equipment *d*, exactly one start and end day for that work must be specified for that assignment

$$\sum_{t \in T} z_{djt}^{-} = y_{dj} \quad j \in J; \ d \in D$$
$$\sum_{t \in T} z_{djt}^{+} = y_{dj} \quad j \in J; \ d \in D$$

#### **Constraints (cont.)**

• Translating Binary Indicator Dates to Integers

$$\alpha_{dj} = \sum_{t \in T} z_{djt}^{-} \times t \quad j \in J; \ d \in D$$
$$\beta_{dj} = \sum_{t \in T} z_{djt}^{+} \times t \quad j \in J; \ d \in D$$

- Feasible Job Spans
  - If job *j* is satisfied by equipment *d*, the time between the start and end of that job must be consistent with time required for the equipment to complete job *j*

$$\beta_{dj} - \alpha_{dj} = t_j^d y_{dj} \quad j \in J; \ d \in D$$

### **Constraints (cont.)**

- Equipment Travel Time
  - If job *j* is concluded in period *t*, by equipment *d*, then equipment *d* cannot begin another job, *j*', until an appropriate number of periods have passed (i.e. the time to travel to job *j*')

$$\sum_{t'=t}^{t+t_{jj'}^m} z_{dj't}^- \le 1 - z_{djt}^+ \quad j \in J; \ j' \in J; \ j \neq j'; \ d \in D; \ t \in T$$

- Environmental Windows
  - Must prevent a job from beginning, or ending, on a day that overlaps with an environmental window

$$\sum_{d \in D} \sum_{t=b_w}^{c_w} (z_{djt}^- + z_{djt}^+) = 0 \quad w \in W_j; \ j \in J$$

### **Current Model Facts**

- Model complexities create a difficult problem to solve
- For a 30 job, 5 resource (equipment), 365 day planning problem
  - # of decision variables is 109,950
  - # of constraints that must be considered is over 1.5 million (without even considering the environmental restrictions)

## **Sample of 10 Dredging Projects**



**Dredging Projects** 

- 1 Barnegat Inlet-000950
- 2 Calc River And Pass-002440
- 3 Chesapeake And Delaware Canal-008160
- 4 Grays Harbor And Chehalis River-006770
- 5 Miss River Br To Gulf-000068
- 6 Mobile Harbor-011670
- 7 Morro Bay Harbor Ca-011860Ocean City Harbor And Inlet And Sinepuxent-
- 8 073567
- 9 Pascagoula Harbor-013680
- 10 Philadelphia To The Sea-

## **Sample Dredge Project Distance Matrix**

|                | Dredge Project (Distances in Nautical Miles) |      |      |      |      |      |      |      |      |      |
|----------------|----------------------------------------------|------|------|------|------|------|------|------|------|------|
| Dredge Project | 1                                            | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   |
| 1              | 0                                            | 2077 | 114  | 7666 | 2195 | 1772 | 6705 | 419  | 1847 | 87   |
| 2              | 2077                                         | 0    | 2104 | 5589 | 423  | 458  | 4628 | 1886 | 409  | 2191 |
| 3              | 114                                          | 2104 | 0    | 7693 | 1994 | 1571 | 6732 | 218  | 1646 | 87   |
| 4              | 7666                                         | 5589 | 7693 | 0    | 6012 | 6047 | 961  | 7475 | 5998 | 7780 |
| 5              | 2195                                         | 423  | 1994 | 6012 | 0    | 348  | 5051 | 1776 | 273  | 2081 |
| 6              | 1772                                         | 458  | 1571 | 6047 | 348  | 0    | 5086 | 1353 | 75   | 1658 |
| 7              | 6705                                         | 4628 | 6732 | 961  | 5051 | 5086 | 0    | 6514 | 5037 | 6819 |
| 8              | 419                                          | 1886 | 218  | 7475 | 1776 | 1353 | 6514 | 0    | 1428 | 305  |
| 9              | 1847                                         | 409  | 1646 | 5998 | 273  | 75   | 5037 | 1428 | 0    | 1733 |
| 10             | 87                                           | 2191 | 87   | 7780 | 2081 | 1658 | 6819 | 305  | 1733 | 0    |

### **Sample Dredge Resource Data**

|                 | Productivity Rate |
|-----------------|-------------------|
| Dredge Resource | (CY dredged/day)  |
| А               | 5,000             |
| В               | 24,867            |
| С               | 1,774             |
| D               | 9,879             |
| Ε               | 3,721             |

# **Sample Dredge Project Data**

|         | Cubic     | Restricted   | Restricted | # of       |
|---------|-----------|--------------|------------|------------|
| Project | Yards     | Period Begin | Period End | Restricted |
| Number  | Dredged   | Date         | Date       | Days       |
| 1       | 136,230   | 18-May       | 13-Dec     | 209        |
| 2       | 1,573,729 | 14-Mar       | 18-Dec     | 279        |
| 3       | 67,221    | 14-Mar       | 18-Dec     | 279        |
| 4       | 357,149   | 1-Jan        | 20-Mar     | 78         |
|         |           | 15-May       | 31-Dec     | 230        |
| 5       | 404,418   | 1-Jan        | 15-Aug     | 226        |
|         |           | 27-Oct       | 31-Dec     | 65         |
| 6       | 11,329    | 14-Mar       | 18-Dec     | 279        |
| 7       | 156,000   | 14-Feb       | 29-Sep     | 227        |
| 8       | 19,505    | 22-Mar       | 26-Aug     | 156        |
| 9       | 112,574   | 14-Mar       | 18-Dec     | 279        |
| 10      | 25,200    | 18-May       | 13-Dec     | 209        |

# **Optimal Dredge Project-Resource Assignment**

| Project | Dredge     | Dredge   | Assigned |
|---------|------------|----------|----------|
| Number  | Start Date | End Date | Resource |
| 1       | 18-Jan     | 1-Feb    | D        |
| 2       | 5-Jan      | 10-Mar   | В        |
| 3       | 1-Jan      | 8-Jan    | D        |
| 4       | 21-Mar     | 5-Apr    | В        |
| 5       | 26-Aug     | 12-Sep   | В        |
| 6       | 25-Dec     | 27-Dec   | D        |
| 7       | 30-Sep     | 7-Oct    | В        |
| 8       | 3-Sep      | 5-Sep    | D        |
| 9       | 19-Dec     | 24-Dec   | В        |
| 10      | 1-Jan      | 3-Jan    | В        |

Total Dredge Days: 135

### **Relaxed Dredge Project Data**

|         | Cubic     | Restricted | Restricted | # of        |
|---------|-----------|------------|------------|-------------|
| Project | Yards     | Period     | Period End | Restricted  |
| Number  | Dredged   | Begin Date | Date       | Days        |
| 1       | 136,230   | 1-Jun      | 30-Nov     | 182         |
| 2       | 1,573,729 | 1-Apr      | 30-Nov     | <b>2</b> 43 |
| 3       | 67,221    | 1-Apr      | 30-Nov     | <b>2</b> 43 |
| 4       | 357,149   | 1-Jan      | 15-Mar     | 73          |
|         |           | 31-May     | 31-Dec     | 214         |
| 5       | 404,418   | 1-Jan      | 31-Jul     | 211         |
|         |           | 1-Nov      | 31-Dec     | 60          |
| 6       | 11,329    | 1-Apr      | 30-Nov     | 243         |
| 7       | 156,000   | 1-Mar      | 15-Sep     | 198         |
| 8       | 19,505    | 1-Apr      | 15-Aug     | 136         |
| 9       | 112,574   | 1-Apr      | 30-Nov     | <b>2</b> 43 |
| 10      | 25,200    | 1-Jun      | 30-Nov     | 182         |

Note: # of Restricted Days per Job relaxed by ~13%

# **Optimal Relaxed Dredge Project-Resource Assignment**

| Project | Dredge     | Dredge End | Assigned |
|---------|------------|------------|----------|
| Number  | Start Date | Date       | Resource |
| 1       | 1-Jan      | 15-Jan     | D        |
| 2       | 26-Jan     | 31-Mar     | В        |
| 3       | 27-Dec     | 30-Dec     | В        |
| 4       | 29-Apr     | 15-May     | В        |
| 5       | 10-Oct     | 27-Oct     | В        |
| 6       | 29-Dec     | 31-Dec     | D        |
| 7       | 12-Nov     | 19-Nov     | В        |
| 8       | 1-Jan      | 2-Jan      | В        |
| 9       | 12-Dec     | 17-Dec     | В        |
| 10      | 16-May     | 18-May     | В        |

Total Dredge Days: 130

### **Conclusions and Future Work**

- Developed a preliminary model formulation for the dredge fleet scheduling and assignment problem
- Future work
  - Consider mob-demob time including travel
  - Understand realities of dredge scheduling decision process in order to reduce solution space
  - Develop innovative solution approach
  - Scale to realistic problem size
  - Study impacts of system behavior
    - Environmental windows