The Great Impact of Geotechnical Features on System Performance

Scott A. Anderson, Ph.D., P.E. FHWA Resource Center

Geotechnical Engineering Technical Services Team Manager

Thesis

- <u>Corridors</u> are the primary assets of a transportation agency. A transportation <u>system</u> will have multiple corridors.
- Geotechnical features such as embankments, slopes and retaining walls have a large influence on the performance of corridors.
- Performance (corridor or system) is the attribute agencies will be measuring and managing – and care most about.

What is a corridor?

Corridors in Wyoming

The State Significant Corridor System

URS, WYDOT, 2010

What is a geotechnical feature?

- A geotechnical asset: slopes, walls, and embankments are examples
 - Performance is largely attributed to soil or rock performance
 - Does not include pits or quarries, or knowledge, such as a subsurface information database
 - These are assets that are not part of corridors
 - "Geotechnical Assets"

What is "performance"?

- Many definitions concurrently
- Our ultimate objective(s)
- Something that can be measured
- Something that can be managed

USDOT Performance Report

Performance Measure	2004	2005	2006	2007	2008	2009	2010 Target	2010 Actual	Met / Not Met
Percentage of travel on the National Highway System (NHS) meeting pavement performance standards for "good" rated ride.	52	52	54	57	56	57	58	58*	Met
Percentage of deck area on National Highway System (NHS) bridges rated as deficient, adjusted for average daily traffic.	32.0	29.9	29.2	29.7	29.5	29.2	28.9	28.7	Met

Condition Reporting

Report to Congress

- System Conditions
- Operational Performance
- Safety
- Revenue and Expenditures
- Investment Analysis

Difficult to associate performance with federal investments

What is "system performance"?

FHWA's System Performance Goal:

The Nation's highway <u>system</u> provides safe, reliable, effective and sustainable mobility for all users.

FHWA is now going farther...

Performance Management in the Future

Performance Management of the Federal Highway Program is a systematic approach to making investment and strategic decisions using information about the condition and performance of the system and developing an approach to achieve a desired set of national goals

Performance Management Success Utah Example

- Strategic Direction identifies 'final four' of goals that guide performance management and planning
 - Take Care of What We Have
 - Make the <u>System</u> Work Better
 - Improve Safety
 - Increase Capacity

Performance Based Planning at Mn/DOT

Policy Plan

- Vision: A Safe, Efficient and Sustainable Transportation <u>System</u>
- Emerged from discussions with stakeholders
- Identified challenges and opportunities
- Defined policies to guide decisions

	Safety	Twin Cities Mobility				
	Infrastructure Preservation	Greater Minnesota Metropolitan and Regional Mobility				
	Maintenance & Security	Community Development and Transportation				
	National and Global Connections	Energy and the Environment				
-	Statewide Connections	Accountability and Transparency				

Performance Management Elements

Reporting Examples

Business Plan 2004 & 2005 Ohio Department of Transportation

2007 Annual Attainment Report Maryland DOT

Good to Great Strategic Plan and Annual Report New Mexico DOT

Bay Area Transportation

Dashboard Virginia Department of **Transportation**

Measures, Markers and Mileposts Washington State Department of Transportation

Tracker Missouri Department of Transportation

Performance Management in the Future

Keywords for Performance are:

- System
- Mobility, Capacity
- Efficiency, Reliability
- Safety

For a system to perform well, its corridors must perform well and deliver mobility, capacity, efficiency, reliability and safety

One broken link can change all of that

Geotechnical Message

- Consider 200 slopes, 10 walls and 50 embankment culverts identified as 'in need' by separate inventory and assessment methods
 - Measure: reduce number
 - Target: 10% reduction
- Consider 10 corridors of primary significance
 - Measure: safety, efficiency, mobility
 - Target 10% improvement

Geotechnical Message

 It is important to be developing tools and practices for data collection and decision making

Geotechnical Message

- It is also important to be looking beyond to how that contributes to improved performance of a system through performance of a corridor
 - Bridges
 - Pavement
 - Walls
 - Signs
 - Slopes
 - Embankments
 - Tunnels
 - Etc.

Recent U.S. examples

- Embankment on I-75 in TN
 - March 8, 2011
 - Both SB lanes still closed
 - Built in 1970s
 - 150 ft high embankment
 - CMP culvert
 - Deterioration
 - Separation
 - Saturation
 - Weakening
 - Failure

Recent U.S. examples

Rockslide on I-40 in NC

- October 2009
- 6 month closure
- 25,000 ADT
- \$10 m repair*
- \$ 65 m travel time costs*
- \$57 m operating costs*
- \$44 m congestion costs*
- \$10 m other costs*

*HDR, 2010

US-64 in TN, November 2009, \$22 m

Recent U.S. examples

- Rockfall on I-70 in CO
 - March 2010
 - Repeat from Nov. 2004
 - 4 days full closure
 - 200 mile detour
 - 2 months partial closure
 - \$1.6 m repair

- June 2003
- Similar closures
- \$4.2 m repair

Final Thoughts

- Focus on features can lead to stovepipes
- Focus on corridors requires integration
- Geotechnical features are not 'solid as rock' – there are ownership responsibilities
- System performance is limited by the weakest link, which may be geotechnical

