Obsolescence Management and System Safety
Directed Asset Management for Technology-Based Rail Transit Systems

Rail and Transit Systems
Kourosh Noori, Senior Systems Engineer
Susan Cox, Manager, System Safety
April 2012
Introduction

❖ The Challenge
 – Maintaining existing rail transit operating systems in a state-of-good-repair, within the constraints of available funding
 – Continuing to provide safe, reliable service to passengers as rail transit operating systems approach the end of their design life
 – Responding to demand for more capacity and enhanced capabilities

❖ The Solution
 – Innovative approaches to the management of equipment obsolescence to obtain the best return on investment; a holistic “total systems” approach throughout the life span of the system
Rail Transit Operating Systems

- Complex integration of many systems, facilities, processes and people supporting safety functions
 - Control centers: System operational monitoring
 - Rolling stock: Operations
 - Trackwork: Maintenance
 - Traction power: Security and Emergency Preparedness
 - Signaling and train control systems
 - Communications and passenger information systems

- Asset management and obsolescence management are today typically handled reactively
 - At what cost to safety?
Traditional rail transit operating systems
- Did not use microprocessor-based technology
- Equipment suppliers provided spare parts directly to the agency over the long-term

Recent trends
- Rapidly evolving microprocessor-based technology
- Software supported mission-critical functionality
- Outsourcing to 3rd-party vendors
- Computer-based maintenance and inventory systems
- Increased use of commercial off-the-shelf systems (COTS)
Implications of using COTS

Pros
- Potential lower initial equipment costs
- Important in a competitive procurement process that does not consider life cycle costs

Cons
- COTS can have shorter life cycles than that of the rail transit operating system
- COTS may not have historic safety performance record
- Expectation gap between transit agencies and 3rd party vendors
Obsolescence Management

- The need to manage obsolescence is now being faced at an unprecedented rate
- Obsolescence occurs when a product becomes unavailable as a result of:
 - Newer Technology
 - Expired Material
 - Global Economy
 - Company Bankruptcy
 - Company Merger
 - Evolving Policy
 - Evolving Requirement
 - Evolving Regulation
Obsolescence Management

- Fundamental questions
 - How to anticipate and detect obsolescence?
 - Indicators that can be collected transparently
 - What alternatives and contingencies are in place?
 - Multiple suppliers, replacement strategy
 - When need exceeds available funding, what criteria guide choices?
 - Safety criteria, business criteria (e.g. customer comfort)
 - Should the system be replaced rather than maintained?
 - RIO analyses
 - How to ensure system safety is not compromised?
 - Monitor safety application conditions
Major risk contributors
- Relying on suppliers to identify and mitigate obsolescence
- Insufficient consideration of obsolescence during procurement
- Insufficient understanding of demand for spare parts
 • Life cycle cost models can be validated during O&M and procurement plans revised accordingly.

Risk mitigation requires a pro-active approach to obsolescence management
- Engage your supply chains with win-win strategies
- Review the procurement process for indicators and gaps
- Consider the system as an integrated whole; the performance of one part may cause ripples or tidal-waves across the system
Proactive Asset Management Approach

Define objectives and prioritize initiatives by
- Categorizing assets wrt safety and RAM significance
 • SIL, MTBF, MTBSAF, A, MTTR
- Refine estimates for useful life and replacement schedule
- Address obsolescence during initial design and procurement
- Monitor trends of major and minor repairs, incidents
- Forecast future needs with consideration of remaining useful life and replacement costs

Assess the effectiveness of each initiative
- to ensure future decisions are based on a solid foundation and to support the case for funding needs
Design Considerations

- Life cycle costs as design criteria
 - Factor the costs of preventative and corrective maintenance including downtime, spares and manpower

- Exploit Technology with Intelligent Assets
 - Intelligent asset has pertinent system status
 - Designs with intelligent assets integrated into the O&M program during the design can enhance safety and reduce the risks/costs associated with O&M oversights
 - confirm maintenance task to be performed upon arrival on site
 - confirm operating restrictions are in place
 - replay the safety brief
 - record the work done
Procurement Considerations

- Identify indicators for approaching obsolescence
- Consider long-lead replacement constraints
- Classic EOL strategies have potential benefits and risks; an innovative approach can find the balance
 - Life Time Buy
 - Last Time Buy
 - Substitution (form/fit/function equivalent)
 - Re-design
- Develop evaluation criteria for selection of suppliers to manage EOL risk
- Warranty criteria and warranty recovery program
Asset Management Considerations

- Decision support
 - “What-if?” analyses
 - Multi-factor investment prioritization
 - Coordinated investment planning
 - Contingency and alternative planning
 - Review performance of decisions
A transit system operates as the integration of many functions supported by people, equipment and processes.

- When one element degrades or is replaced, what is the impact on other elements and on the transit system overall?
 - Monitor indicators supporting system safety program

Ensuring safety is maintained as assets degrade

- Safety is dependent upon the reliability and availability
 - Degraded performance can manifest as dormant failures, increased safety risk
- New technologies may not have historic safety data
- Software cannot be tested exhaustively; a rigorous process must be followed
Obsolescence is a fact of life and can be managed
- Requires a full life cycle approach that considers all operating system elements

Transit Agencies, Consultants and Suppliers working together can:
- Define and execute a proactive asset management process
- Proactively manage equipment obsolescence
- Provide for the continued safe and reliable service to passengers
Question and Answer

Thank You

contact: s.cox@delcan.com