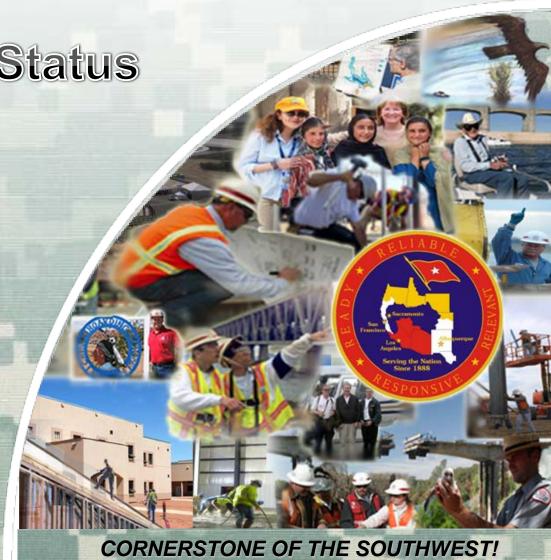
Navigation/Coastal Structure Asset Management

Overview and Status

George Domurat

Chief, Operation/Regulatory Division San Francisco, CA


CNS AM PT Leader

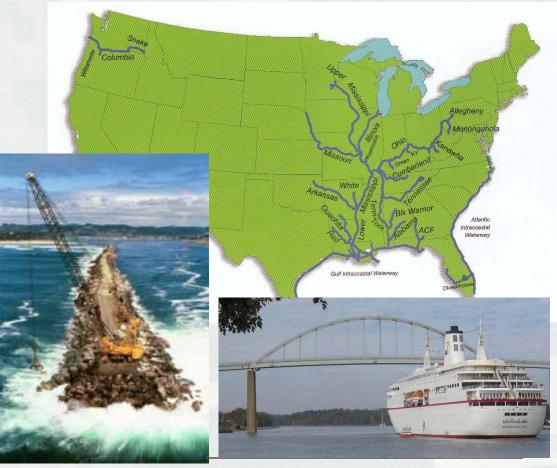
George.W.Domurat@usace.army.mil

US Army Corps of Engineers
BUILDING STRONG

®

Corps Navigation Mission

Provide safe, reliable, efficient, effective and environmentally sustainable waterborne transportation systems for movement of commerce, national security needs, and recreation.



USACE Navigation Assets

COASTAL NAVIGATION
1067 Navigation Projects
19 lock chambers
13,000 miles of channels
929 navigation structures
844 bridges

INLAND NAVIGATION
27 Inland River Systems
207 lock chambers @ 171 lock sites
12,000 miles of inland river channels

FY13 O&M Budget Coastal Navigation

Category	Inventory	Commerce	FY13 O&M Projects	FY13 O&M Funds	FY12 O&M Proj.	FY12 O&M Funds
High Use	59	90%	56	66%	54	62%
Moderate Use	100	9%	52	19%	61	25%
Low Use	908	1%	63	5%	41	6%
Other				10%		7%
Total	1067	100%	171	100%	156	100%

[•] Prior to FY12 we adjusted to budget decreases by minor reductions at almost all nav projects.

[•] The low use category was proposed as a program for 50% reduction in the FY12 budget development; This was a 50% dollar reduction, not a 50% projects reduction

^{• &#}x27;Other' includes Nav R&D, Project Condition Surveys, Remaining Items, etc.

Asset Management is a New Way of Doing Business

- What is AM today?
 - -Discipline business approach
 - -Or, a consistent way to manage our stuff
- What is new about AM?
 - "holistic integration"
 - Or, taking a corporate view and approach

What is USACE AM Vision

"A persistent catalyst for holistically integrating and enhancing the sustainment, restoration, modernization, and disposition of USACE water resources to continually serve the Nation."

USACE Asset Management

Inventory (what you own)

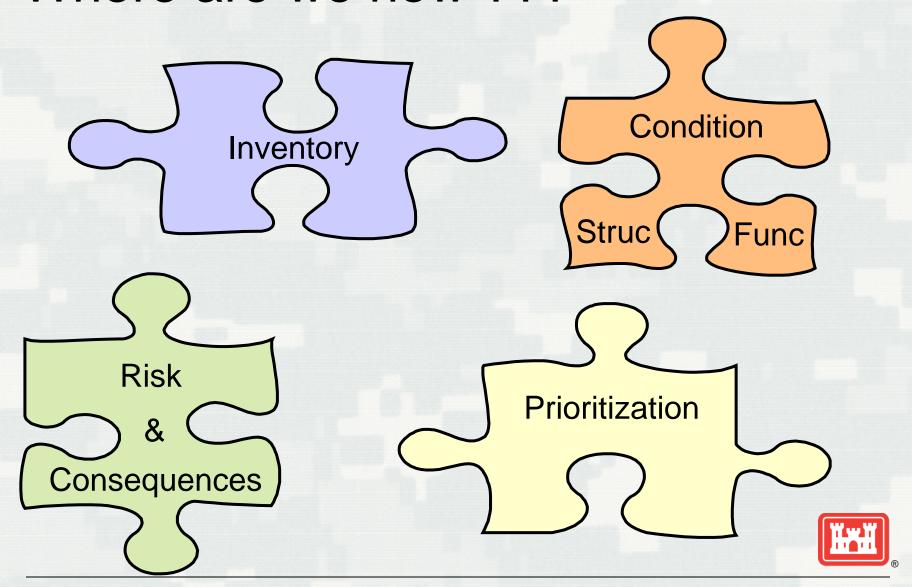
Indentify Condition (what kind of shape is it in, is it functioning)

Asset Management Strategy (min risk, max return)

Coastal Navigation Structures (CNS) Asset Management

The Challenge:

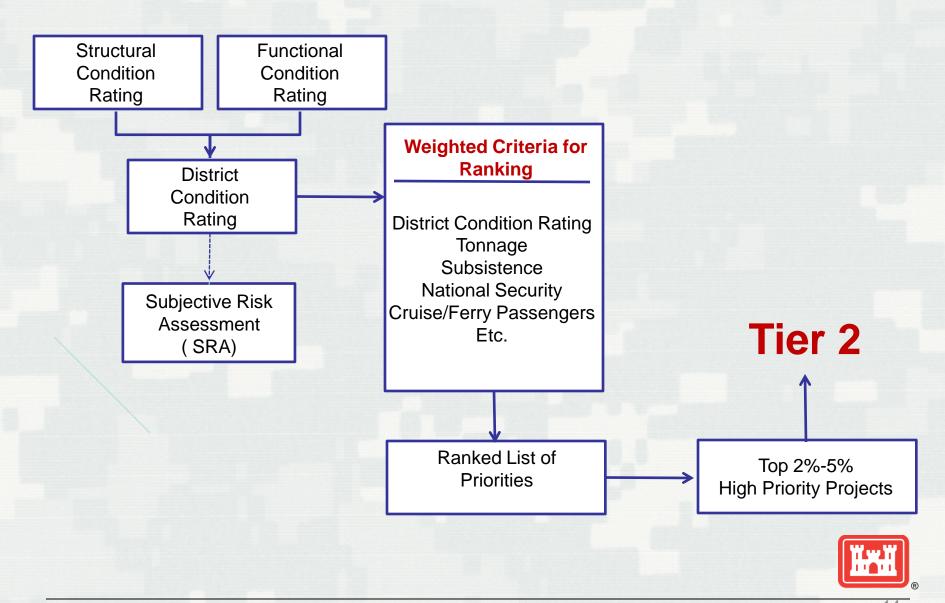
- CNS portfolio: approximately 1070 structures, such as breakwaters and jetties.
- Most structures over 50 years old (some >100 yrs)
- Districts using inconsistent methodologies to prioritize and fund repairs
- Getting the best value or reduction in risk (i.e. riskinformed) for the dollars invested


CNS Asset Management

What do we need to do -

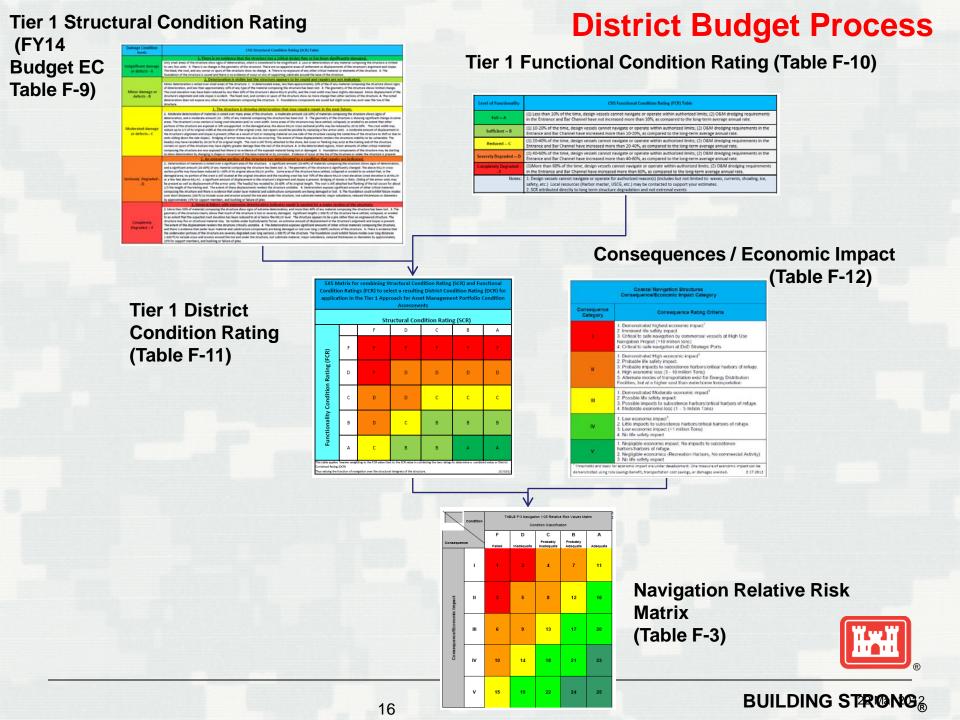
Develop a rational, <u>consistent</u>, <u>transparent</u> and <u>repeatable</u> method for assessing condition and risk for coastal navigation structures.

Where are we now ???


Greatest Challenge is coupling Structural Integrity with Functionality for Complete Condition Assessment

Establish Simple Relationships Between Structure Condition, Function, and Economic Consequences

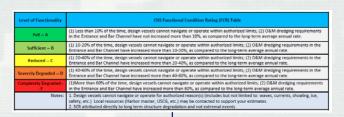
- Established transportation cost savings as a function of water depth at all GL commercial harbors/channels, also know cost to shippers associated with delays
- Relationship between crest height/structure cross section & structure function (wave attenuation)
- Relationship between wave climate and vessel loading (?), delays to vessel movements in a harbor, damages to moored vessels
- Relationship between structure condition and harbor shoaling(?)
- Can function and consequences be modeled, applied consistently, and generalized in meaningful ways to allow application on the scale required for asset management?


CNS Asset Management Tier 3 Tier 1 Tier 2 (Assessing) (Screening) (Investing) Top 2%-5% **High Priority Projects** ORA OCA Risk-Informed Prioritization **Structures** by District Structural and Functional 1070 Coastal Navigation **Decision Ranked List of Priorities** Structures **Condition Rating** o **Operational Condition** Investment **Weighted Criteria for** List **Operational Risk** Ranking **Assessment Assessment** Ranked **District Condition Rating Tonnage Subsistence National Security Cruise/Ferry Passengers** Etc.

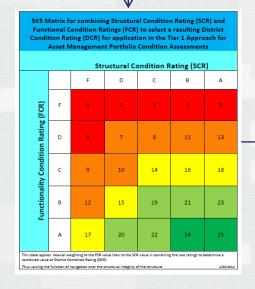
Tier 1 - CNS AM

CNS AM Tier 1

- Screening Level Process
- •Full Tier 1 includes both District Condition Rating (DCR) and CSMART
- •FY14 Budget Process employs 2 methodologies to prioritize CNS's for different purposes.
 - Partial Tier 1 District Budget Process which supports
 OFA submittal will combine DCR with a tabular ranking of
 Consequences / Impacts to determined 1-25 Navigation
 Relative Risk Ranking.
 - Full Tier 1 HQ AM will use the results DCR and CSMART to identify candidates for and fund Tier 2 OCA/ORA efforts.
- Districts are required to use Tier 1 DCA Tool to enter Ratings and supporting information (in addition to Budget EC spreadsheet)


HQ AM Budget Process for CNS OCA/ORA Effort

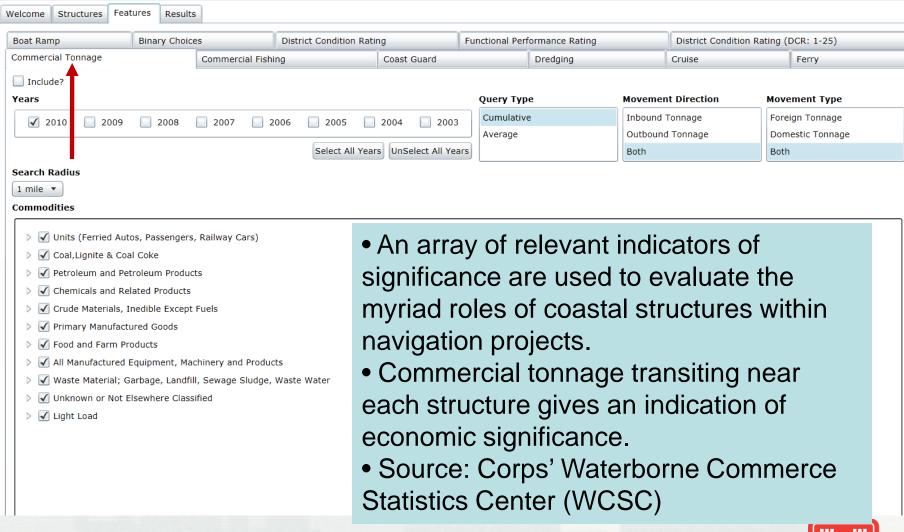
Tier 1 Structural Condition Rating


(Table F-9)

Tier 1 Functional Condition Rating (Table F-10)

Tier 1 District Condition Rating (This table is NOT shown in FY14 Budget EC)

CSMART

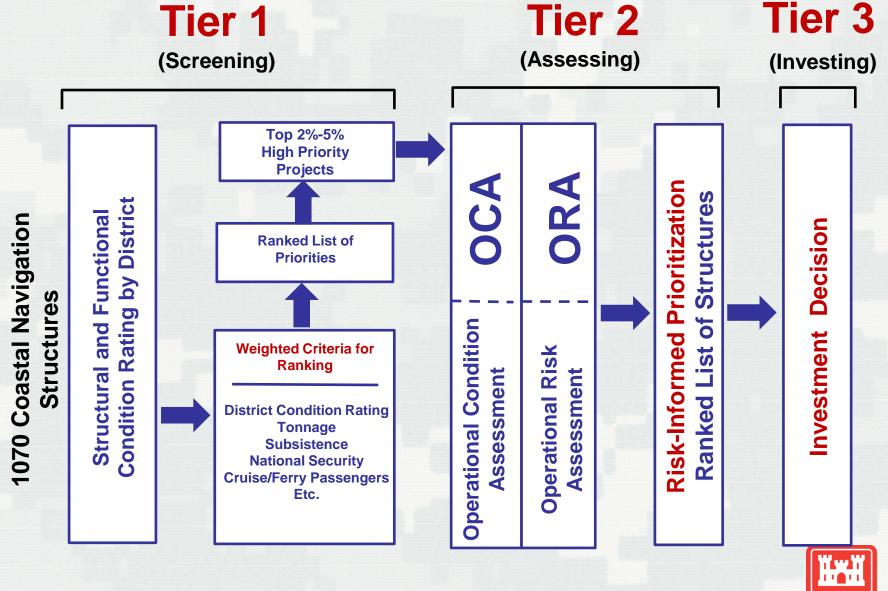

CSMART

Coastal Structures Management, Analysis, and Ranking Tool

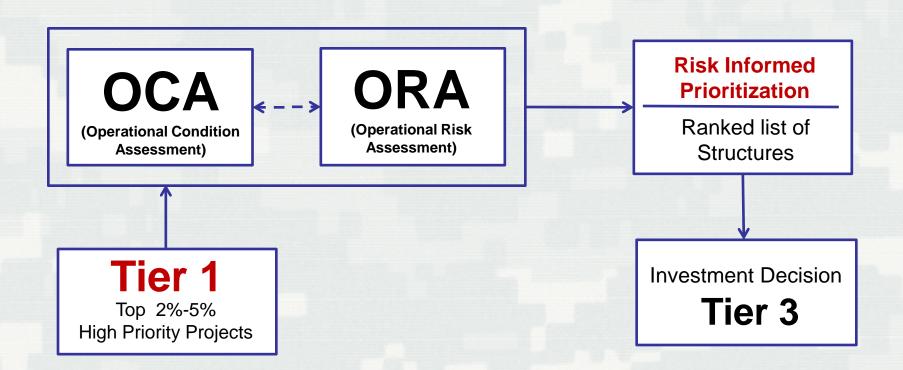
- Developed as part of the Coastal Inlets Research Program (CIRP)
- Vision: Optimally prioritize O&M funding such that benefits to the Nation are maximized and decisions can be defended.
 - ➤ For FY14 Tool for HQ AM to prioritize CNS OCA's/ORA's only.
- •Rank the CNS in terms of those with the greatest risk.
- •Metrics in CSMART include (but are not limited to):
 - District Condition Rating (DCR)
 - Total annual commercial tonnage supported (NDC)
 - Annual commercial fish landings supported (NOAA-NMFS)
 - Cruise and ferry passengers supported (USDOT)
 - Coast Guard Incident reports
 - Project classifications such as Harbor of Refuge and Subsistence Harbor.
- ERDC Technical Note:

http://chl.erdc.usace.army.mil/library/publications/chetn/pdf/chetn-iii-80.pdf

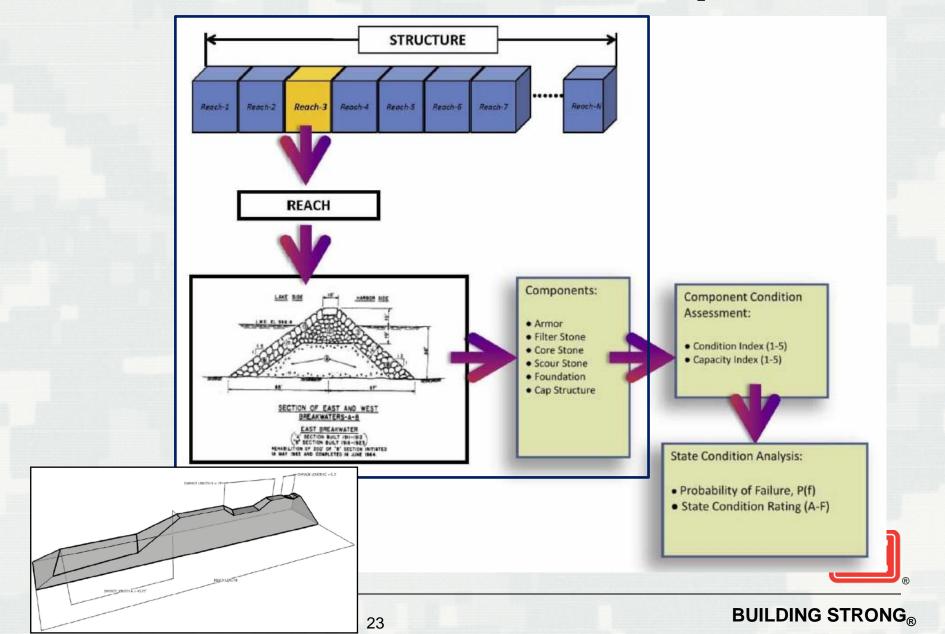
CSMART Features


CSMART Rankings

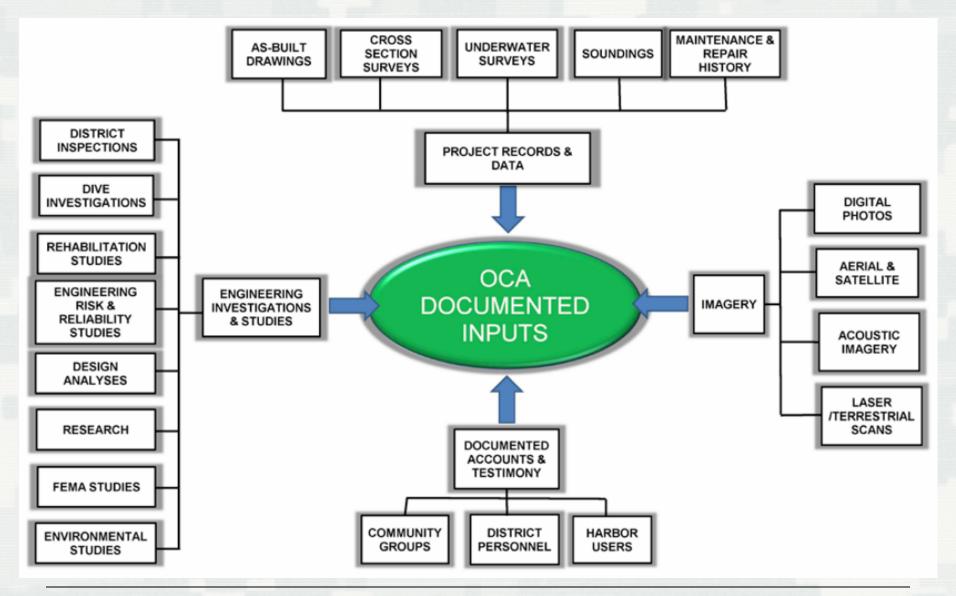
✓ Metrics									
weighti 🕜	ngs and Rank	ing Methods							
Structure Rank	Structure Score	District	Project	Structure	Commercial Tonnage (2)	Commercial Tonnage Rank	Commercial Fishing Dollars (1)	Commercial Fishing Rank	District Cor
1	0.88231	Portland	Columbia River at Mouth	MCR Jetty A	44,745,096	23	\$15,860,000	77	7
2	0.87498	Portland	Columbia River	West Channel Pile Dikes (4), Columbia River	44,745,096	23	\$15,860,000	77	10
3	0.87498	Portland	Columbia River	Chinook and Sand Island Pile Dikes (5), Columb	44,745,096	23	\$15,860,000	77	10
ŀ	0.86749	New England	Portland Hbr, ME	Portland Hbr, ME - Inner Harbor (North) Breakw	21,677,258	40	\$25,160,000	56	14
5	0.75899	Portland	Coos Bay	Coos Bay North Jetty, Oregon	1,586,404	141	\$20,400,000	72	7
5	0.75804	Seattle	Grays Harbor/Markham	Gray's Harbor South Jetty, Washington	1,679,991	133	\$33,820,000	27	15
,	0.74703	Jacksonville	Jacksonville Harbor	Jacksonville Harbor North Jetty, Florida	18,588,288	44	\$11,040,000	86	21
3	0.74703	Jacksonville	Jacksonville Harbor	Jacksonville Harbor South Jetty, Florida	18,588,288	44	\$11,040,000	86	21
)	0.74571	Seattle	Westhaven Cove	Westhaven Cove Small-Boat Basin Breakwater A	1,679,991	133	\$33,820,000	27	19
.0	0.74571	Seattle	Westhaven Cove	Westhaven Cove Revetment, Washington	1,679,991	133	\$33,820,000	27	19
.1	0.74145	Galveston	Galveston Harbor	Galveston Harbor South Jetty, Texas	218,858,528	2	\$0	206	10
.2	0.74111	Galveston	Sabine Pass	Sabine Pass East Jetty, Texas	78,634,070	9	\$0	206	7
13	0.74111	Galveston	Sabine Pass	Sabine Pass West Jetty, Texas	78,634,070	9	\$0	206	7
.4	0.73759	New England	Portland Hbr, ME	Portland Hbr, ME - Spring Point (South) Breakwa	21,677,438	39	\$25,160,000	56	24
15	0.72712	Galveston	Galveston Harbor	Galveston Harbor North Jetty, Texas	218,858,528	2	\$0	206	14
.6	0.72709	Portland	Columbia River at Mouth	MCR North Jetty, Oregon and Washington	44,745,096	23	\$0	206	3
.7	0.72576	Portland	Columbia River at Mouth	MCR South Jetty, Oregon and Washington	44,745,096	23	\$0	206	7
.8	0.71648	Detroit	Milwaukee Harbor	North Breakwater	2,495,851	110	\$203,548	129	10
9	0.6982	Soloo	tad matric	oc are then accions	d lina	or woi	htings	111	24
.0	0.6982	Selec	tea metho	es are then assigne		ai weig	Julings	111	24
1	0.6982	v the	user to re	flect decision make	er prior	rities a	nd	111	24
	r					itios a			


structures for O&M outlays.

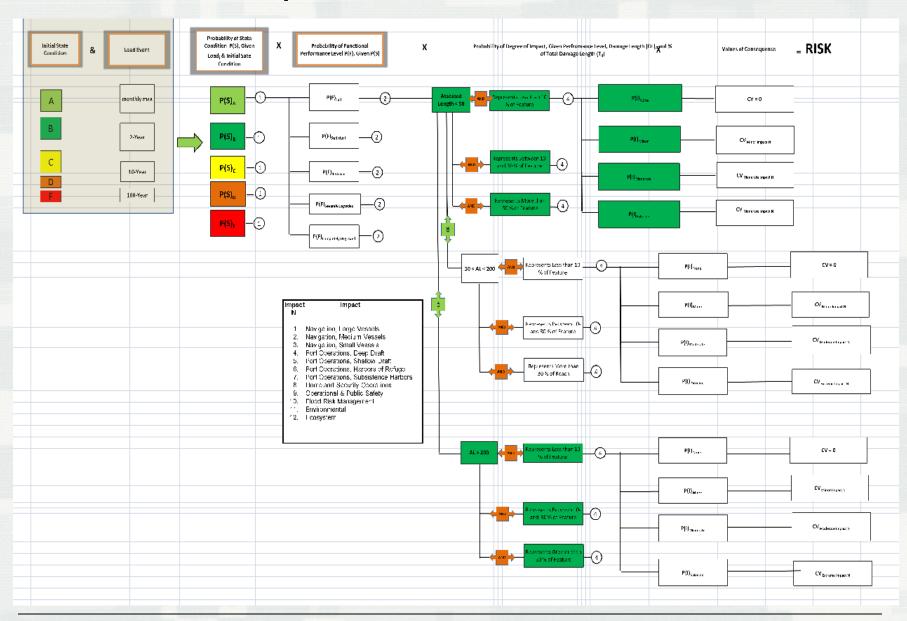
CNS Asset Management Tier 1 Tier 2



Tier 2 - CNS AM



OCA/ORA Model Development

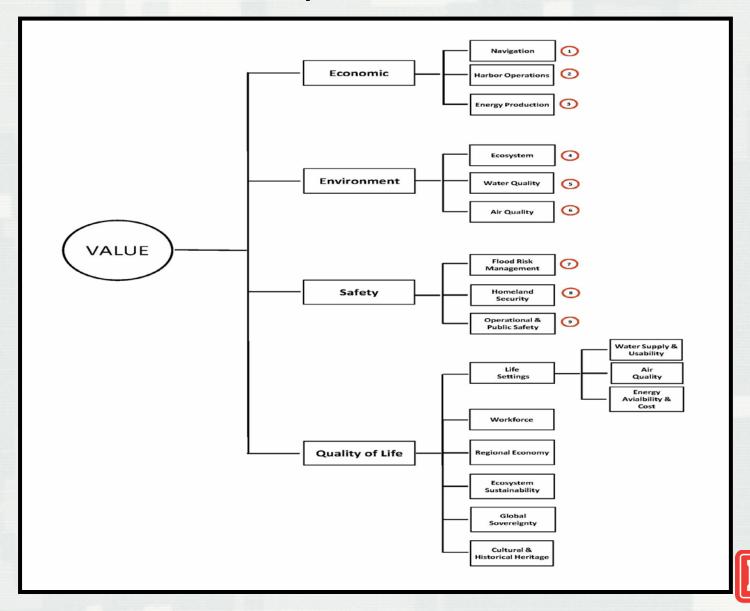

Typical Model Documentation Inputs

Condition Index Guide

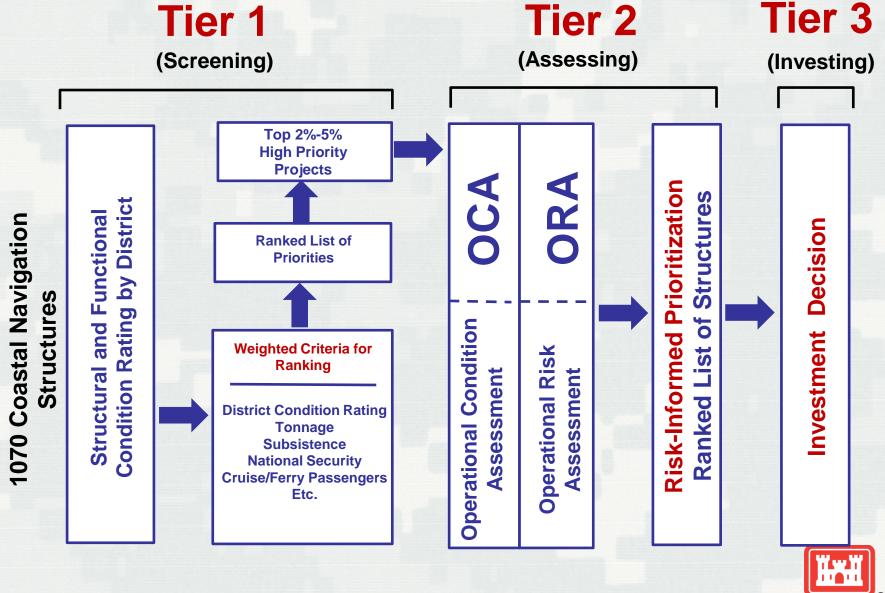
	CONDITION INDEX (CDI) GUIDE					
CDI Indicators				ators		
CDI Value	Condition Index Definition	Deterioration	Damage	Loss of Material in Damage Length	Influence on Other Components	
1	INSIGNIFICANT: Deterioration or damage relative to the component is; None or insignificant.	□ None	□ None	□ 0%	□ None	
2	MINOR: Deterioration or damage relative to the component is; Is in early stage of progression. No material has been lost. Does not influence other components adversely.	☐ Minor Weathering ☐ Minor Material Distress ☐ No Material Breakdown	□ Minor	□ Less than 5%	□ Affords complete support of overlying components/ materials, or □ Affords complete protection to underlying vulnerable components	
3	significant: Deterioration or damage relative to the component is; Is in advanced stage of progression. Significant amounts of material lost over the Damage Length. Significantly influences other components.	□ Moderate Weathering □ Moderate Material Distress □ Moderate Material Breakdown	□ Significant	□ Between 5 and 25%	☐ Affords sufficient support of overlying components/ materials, or ☐ Affords sufficient protection to underlying components	
4	CRITICAL: Deterioration or damage relative to the component is; Is in late stage of progression. Critical amounts of material lost over the Damage Length. Extremely influences other components.	□ Extreme Weathering □ Extreme Material Distress □ Extreme Material Breakdown	□ Extreme	□ Between 25 and 75%	□ Affords no or inadequate support of overlying components/materials, or □ Affords no or minimal protection to underlying components	
5	EXTREME: Deterioration or damage relative to the component is; Is in an extreme stage of progression. Extreme loss material over the Damage Length. Completely influences other components.	□ Complete Material Breakdown	□ Catastrophic	□ Between 75 and 100%	☐ Component no longer contributes to the support or protection of any other components or the structure as a whole.	

Operational Risk Assessment

State Condition Scale


State Condition	Resistance to Load and Damage
A (EXCELLENT)	Resistance to Load - Will withstand loads for any common or extreme design load event. Resistance to Damage - Will not experience damage under any common or extreme design load events.
B (GOOD)	Resistance to Load - Will withstand loads for any common or extreme design load events. Resistance to Damage - May experience minor damage under extreme design load events, but not common events.
C (POOR)	Resistance to Load - Will withstand most common design load events, but not loading from extreme design load events. Resistance to Damage - Could sustain minor damage under common design load events; but would sustain moderate damage under extreme design load events.
D (INADEQUATE)	Resistance to Load - Will not withstand any common or extreme design load events. Resistance to Damage - Will sustain moderate damage from common design load events; but would sustain substantial damage from extreme design load events. There is a possibility for catastrophic failure of the structure under extreme load.
F (FAILING)	Resistance to Load - Will not withstand any design loads. Resistance to Damage - Will sustain extreme damage under any loads.

Capacity Index Guide


	CAPACITY INDEX (CPI) GUIDE		
CPI Value	Capacity Index Definition		
1	FULL: The structure's overall capacity to resist design loads and subsequent damage, given the component assessed condition is expected to be; Unaffected by any anticipated load events.		
2	SUFFICIENT: The structure's overall capacity to resist design loads and subsequent damage, given the component's assessed condition is expected to be; Unaffected within anticipated spectrum of Common Design Load Events. Unaffected within anticipated spectrum of Extreme Design Load Events		
3	REDUCED: The structure's overall capacity to resist design loads and subsequent damage, given the component's assessed condition is expected to be; Unaffected within anticipated spectrum of Common Design Load Events. Affected by the most Extreme Design Load Events Minor to Moderate Damage from the most Extreme Design Load Events.		
4	SEVERLEY COMPROMISED: The structure's overall capacity to resist design loads and subsequent damage, given the components assessed condition is expected to be; Unaffected by only the lowest Common Design Load Events. Affected by higher Common Design Load Events Affected by all Extreme Design Load Events Moderately Damaged by lowest Common Design Load Events. Extensively Damaged by all Extreme Design Load Events.		
5	FULLY COMPROMISED: The structure's overall capacity to resist design loads and subsequent damage, given the component's assessed condition is expected to be; Fully affected by any loads. Progressively damaged by any loads		

Consequences and Value



CNS Asset Management Tier 1 Tier 2

So Where Are We?

- Continue to work on the puzzle pieces
- Provide products to the fields as soon as developed
- Make improvements to the current process as defined in the Budget EC – Tier 1
- Beta Test OCA and ORA Processes
- Link the puzzle pieces as soon as possible

Rational, consistent, transparent and repeatable method for assessing condition and risk for coastal navigation structures.

MILESTONES

- Dec 2011 QC of Initial Screening Beta Test
- Jan 2012 ORA process improvement meeting
- Feb 2012 Initial Screening Beta Test <u>completed</u> by the field (Tier 1 process completed)
- Feb 2012 First Beta Test OCA
- April 2012 Field implements Initial Screening methodology
- April 2012 Second Beta Test OCA with ORA Team Members and repeatability assessment
- June/July 2012 Tier 1 process completed per BY14 Budget EC and QA/QC
- Aug 2012 Third Beta Test Armor units, Draft ORA Process
- Aug 2012 Final Draft OCA Process for Rubblemound Structures
- Sep 2012 Final OCA Process
- Sep 2012 First Full OCA, Second Beta ORA Test
- Nov 2012 Second Full OCA with ORA
- FY 2013 Multiple OCAs, goal to complete all required

Discussion & Questions?

