

#### Prioritizing Ancillary Transportation Assets for Management: A Risk-Based Study

Richard Sarpong Boadi Adjo Amekudzi, Ph.D. Georgia Institute of Technology

9<sup>th</sup> National Conference on Transportation Asset Management April 16-18, 2012 San Diego, California



## Acknowledgements



- Project Title:
  - Comprehensive Transportation Asset Management: Risk-Based Inventory Expansion and Data Needs
- Project Sponsor:
  - Georgia Department of Transportation
- Project Directors:
  - Adjo Amekudzi, Ph.D. (PI); Michael Meyer, Ph.D., P.E. (Co-PI)
- Graduate Research Assistants:
  - Richard Boadi; Margaret Akofio-Sowah

### Outline



- Objectives of the study
- Review concepts of risk
- Risk framework with example
- Conclusions and recommendations from study



#### Objectives



- To review the basics of risk theory
- To develop a risk-based decision-support tool
- To illustrate the model
- To offer recommendations to improve the capabilities of the model

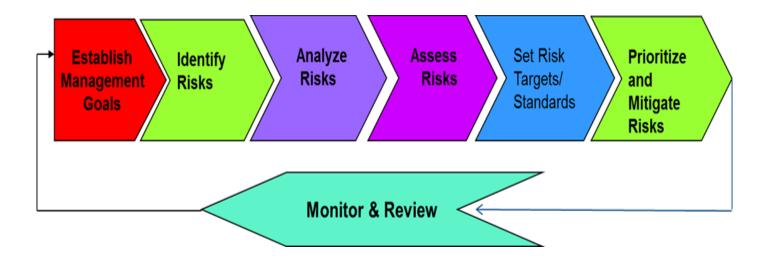


## Basic Risk Concepts (1)



**Risk-Management: Definition** 

"Risk management is a process of identifying sources of risk, evaluating them, and integrating mitigation actions and strategies into routine business functions of the agency."


-TAM Guide, Vol. 2



## Basic Risk Concepts (2)



#### **Conceptual Risk Framework**







## Basic Risk Concepts (3)

- Risk modeling
  - Quantitative risk assessment
    - Risk= Probability\*Consequence
  - Qualitative risk assessment
    - Assigns relative values for measures of risk
    - Separates risk into descriptive categories
      - Low high
      - Not important very important
      - Scale of 1 10



## Basic Risk Concepts (4)



- Risk Models
  - Matrix Models
  - Probabilistic Risk Models
  - Indexed-Based Risk Models
  - Real Options Models



## Proposed Risk Framework



- Based on the strategic objectives of the agency
- Considers a set of identified performance measures
- Uses a risk matrix modeling approach
- Ranks assets based on risk differentials (i.e., likelihood and consequence of failure)



#### Evaluation Example (1)



- Agency's objectives
  - Reduce safety risks
  - Reduce mobility risks
  - Reduce the risk of condition failure



#### **Evaluation Example (2)**



#### Sample risk matrix

| Risk Level of |        | Safety      |        |        |  |
|---------------|--------|-------------|--------|--------|--|
| Performanace  |        | CONSEQUENCE |        |        |  |
| Measure       |        | LOW         | MEDIUM | HIGH   |  |
|               |        |             |        |        |  |
|               | LOW    | LOW         | LOW    | MEDIUM |  |
| 81114         | MEDIUM | LOW         | MEDIUM | HIGH   |  |
| PROBABILITY   | HIGH   | MEDIUM      | HIGH   | HIGH   |  |



## **Evaluation Example (3)**



- Definition of likelihood and consequence
  - Likelihood of Asset Failure (I) = Average Age of Asset
    Class/Average Expected Useful Life
  - The consequence is defined based on the impact of failure (Different agencies may value impacts differently)



#### **Evaluation Example (4)**



#### Likelihood Scale

| Priority<br>Scale | Description | Likelihood                  |
|-------------------|-------------|-----------------------------|
| 1                 | High        | If failure rate ſ ≥ 1       |
| 2                 | Medium      | If failure rate 0.5 ≤ ſ < 1 |
| 3                 | Low         | If failure rate ſ < 0.5     |



#### **Evaluation Example (5)**



#### Safety Risk Consequences Scale

| Priority<br>Scale | Description | Consequences                              |
|-------------------|-------------|-------------------------------------------|
| 1                 | High        | Body injuries and death in 10 yrs.        |
| 2                 | Medium      | Property loss or body injuries in 10 yrs. |
| 3                 | Low         | No injuries or death in 10 yrs.           |
| 2                 |             |                                           |



## **Evaluation Example (6)**



#### Mobility Risk Consequences Scale

| Priority<br>Scale | Description | Consequences                                                                                  |
|-------------------|-------------|-----------------------------------------------------------------------------------------------|
| 1                 | High        | Road closure for a day or more (detour required) in 10 yrs.                                   |
| 2                 | Medium      | Lane(s) closure/delays experienced for a day or more (no detour required) in 10 yrs.          |
| 3                 | Low         | Lane(s) closure/delays experienced for a period (within hours, no detour required) in 10 yrs. |



## **Evaluation Example (7)**



#### Maintenance Risk Consequences Scale

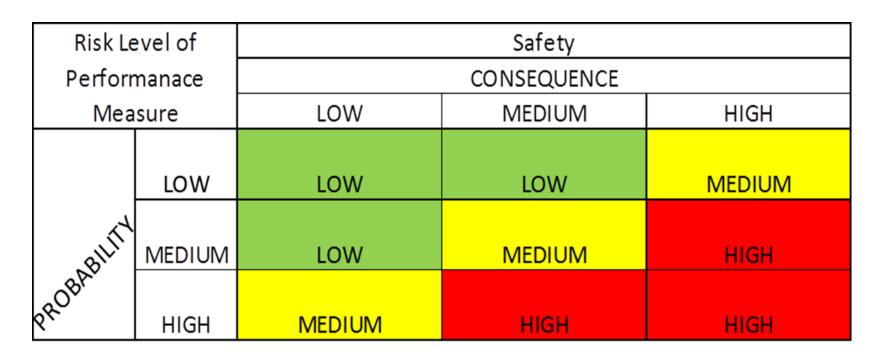
| Priority<br>Scale | Description | Consequences                         |
|-------------------|-------------|--------------------------------------|
| 1                 | High        | Impacting over 25000 ADT             |
| 2                 | Medium      | Impacting between 5000 and 25000 ADT |
| 3                 | Low         | Impacting less than 5000<br>ADT      |



## **Evaluation Example (8)**



#### **Evaluation Data**


| Asset Class                                 | Culverts | Guardrails | Traffic Signals |
|---------------------------------------------|----------|------------|-----------------|
| PROBABILITY                                 |          |            |                 |
| Average age of asset base (yrs)             | 20       | 15         | 14              |
| Expected useful life of asset (yrs)         | 45       | 30         | 20              |
| Likelihood of asset failure                 | 0.4      | 0.5        | 0.7             |
| CONSEQUENCES (10 yr analysis period) -      |          |            |                 |
| Yes/No                                      |          |            |                 |
| Safety                                      |          |            |                 |
| Bodily injury to involved party             | YES      | NO         | YES             |
| Property loss/damage                        | YES      | YES        | YES             |
| Death/fatality                              | YES      | NO         | YES             |
| Mobility                                    |          |            |                 |
| Lane closure/delay resolved in hours        | NO       | YES        | YES             |
| Lane closure/delay resolved in days with no |          |            |                 |
| detours                                     | NO       | YES        | NO              |
| Lane closure/delay resolved in days with    |          |            |                 |
| detours                                     | YES      | NO         | NO              |
| Maintenance                                 |          |            |                 |
| Failure on roadway with ADT <5000           | YES      | NO         | YES             |
| Failure on roadway with ADT 5000 - 25000    | YES      | YES        | YES             |
| Failure on roadway with ADT >25000          | NO       | YES        | NO              |



#### **Evaluation Example (9)**



#### Sample risk matrix





## **Evaluation Example (10)**



## Computational and Alternative Ranking Matrices

| ALTERNATIVES PRIORITIZATION  |        |          |                      |             |
|------------------------------|--------|----------|----------------------|-------------|
| ALTERNATIVE<br>ASSET CLASSES | SAFETY | MOBILITY | EFFICIENT MANAGEMENT | TOTAL SCORE |
| Culverts                     | 2      | 2        | 3                    | 7           |
| Guardrails                   | 2      | 2        | 1                    | 5           |
| Traffic Signals              | 1      | 3        | 2                    | 6           |

| High Risk Alternative   | Action Required if Total Score is <=5 (i.e., at least 1 high risk and 2 medium risks) |
|-------------------------|---------------------------------------------------------------------------------------|
| Medium Risk Alternative | Consider for action if Total Score is either 6 or 7                                   |
| Low Risk Alternative    | No immediate action required if Total Score >7                                        |



# Conclusions and Recommendation



- Conclusions
  - Little evidence of the use of risk-based approach in prioritizing ancillary assets
  - Developed framework provides a means for making a prioritizing assets
  - Accuracy of model is dependent on data availability
- Recommendation:

 Improve the tracking and the documentation of ancillary assets failures



#### References



- Gordon, M., G. J. Smith., P. D. Thompson., H. A. Park., F. Harrison., and B. Elston. Supplement to the AASHTO Transportation Asset Management Guide: Volume 2 - A Focus on Implementation. 2010.
- Fares, H and T. Zayed. Hierarchical Fuzzy Expert System for Risk of Failure of Water Mains. Journal of Pipeline Systems Engineering and Practice, 2010. 1(1): p. 53-62.
- Dicdican, R. Y., Y. Y. Haimes and J. H. Lambert. Risk-Based Asset Management Methodology for Highway Infrastructure Systems. 2004, Center for Risk Management of Engineering Systems University of Virginia.
- Kannapiran, A., A. Chanan, G. Singh., P. Tambosis., J. Jeyakumaran and J. Kandasamy. Strategic asset management planning of stormwater drainage systems, Water Practice & Technology, IWA
   Publishing 2008 | doi:10.2166/wpt.2008.065.

