Performance Measurement for Maritime Systems and Beyond

Patrick T. Hester, Ph.D. Thomas J. Meyers, Ph.D.

June 27, 2012

I D E A FUSION

Diagnosing the Marine Transportation System: Measuring Performance and Targeting Improvement

Agenda

- The Problem
- The Vision
- □ The AID Methodology
- Methodology Components
- Executing the Plan
- Introductory Example
- Marine Transportation System Example
- Lessons Learned

The Problem

- The past two decades have witnessed development and deployment of enterprise performance measurement systems (PMSs such as Balanced Scorecard and Performance Prism) far superior in scope to their predecessors
- New systems, for example, include notions such as customer satisfaction that complement traditional financially-driven systems
- Most PMSs still address *current* and *generalized* enterprise performance, ignoring future-oriented perspectives and instead focusing only on assessments of current state

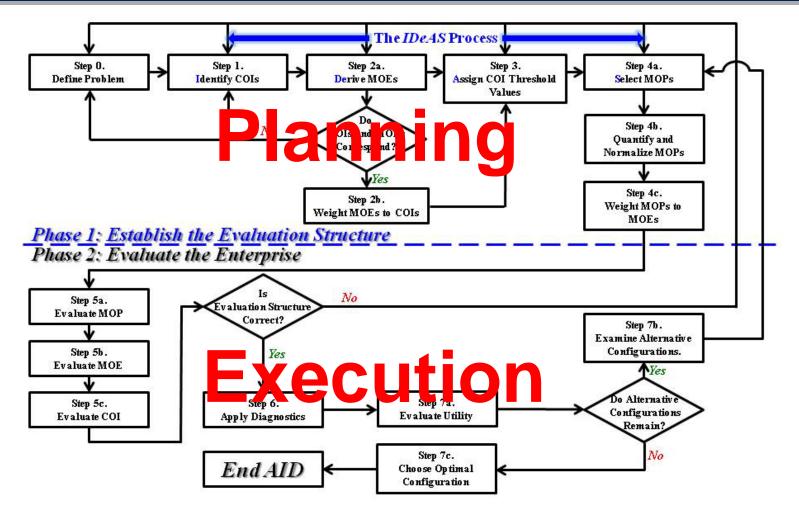
The Vision

Much might be gained from an approach with which users can develop and deploy enterprise-specific PMSs needed to address enterprise-specific problems for any of the following purposes:

Enterprise Assessment, Improvement, and Design (AID) PMS Purposes

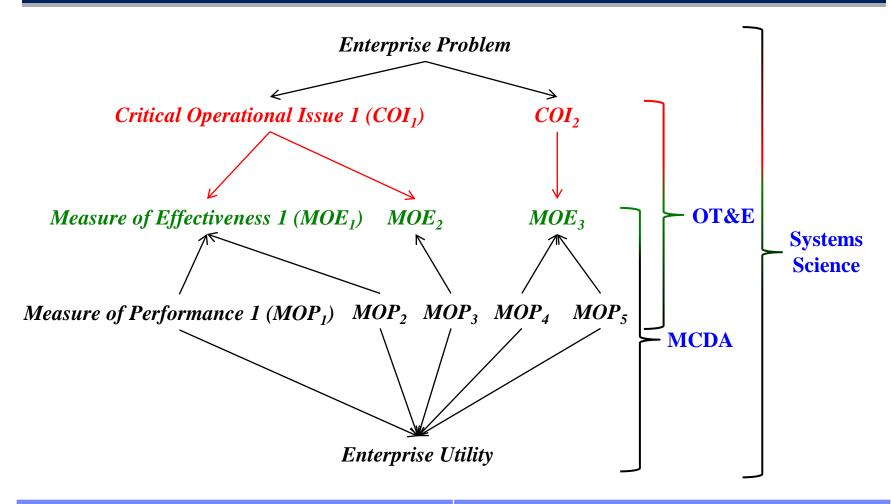
Purpose

Description


- **Assessment** Evaluations of current enterprise performance with respect to stakeholder intent.
- **Improvement** Enhanced performance, likewise with respect to stakeholder intent, generated by evaluations of current enterprise configurations and associated processes versus those of projected alternatives.
- **Design** Wholly new combinations of enterprise configuration and process generated in response to stakeholder intent.

Methodology details found in Hester, P.T., and Meyers, T. (2012). *Enterprise AID: A performance measurement system for enterprise assessment, improvement, and design* (NCSOSE-TR-12-001). Norfolk, VA: National Centers for System of Systems Engineering.

The AID Methodology



Methodology Components (Overview)

OT&E = Operational Test and Evaluation

MCDA = **Multicriteria Decision Analysis**

Methodology Components (Systems Science)

Key Elements	Description
Systems	Collections of different elements that together produce results not obtainable by the elements alone.
Complex Systems	Sets of elements characterized by performance that emerges over time through interactions among the elements and between the system and its environment.
Emergence	A feature of systems that exhibit properties meaningful only within the context of the whole system, and not of its components.
Emergent Properties	Properties exhibited only by whole systems and not by any of those systems' components.

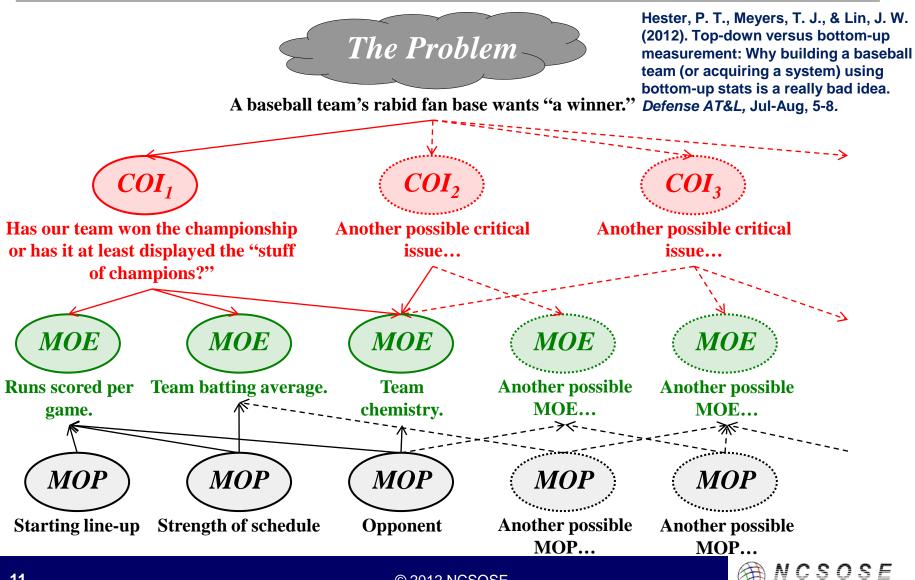
Methodology Components (OT&E)

Key Elements	Description
Critical Operational Issues	Stakeholder needs identified in problems and that must be satisfied for problem resolution; emergent essentials of capability without which posited problem solutions must be judged as unacceptable on functional grounds.
Measures of Effectiveness	Standards derived by stakeholders from critical issues, independent of solutions proposed for issue resolution but representing emergent properties that induce rank orderings on the problem solutions that are proposed.
Measures of Performance	Evaluations of intrinsic functions of solutions proposed to resolve COIs, as measured against independently established effectiveness measures.

Definitions elaborated in Hester, P.T., and Meyers, T. (2012). *Enterprise AID: A performance measurement system for enterprise assessment, improvement, and design* (NCSOSE-TR-12-001). Norfolk, VA: National Centers for System of Systems Engineering.

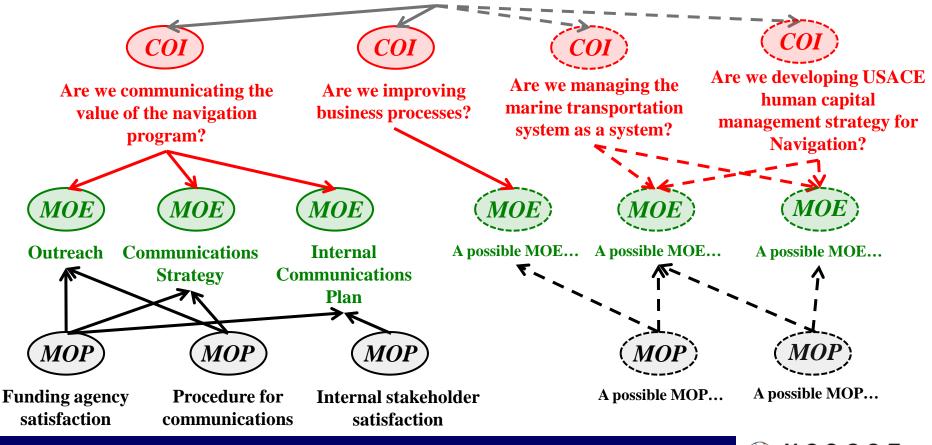
A focus on the complex systems that are enterprises, as well as a strong dependence on eliciting the judgments of groups of individuals expert in particular enterprises and their needs, demands that the *AID* methodology respect certain pillars of what is broadly termed multicriteria decision analysis:

- Scales of measurement and, in particular, the ordinal and interval scales as classically defined by Stevens; and
- Utility theory, as originally codified by von Neumann and Morgenstern and later expanded with Savage's allowance for subjective evaluations and Keeney's endorsement of multiattribute utility functions.



- Once stakeholders agree to a PMS structure, attention can turn to its execution
- A key feature of AID is the ability to diagnose any unresolved issues of enterprise performance
- Diagnostics may identify resolutions necessary for:
 - True deficiencies in enterprise performance
 - Deficiencies in evaluation structure (PMS) design
 - Improperly executing the PMS

Introductory Example (America's Pastime)


Marine Transportation System Example

Adapted from USACE's *Navigation Strategic Vision* (February 2011)

USACE Mission: To provide safe, reliable, efficient, effective and environmentally sustainable waterborne transportation systems for movement of commerce, national security needs, and recreation.

- Problem statement identification and consensus is crucial
- Number of performance measures being tracked should be monitored carefully
- Visual aids are key to PMS development and situational awareness
- Simply having the conversation about an enterprise is often as valuable as the associated results
- PMSs require significant resources to set-up and maintain
- Well-constructed PMSs will serve as guides for future enterprise activities

Adapted from Hester, P.T. and Meyers, T.J. (2012). Lessons learned from designing a performance measurement system for a university research center. *Perspectives on Performance*, *9*(3), 23-24.

The effort described here is sponsored by the U.S. Department of Homeland Security's Science and Technology Directorate. The authors gratefully acknowledge the Department's support.

Contact

For more information, contact: Patrick T. Hester, Ph.D. National Centers for System of Systems Engineering Old Dominion University Norfolk, Virginia Phone: (757) 683-5205 e-mail: pthester@odu.edu

