Design of a Fault-Tolerant, Real-Time Traffic Statistics Reporting System

Charles Lattimer, PE, PMP
Program Manager
Atkins

June 5, 2012
Description of OOCEA System

- Agency of the State of Florida created in 1963
- Orange County, FL (Orlando Metropolitan area)
- OOCEA Operates:
 - 106-centerline miles of expressway
 - 14 mainline toll plazas
 - Over 900,000 daily transactions
OOCEA Expressway Management System

- CCTV Cameras
- Dynamic Message Signs
- Travel Time System
- Fiber Optic Network
- Road Ranger Service Patrols
- Dedicated Florida Highway Patrol Coverage
What’s Missing? Real-Time Volume

• **Current method:**
 – Portable counters with pneumatic road tubes
 – Comprehensive data collected once annually
 – Transaction data (mainlines and tolled ramps) provide weekly snapshot of volume trends
 – Used for financial and traffic planning purposes

• **Proposed method:**
 – Permanent, automated collection of systemwide data
 – Available on-demand
 – Can be used for financial, traffic planning, and operations
Design for Resiliency

• Maximum accuracy of data is critical
• Things will go wrong
 – How can the system compensate?
 – How can issues be identified quickly and addressed?
• System-level approach to accuracy and reliability
 – Accurate Sensors
 – Fault-tolerant architecture
 – Appropriate data processing
Design for Resiliency

Data Processing and Filtering

Fault-Tolerant Architecture

Accurate Sensors

- ITS Field Devices (including Traffic Monitoring Stations)
 - UPS and remote monitoring of battery voltage
 - EAPS (automatic failover for switches)
 - 24x7 Core network monitoring
 - Email alarms for system and device issues
 - Data filtering and link-based aggregation
 - Clustered Servers
 - Redundant Core Switches

- FIELD SWITCHES
 - AGGREGATION SWITCHES
 - CORE SWITCHES
 - SUNGUIDE™ SERVER
 - REPORTING SERVER
 - END USER

- Accurate Sensors
 - 24x7 Core network monitoring
 - Email alarms for system and device issues
 - Data filtering and link-based aggregation
 - Clustered Servers
 - Redundant Core Switches

6/5/2012
Accurate Sensors: Project history

• Concept study to identify state of the practice
 – Volume and classification

• Authority requirement: non-intrusive sensor
 – Eliminated loops and other in-pavement technologies

• Microwave and infrared technologies emerged as contenders

• Wavetronix SS125 (HD) sensors selected
 – High accuracy and reliability, cost-effective solution
Accurate Sensors: Project History

• Pilot project conducted to independently verify volume accuracy
• Compared Wavetronix SS105 and SS125 (HD)
• Pilot project results provided guidance for sensor deployment criteria
Fault-Tolerant Architecture

- Optimized sensor placement
- Redundant sensors
- Link-based mainline volumes (at reporting level)
- Sensor data also archived
Fault-Tolerant Architecture

• Power failure
 – Common cause of site outages

• Uninterruptible Power Supply
 – Backup power for up to six hours
 – Issue: no reliable remote notification of power outage

• Remote Battery and Environmental Monitoring
 – Add-on monitoring unit sends alert for partial battery discharge, tripped SPD, and opened doors
Fault-Tolerant Architecture

- Network utilizes gigabit Ethernet field rings
 - Redundant network architecture
 - Physically redundant fiber optic cable
 - Can tolerate one switch outage or fiber cut per ring
Central Software

• **SunGuide™ Software**
 – Traffic Management Center Software (FDOT)
 – OOCEA is a participating member agency
 – Controls OOCEA DMS signs
 – Will serve as the database for TMS count and classification data
 – Email alerts for system failures (new enhancement)
Data Processing

• Raw sensor-level data stored in SunGuide™ database
• Data rolled up into filtered link-level information for reporting purposes
• External process would filter data and store it in separate database
• Original data is preserved, filtered data set is much smaller and can be queried faster
Data Processing

- Proposed Data Filtering Methodology
 - Start with sensor-level data
 - Perform timeshift adjustment
 - Remove bad sensor-level data
 - Filter for outliers
 - Average remaining data
 - Store link-based data in separate database table
Data Processing: Time Shift

<table>
<thead>
<tr>
<th>T1</th>
<th>V1T1</th>
<th>V2T1</th>
<th>V3T1</th>
<th>V4T1</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2</td>
<td>V1T2</td>
<td>V2T2</td>
<td>V3T2</td>
<td>V4T2</td>
</tr>
<tr>
<td>T3</td>
<td>V1T3</td>
<td>V2T3</td>
<td>V3T3</td>
<td>V4T3</td>
</tr>
<tr>
<td>T4</td>
<td>V1T4</td>
<td>V2T4</td>
<td>V3T4</td>
<td>V4T4</td>
</tr>
</tbody>
</table>
Data Processing: Time Shift

\[V_1 T_1 \]
\[V_2 T_2 \]
\[V_3 T_3 \]
\[V_4 T_4 \]
Data Processing: Filtering

Remove bad sensor level data

Remove outliers

Average Link Volume
Information in Real Time

• Filtered data viewed through reporting system
 – Volume
 – Point speed
 – Occupancy
 – Summary Classification (length-based)

• Format
 – Graphical and tabular

• Uses
 – Planning and operations
Foundation for Enhanced Performance Measures

• OOCEA currently reports travel time based performance measures on a monthly basis

• Real time volume data will allow direct calculation of:
 – Vehicle Miles Traveled (VMT)
 – Level of Service (LOS)

• Increased sensor density and spot speed detection
 – New data to improve operational performance measures
Timeline

- October 2010: Sensor Deployment - Design
- August 2011: System Deployment - SunGuide™ Deployment
- March 2012: Sensor Deployment - Bidding
- June 2012: System Deployment - Reporting System Deployment
- Early 2013: Sensor Deployment - Construction
Conclusion

• **OOCEA approach to system design**
 – Identify need for high quality data
 – Develop comprehensive approach to system resiliency
 • Reliable sensor equipment
 • Resilient device and network architecture
 • Data filtering and analysis

• **Will benefit the Authority by**
 – Providing real-time comprehensive system information
 – Supporting enhanced performance measures
 – Improved safety (elimination of portable count activities)
Questions

Charles Lattimer, PE, PMP
Program Manager
Atkins

charles.lattimer@atkinsglobal.com
+1 (407) 806-4287