Pavement Asset Management Decision Support Tools: Ohio Department of Transportation Case Study

Eddie Chou
Professor of Civil Engineering
The University of Toledo

Andrew Williams
Administrator, Office of Technical
Services
The Ohio Department of Transportation

Introduction

- □ Aging pavement network and tight budget at most highway agencies
- □ Demonstrated optimal use of M&R dollars has become necessary amid calls for transparency and accountability
- ☐ Ohio DOT has developed decision support tools for pavement asset management through research projects
- □ Expanding from pavement to bridges and other assets
- □ Pilot for web access of information and tools

Dashboard Condition Reporting

PCR Mileage Report

System = All Systems / Priority = P / District = All Districts / County = All Counties / Route = All Routes / PavementType = All

Types / Year = 2006 - 2011

Condition of Different Systems

PCR Mileage Report

System = All Systems / Priority = All / District = All Districts / County = All Counties / Route = All Routes /
PavementType = All Types / Year = 2011 - 2011

Average Treatment Performance

System = All Systems / Priority = P / District = All Districts / County = All Counties / PavementType = All Types / Year = 1997 - 2011

Pavement Condition History

LUC 075R PCR(Manual Log) vs Year (2-2.05)

Network Level Optimization

- Supports high level asset management decisions
- Estimate the minimum budget required to achieve a desired condition level
- Maximize the benefits for a given amount of budget
- Determine treatment policy and budget allocation

Network Level Optimization

Markov Prediction Model

Markov Transition Probability Matrix:

$$P = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} & p_{15} \\ p_{21} & p_{22} & p_{23} & p_{24} & p_{25} \\ p_{31} & p_{32} & p_{33} & p_{34} & p_{35} \\ p_{41} & p_{42} & p_{43} & p_{44} & p_{45} \\ p_{51} & p_{52} & p_{53} & p_{54} & p_{55} \end{bmatrix}$$

Markov Prediction Model

- □ System priority: General and Priority
- Pavement type: Concrete, Flexible and Composite
- Repair treatment: Preventive Maintenance, Thin Overlay, Minor Rehab and Major Rehab

$$2 \times 3 \times 4 = 24$$
 pavement groups are formed

Treatment Matrix

	Excellent	Good	Fair	Poor	Very Poor	
Excellent	1	0	0	0	0	
Good	1	0	0	0	0	
Fair	1	0	0	0	0	
Poor	1	0	0	0	0	
Very Poor	1	0	0	0	0	

Do Nothing Matrix

	Excellent	Good	Fair	Poor	Very Poor
Excellent	0.82	0.18	0	0	0
Good	0	0.73	0.27	0	0
Fair	0	0	0.69	0.31	0
Poor	0	0	0	0.58	0.42
Very Poor	0	0	0	0	1

Performance vs. Treatment Cost

Pavement Condition Deterioration Trend

Determination of Treatment Policy

Current Network Condition

Predicted Performance

Condition Target

Treatment
Options & Cost

Optimal Treatment Policy

\$ Required Network Budget

Minimum Budget Required to Achieve a Condition Level

Recommended Treatment Budget and Allocation

Corresponding Pavement Condition Distribution

Budget Allocation among Treatments to Achieve the Best Condition Level

Budget \$140 Million

Condition?

Use of Network Optimization

Network optimization can be used as a decision making tool to answer "what-if" questions regarding:

- ☐ Impact of different condition targets
- ☐ Impact of different funding levels
- ☐ Impact of different budget allocation
- ☐ Impact of different repair treatment policy

Deficiency Level Versus Average Annualized Expenditure

Future Directions: Transportation Assets Management

Pavement Management Development

Systems Conditions

Integrated Decision Support

Average Conditions at Rehabilitation

General System Flexible Pavements Activity 50 and Activity 60 from 1985 to 2010

District	1	2	3	4	5	6	7	8	9	10	11	12
PCR Prior	78.3	69	60.6	61.4	63.3	70.7	72.3	68	68.5	63.5	63.1	60
CRD Prior	9.44	16.41	21.78	21.42	20.34	16.32	14.79	16.33	17.08	19.89	20.41	21.98
STRD Prior	10.09	15.25	20.69	19.93	20.02	14.65	13.78	15.9	15.75	19.04	19.03	21.11
Raveling	3.09	3.52	4.04	4.68	4.29	3.31	3.3	3.52	3.68	4.07	4.24	4.7
Bleeding	0.96	0.26	0.13	0.13	0.19	0.25	0.5	0.49	0.43	0.16	0.11	0.11
Patching	0.75	1.63	2.39	1.89	1.45	1.26	0.84	1.86	1.65	2	1.97	2.5
Debonding	0.09	0.31	0.85	0.69	0.72	0.22	0.1	0.22	0.15	0.42	0.59	1.02
Crack Sealing Defic.	3.61	4.72	4.8	4.79	4.46	4.44	4.09	4.8	4.62	4.78	4.74	4.34
Rutting	3.56	3.96	5.02	4.54	4.17	3.29	3.9	4.5	3.46	4.04	3.86	5.01
Settlements	0.02	0.08	0.07	0.06	0.58	0	0.01	0.12	0.27	0.92	0.75	0.01
Corrugations	0	0	0.01	0.01	0.06	0	0	0.02	0.03	0.02	0.02	0.04
Wheel Track Cracking	1.45	2.11	4.93	5.53	5.61	2.76	2.09	2.61	4.59	5.89	6.18	4.51
Block and Transverse Cracking	2.86	5.98	7.38	6.33	7.06	5.62	5.3	6.13	5.43	6.36	6.38	7.06
Longitudinal Cracking	2.33	3.76	3.03	3.03	2.52	2.93	3.04	3.3	2.09	1.85	1.71	3.71
Edge Cracking	1.12	1.62	3.26	3.27	2.31	2.01	1.43	1.13	1.89	2.53	2.79	2.85
Random Cracking	1.59	2.67	2.03	1.87	2.19	2.19	2.02	2.57	2.12	2.3	1.95	2.55
Thermal cracking	0.38	0.5	1.5	1.79	1.03	1.01	1.08	0.79	1.17	1.24	1.64	1.65
Thickness Added	1.63	2.1	2.12	1.92	2.14	1.71	2.12	2.43	1.89	2.02	1.69	2.73
Thickness Removed	1.37	1.98	1.76	1.49	1.62	1.43	1.14	1.61	1.58	1.93	1.57	1.99
Age at Repair	8.1	11.9	9.2	10.4	8.7	8.1	9.5	11	10.8	9.7	9.1	10.6
Age at Next Repair	9	10.8	10	11.7	9.9	9.3	9.8	11.1	12.5	11.5	9.8	11

Remaining Life

System = All Systems / Priority = All / District = 3 / County = All Counties / Route = All Routes / PavementType = All Types / Rem Life From = 2010

PCR Threshold - Priority = 65 / Urban = 60 / General = 60

Survival Curve

System = All Systems / Priority = All / District = All Districts / County = All Counties / PavementType = 2-Jointed Concrete / Year = 1982 - 2011

Survival Curve

System = All Systems / Priority = All / District = All Districts / County = All Counties / PavementType = 3-Asphalt / Year = 1982 - 2011

Pavement Summary

Where are we going?

- Currently Implementing a
 Commercial Pavement
 Management System (Deighton System)
- □ Currently developing an integrated asset management system prototype through the University of Toledo
- ☐ Currently Implementing Web-GIS application for displaying, distributing, and analyzing pavement and other assets
- Currently developing the framework for asset management database (consolidated database, COD)

- Performance Based Management
- Return on Investment

 Management
- ☐ Integrated System Support Tools
- World ClassTransportation System

Thank You!