

A Case Study:

Smoothness Profiling in an Urban Setting

9th National Conference on Transportation Asset Management April 16, 2012

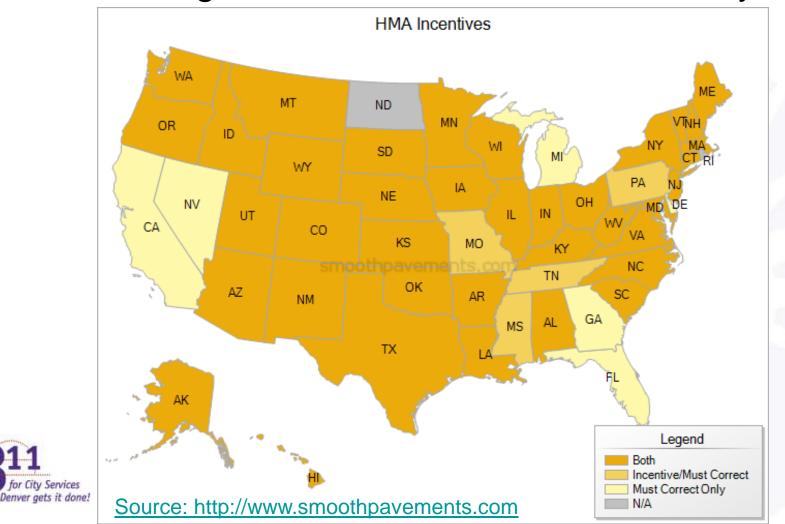
Pat Kennedy

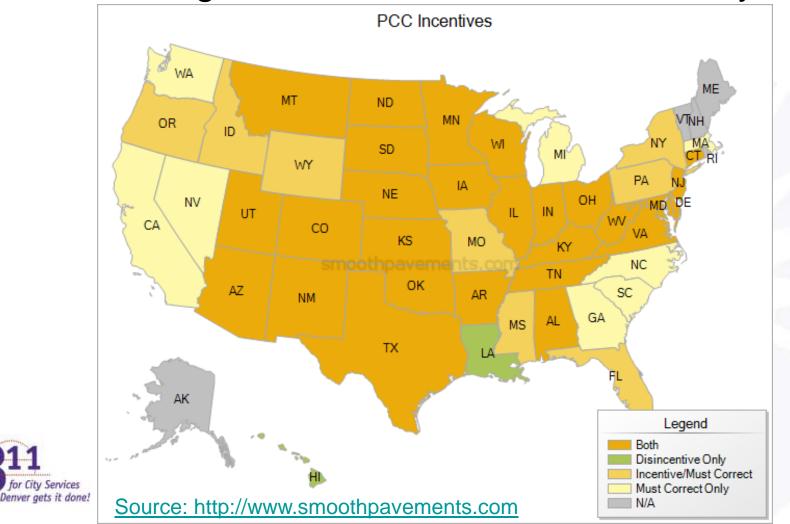
Angie Hager

City and County of Denver Public Works Street Maintenance

Outline

- Profiling / IRI Description
- Unique Urban Influences
 - Data Collection
 - Measurements
- Denver Case Study: Uses of Profiling Data
 - Before / After Repaving
 - Contracting Specifications


- Travelling Public Perception
 - Public <u>does not care</u> about pavement defects that do not affect ride quality!
 - Public cares about smoothness



Pavement Roughness Incentive/Disincentives by State

Pavement Roughness Incentive/Disincentives by State

- International Roughness Index (IRI)
 - Measurement Metric (in/mi, mm/km)
 - Common Use
 - Highways
 - Two-Lane Rural Roadways

Alternative Profilometric Indices

- International Roughness Index (IRI)
- Half-Car Ride Index (HRI)
- Michigan Ride Quality Index (RQI)
- CalPro Simulation Model
- Straightedge / Rolling Straightedge
- The Ride Number
- The Performance Index

- Developed in 1986
- Provides a Unified Analysis Tool for Pavement Roughness
- Commonly Used in Financial Incentive/Disincentive Programs for Contractors
- Indirect Profilometric Index

$$IRI = \frac{1}{L} \int_{0}^{x/V} \left| \dot{z}_{s} - \dot{z}_{u} \right| dt$$

Where:

IRI

X

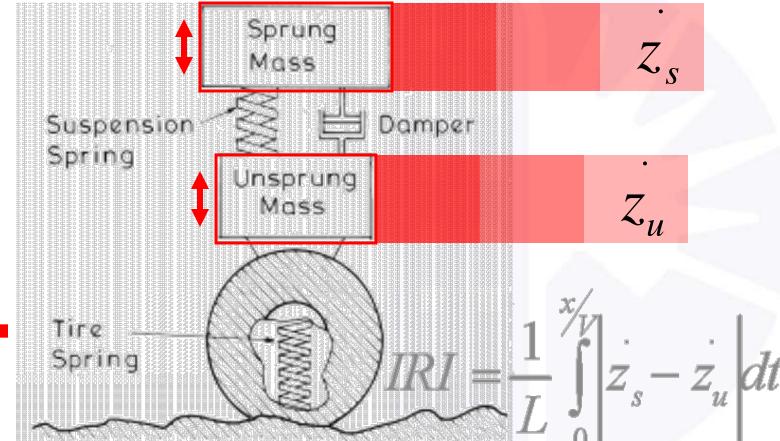
International Roughness Index (in/mi or mm/km).

length of the section (ft or m).

speed of the quarter car model (in/sec or mm/s).

longitudinal distance of segment (in or mm).

vertical speed of the sprung mass in the quarter-car model diagram (in/sec).


vertical speed of the unsprung mass in the quarter-car model diagram (in/sec.

the time increment (sec).

Derivation of the IRI Quarter-Car Model

Sample IRI Calculation

- Roadway Length (L): 1.0 mi
- Profiler Speed (v): 10 mi/hr = 176 in/sec
- Segment Length (x): 0.01 in
- Unsprung Mass (z_u) : 15 mi/hr = 264 in/sec
- Sprung Mass (z_s) : 25 mi/hr = 440 in/sec

$$IRI = \frac{1}{L} \int_{0}^{x_{V}} \left| \dot{z}_{s} - \dot{z}_{u} \right| dt$$

Sample IRI Calculation

$$IRI = \frac{1}{1.0\,mi} \int_{0}^{0.000057 \text{ sec}} \left| 440 \frac{in}{\text{sec}} - 264 \frac{in}{\text{sec}} \right| dt$$

1)
$$IRI = \frac{1}{1.0mi} \int_{0}^{0.000057 \text{ sec}} \left| 176 \frac{in}{\text{sec}} \right| dt$$

2)
$$IRI = \frac{1}{1.0mi} * \left[176 \frac{in}{\text{sec}} * t \Big|_{0}^{0.000057 \text{ sec}} \right]$$

$$^{(3)}$$
 $IRI = \frac{1}{1.0 \, mi} * [0.01 \, in]$

$$IRI = 0.1 \text{ in/mi}$$

Literature Review

- Supporting Research on Traditional Applications of the IRI
- Standards & Practices for IRI Usage
- Concrete & Asphalt Variations in the Usage of the IRI
- IRI Applications on Urban Roadway Facilities

Research Supporting UIRI

 "Urban Considerations for Using Road Roughness to Manage Road Networks" (Reggin, Et. Al, 2008)

Network IRI =
$$\frac{(IRI)(L) - (1.5 \text{ m/km})(d)(n)}{(L)}$$

Where:

IRI = International Roughness Index (m/km)

L = Length of Segment (km)

d = Average Length of Railroad Crossings (km)

n = Number of Railroad Crossings in Segment

Recommended Threshold Values

FHWA Recommended IRI Threshold Values for Highways & Rural Roadways:

GOOD < 95 in/mi

ACCEPTABLE < 170 in/mi

UNACCEPTABLE ≥ 170 in

FHWA IRI Threshold Values

HIGHWAYS &
RURAL ROADWAYS

GOOD < 95 in/mi

ACCEPTABLE < 170 in/mi
UNACCEPTABLE ≥ 170 in/mi

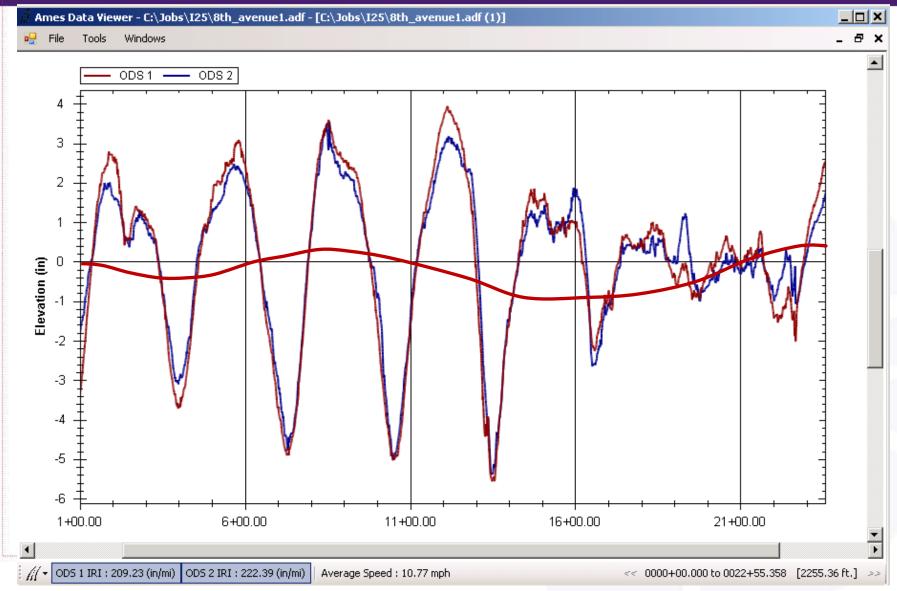
Denver gets it done!

Denver, Colorado

- Factors Influencing IRI Data Collection on Urban Roadways
 - Traffic Signals / Stop Signs
 - Frequent Start / Stops
 - Lower Speeds

High-Speed Profilier

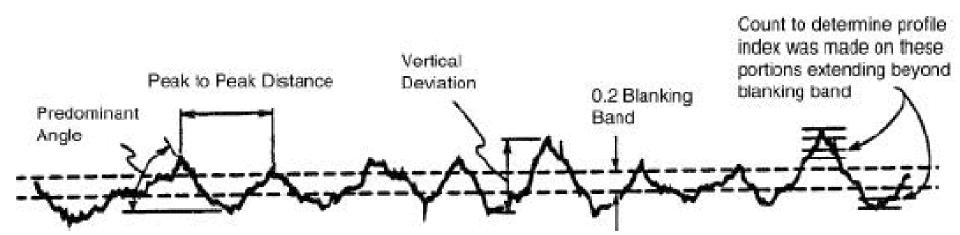
Low-Speed Profilier



Factors Influencing IRI Values on Urban

Roadways

Drainage Infrastructure


- Cross Pans
- Inlets
- Utility Access Panels
 - Manhole Covers
 - Traffic Signal Panels
- Cross Street
 - Cross-Crown Effect
 - Cross-Street Rutting
- Other Infrastructure

Railroad Tracks

- 2 Options to Account for Urban Influences
 - Adjustment Factors
 - Blanking Bands (Surface Roughness)
 - Appurtenances (Manholes, Train Tracks, etc.)
 - Intersection (Cross-crown)
 - Establish Unique Urban IRI Threshold Values

Adjustment Factors Approach

"Urban Considerations for Using Road Roughness to Manage Road Networks" (Reggin, Et. Al, 2008)

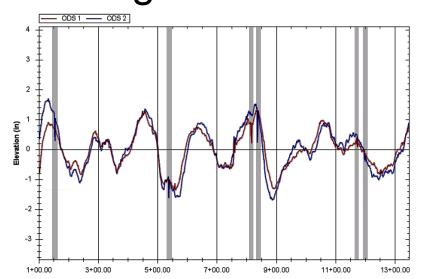
Network IRI =
$$\frac{(IRI)(L) - (1.5 \text{ m/km})(d)(n)}{(L)}$$

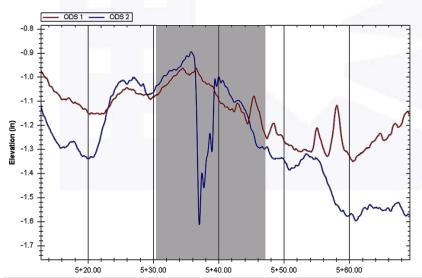
Where:

IRI = International Roughness Index (m/km)

L = Length of Segment (km)

d = Average Length of Railroad Crossings (km)


n = Number of Railroad Crossings in Segment



Adjustment Factors Approach

- Infrastructure Influence
 - Elimination of Cross Street Access
 - Elimination of Manhole Covers
 - Test Site Improvement: 13%
- Ignore Function in Profiler Software

Adjustment Factors Approach

- High Pass Filter for Reducing Cross Street Impact
 - Default Setting: 0.00 ft
 - Test Setting: 70.0 ft (average cross street intersection width)
 - Average Improvement of 4-6%
- Start/Stop Condition Control For Short Segment Lengths
 - Remove First/Last 20 ft of Test Run
 - Average Improvement of 2-3%

- 2 Options to Account for Urban Influences
 - Adjustment Factors
 - Establish Unique Urban IRI Threshold Values

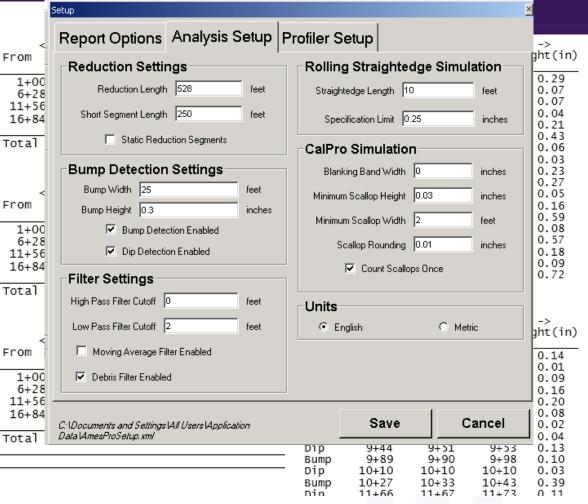
Recommended Threshold Values

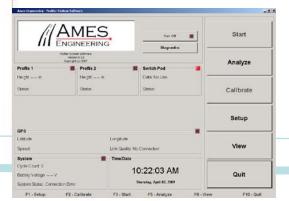
Case Study: Denver Profiling

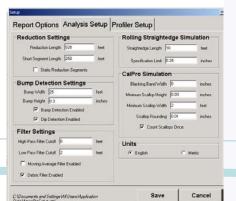
- Equipment
- Repeatability Study
- Before and After Repaving
 - % Improvement
 - By Pavement Treatment
 - Established UIRI Threshold Value
- Contract Specifications
 - DTC Blvd
 - Martin Luther King Parkway

Case Study: Denver Profiling

- Low Speed Pavement Profiler
 - Laser Inertial Surface Analyzer (LISA) 6500
 Pavement Profiler by Ames Engineering
 - Dual Laser Track
- Lead & Lag Vehicle For Safety
- Four-Person Data Collection Teams (3 drivers, 1 operator)

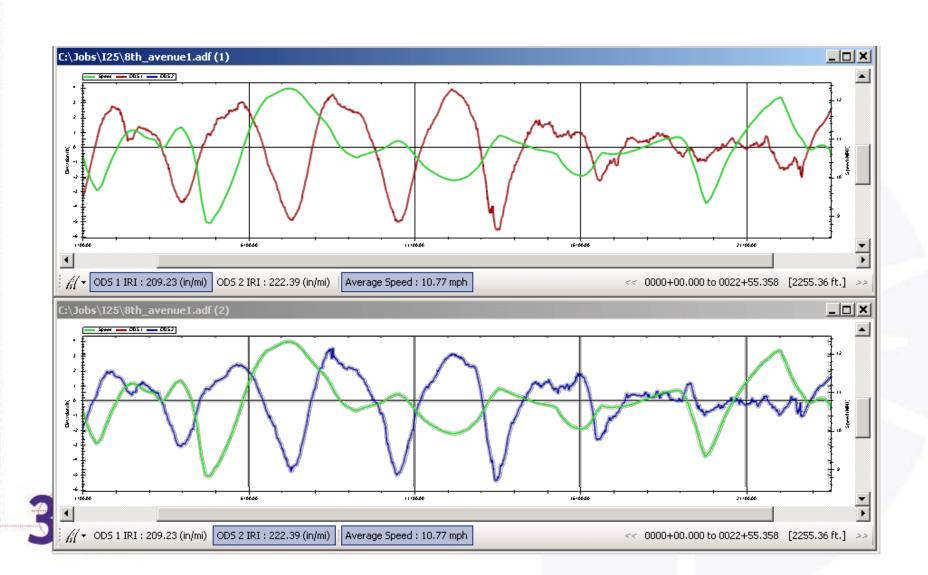






Pro Enç

Pro Styl



From <-	IRI/RN TO	Summar	y Track 1	l -> if) RN	туре <-	Bump/Dip From	Locations Peak		1 -> ight(in)
PT OII	10	DISC	202(11)/1	11) 101	D1p	1+17	1+18	1+19	0.29
1+00	6+28	528	213.42	1.90	Dip	2+97	2+97	2+98	0.07
6+28	11+56	528	211.53	2.51	Bump	2+98	2+99	3+00	0.07
11+56	16+84	528	171.59	2.76	Bump	3+83	3+83	3+84	0.04
16+84	17+96	112	437.86	1.12	Dip	3+97	3+98	4+01	0.21
10+94	17+90	112	437.00	1.12	Bump	4+13	4+23	4+30	0.43
Total		1696	214.63	2.31	Dip	4+87	4+88	4+89	0.06
Total		1696	214.63	2.31	Dip	5+41	5+41	5+41	0.03
					Bump	7+74	7+79	7+89	0.23
					pip	8+10	8+18	8+24	0.27
					Bump	8+91	8+92	8+92	0.05
			y Track 2		Bump	9+88	9+90	10+01	0.16
From	To	Dist	IRI(in/s	11) RN	Dip	10+01	10+06	10+15	0.59
					Bump	10+21	10+29	10+31	0.08
1+00	6+28	528	170.57	2.30	D1p	15+03	15+13	15+23	0.57
6+28	11+56	528	203.99	2.63	Bump	15+96	16+02	16+06	0.18
11+56	16+84	528	204.83	2.15	Dip	17+38	17+41	17+44	0.09
16+84	17+96	112	580.51	0.59	Bump	17+59	17+61	17+75	0.72
Total		1696	218.71	2.25					
					Type <-	Bump/Dip From	Locations Peak	Track To He	2 -> ight(in)
					Type	FFOR	Peak	10 Me	ignic(in)
<-	IRI/RN	Summar	v Average	· ->	Bump	4+16	4+24	4+30	0.14
From	To	Dist	IRI(in/r	11) RN	Dip	4+75	4+75	4+75	0.01
					Dip	6+62	6+66	6+70	0.09
1+00	6+28	528	192.00	2.10	Bump	6+77	6+81	6+87	0.16
6+28	11+56	528	207.76	2.57	Dip	7+24	7+29	7+35	0.20
11+56	16+84	528	188.21	2.46	pip	8+23	8+25	8+33	0.08
16+84	17+96	112	509.18	0.86	Bump	8+42	8+42	8+42	0.02
20104	17+30	***	303.10	0.00	Bump	9+05	9+06	9+07	0.04
Total		1696	216.67	2.28	Dip	9+44	9+51	9+53	0.13
roca i		7030	220.07	2120	Bump	9+89	9+90	9+98	0.10
					Dip	10+10	10+10	10+10	0.03
					Bump	10+27	10+33	10+43	0.39
					Din	11466	11+67	11+73	0.11

35

Profilier Software

Project Scope

- Test Sites Spanned 66.9 Lane Miles in the CCD (134 segments)
 - 55.4 mi of Before Repaving Condition (79 segments)
 - 39.3 mi of After Repaving Condition (55 segments)
 - 27.15 mi of Both Before & After Condition (33 segments)
 - Average Segment Length: 0.69 mi

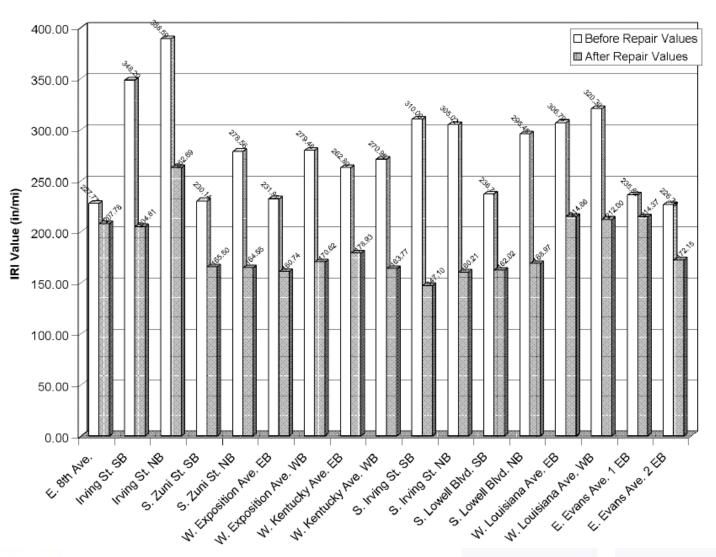
Repeatability Study

•	Minimu m Av	Jsed on All									
	Data C (in/mi	(mm/km)	Difference	I Directions							
•	Examir 237.42	3747.182	1.1%	Collection							
	Sites fc—										
	- Five 182.57	2881.489	2.1%	ts were							
	Examiiiie	 ,	t Dillele	nce Values							
	Were Derived and Averaged:										

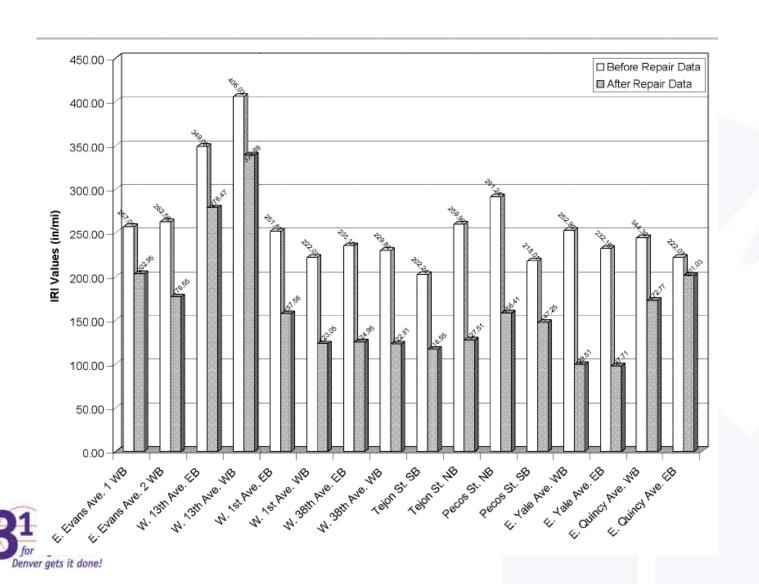
			Segment Length		Track	Driver 1		Dr	Driver 2		Driver 3		Driver 4		Driver 5		Average IRI	
Street	From ,	/ To	(mi)	(km)	Track	(in/mi)	(mm/km)	(in/mi)	(mm/km)	(in/mi)	(mm/km)	(in/mi)	(mm/km)	(in/mi)	(mm/km)	(in/mi)	(mm/km)	Difference
					ODS1	232.50	3669.53	231.67	3656.43	227.62	3592.51	219.06	3457.41	238.81	3769.12			1.0
E. 8th Ave.	Steele St.	Harrison St.	0.40	0.64	ODS2	247.00	3898.38	236.48	3732.35	242.11	3821.20	260.11	4105.30	238.81	3769.12	237.42	3747.182	1.1%
•	711				AVG	239.75	3783.96	234.08	3694.39	234.87	3706.86	239.59	3781.35	238.81	3769.12			
1 1/2	KIT				ODS1	154.33	2435.78	162.73	2568.36	163.77	2584.77	162.34	2562.20	159.38	2515.48			
E. 8th Ave.	Downing St.	York St.	0.68	1.09	ODS2	200.69	3167.48	210.35	3319.94	206.46	3258.54	197.28	3113.66	208.42	3289.48	182.57	2881.489	2.1%
	Denver gets	and the second second			AVG	177.51	2801.63	186.54	2944.15	185.12	2921.66	179.81	2837.93	183.90	2902.48			

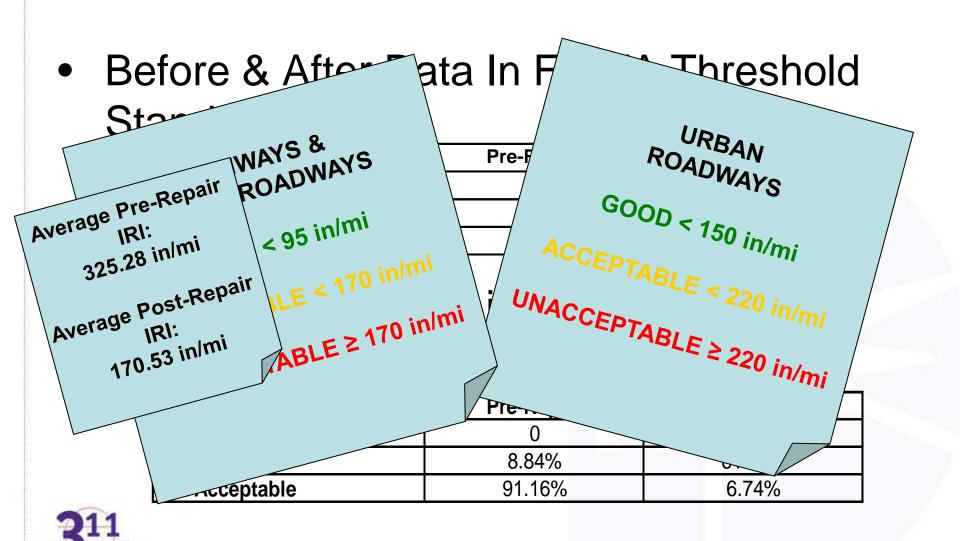
Before & After Study

- Study included 27.15 mi (33 segments) of Data Collected both Before & After Repaving
- Data Collection Planned as Close to the Repaving Date as Possible
- Infrastructure Conditions Varied Widely by Site


Before & After Study

- Average IRI Values Weighted by Segment Length:
 - Before Repaving: 375.28 in/mi (5922.97 mm/km)
 - After Repaving: 170.53 in/mi (2691.44 mm/km)
 - Percent Improvement: 36.3%


Before & After Study


Before & After Study

Denver gets it done!

UIRI Threshold Values

Repaving Methods Used

- Mill & Overlay (M&O)
 - Road is milled (up to a depth of 3 in.)
 - New asphalt is placed atop milled surface.
- Hot In Place Recycling (HIPR)
 - Outer edges of the street are milled (up to 1.5 in.)
 - Existing pavement is heated and scarified
 - Mix of new asphalt, existing asphalt and reconstituting agent is placed.
- Complete Reconstruction
 - Complete removal of existing asphalt

For City Services Placement of new asphalt

Repaving Method Comparison Study

- Total After Repaving Condition Sites Include 39.3 mi (55 segments)
 - M&O: 27.61 mi (39 segments)
 - HIPR: 9.16 mi (8 segments)
 - Reconstruct: 4.12 mi (8 segments)
- Before & After Repaving Condition Sites Include 27.15 mi (33 segments)
 - M&O: 16.71 mi (21 segments)
 - HIPR: 9.16 mi (8 segments)
 - Reconstruct: 1.28 mi (4 segments)

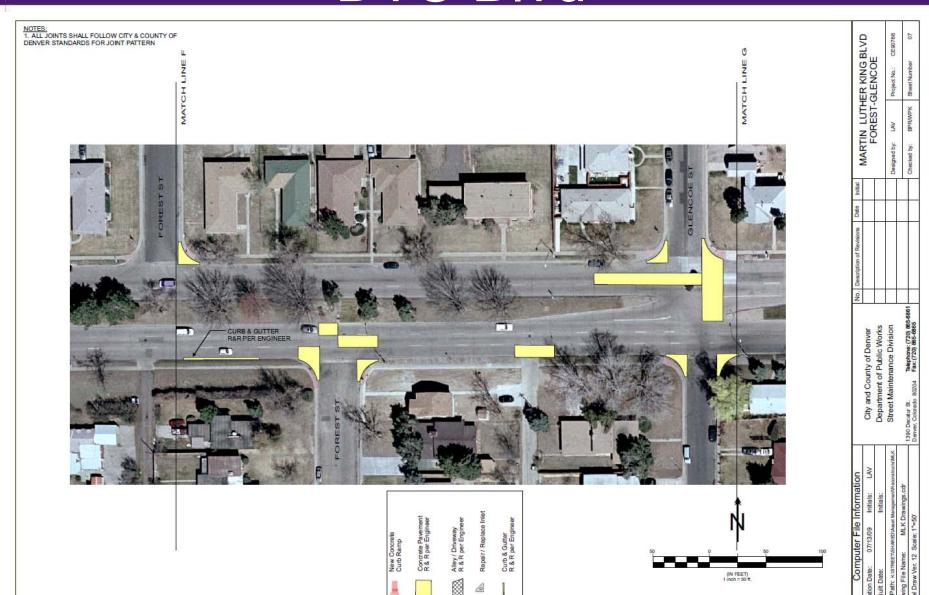
Repaving Method Comparison Study

After Repaving Condition:

Resurfacing Method	Total Length Tested (mi) / (km)		Number of Segments Tested	Weighted Averago	
Mill & Overlay	27.61	44.43	39	188.85	2980.58
HIPR	9.16	14.74	8	128.47	2027.62
Reconstruction	2.56	4.12	8	202.16	3190.65

Before & After Repaving Condition:

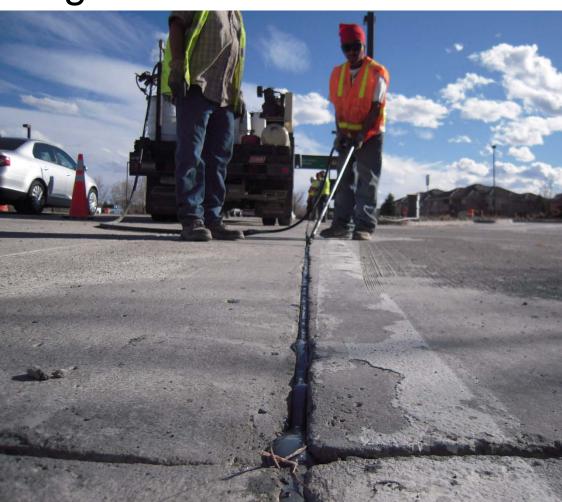
Resurfacing Method	ving Conditio ength Tested i) / (km)	Number of Segments Tested	Before Repavii Weighted A (in/mi) / (r 280.27	verage IRI	After Repavine Weighted Av (in/mi) / (r	Percent
Mill & Overlay	14.74	8	240.55 300.65	3796.55 4745.10	128.48 216.61	32.2%
HIPR			V			46.6%
Reconstruction						28.0%



- DTC Blvd from I-225 to Belleview Ave
 - Approx 0.7 mi. centerline length (27,500 SY)
 - Divided Roadway
 - Concrete Pavement
 - Arterial
- 30% Improvement Contracted

Fixing drainage

Full Panel Replacement

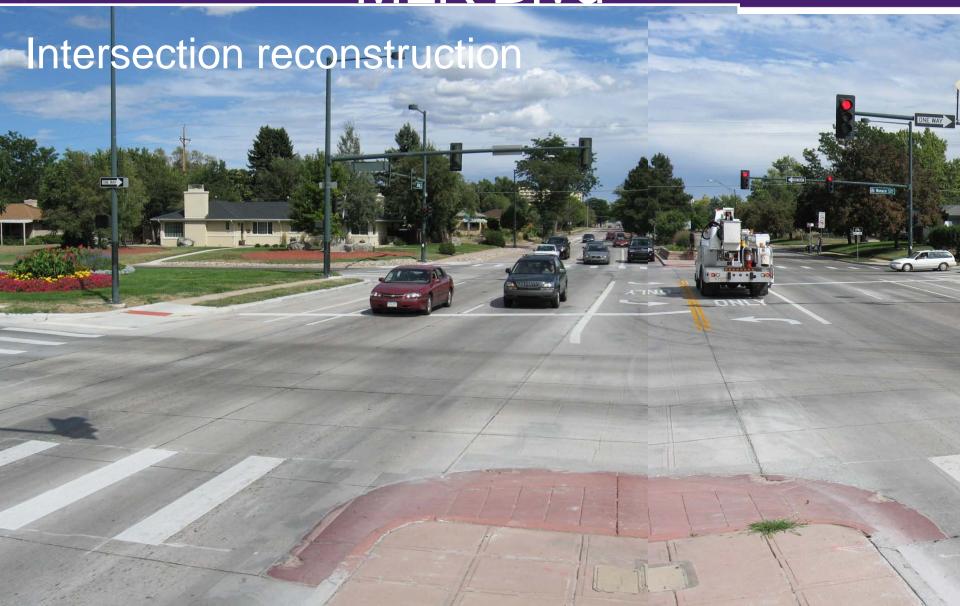

Patching

Sawing and Sealing

Grinding

Profiling

Contracted: 30% Improvement
 Achieved: 32% Improvement


Contract Specs MLK Blvd

- Martin Luther King Blvd from Colorado Blvd to Quebec
 - Approx 2 miles
 - Divided Roadway
 - Concrete Pavement
 - Arterial
- 25% Improvement Contracted

Contract Specs MLK Blvd

Contract Specs MLK Blvd

Full Panel Replacement

Contract Specs MLK Blvd

Partial Depth Repair

Contract Specs MLK Blvd

- Profiling
 - Contracted: 25% Improvement
 - Achieved: 14% Improvement
- ACPA CO/WY Regional Award
- ACPA National Gold Medal Award

Conclusion Statements

- IRI is a valuable tool
- Awareness of Influences
- Contractual Provisions
 - % Improvement
 - Target IRI

Acknowledgements

University of Colorado Denver

- Brian J. Staley
- Dr. Kevin L. Rens

City and County of Denver

- Pat Kennedy
- Brian Roecker
- Angie Hager
- Lindsey VanCleave
- Clayton Goodwin

Questions?

